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Hybrid solitary waves in quadratic nonlinear media
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Considering nondegenerate, backward quasi-phase-matched parametric interaction, we show that quadratic
media support two dimensional “hybrid” solitary waves. Their structure results from the combination of two
distinct mechanisms which, in isolation, are at the origin of the two classes of quadratic solitary waves
considered in nonlinear optics. In the transverse dimension the structure results from a balance between
diffraction and quadratic nonlinearity while the longitudinal structure results from net energy exchanges be-
tween the three interacting velocity-mismatched waves. The hybrid solitary waves can propagate at arbitrarily
small velocity, a feature that should make them easy to observe experime$alDg3-651X99)05803-]

PACS numbeps): 42.65.Tg, 42.65.Yj, 42.65.Re

Nonlinear localized waves and solitons are ubiquitous inclasses of solitary waves in nonlinear optics. The hybrid soli-
physics. They can be found in such diverse fields as hydroary wave is two dimensional. Its transverse structure results
dynamics, plasma physics, and nonlinear optics where theffom a balance between diffraction and nonlinear(fiyst
are grouped in numerous classes according to their origina¢las$ while its longitudinal structure is due to a net energy
ing mechanism. In nonlinear optics two main classes of soliexchange between the three interacting wasesond clags
tary waves are distinguished that are of fundamentally dif-This longitudinal structure was recently shown to form a
ferent nature. On the one hand, one finds solitary waves th&olitary-wave attractor in the backward configuratidr8].
arise from the interplay of nonlinearity and diffractisar ~ The backward configuration was chosen because it confers
dispersion in the temporal cas@hese localized waves are robustness to the solitary wave especially as regards the on-
well known in cubic nonlinear media where they can take theset of modulational instability. This is important in the
form of bright or dark solitons. They have been generalized®resent context since the transverse structure of the hybrid
to quadratic nonlinear media through the concept of paramegolitary wave is of the dark type that was shown to be always
ric solitary wave, for the brighfl] as well as for the dark Modulationally unstable_ in diffractive quadratic solltary
[2,3] structures. In view of their potential applications to Waves[3,15,16. Here, owing to the robustness of the hybrid
all-optical switching, parametric solitary waves have at-Solitary wave against modulational instability the dark trans-
tracted growing attention in the last few years both fromVerse structure is stable .
theoretical4] and experimental view poin{§]. The second ~ We consider a quadratic material in which nondegenerate
class of solitary waves of nonlinear optics gathers the soliParametric interaction takes place through backward quasi-
tary waves that originate from energy exchanges betweeBhase-matching so that one of the daughter waves the
interacting waves of different velocitid$]. Their structure ~ Signa) counterpropagates with respect to the pump field. The
is determined by an exact balance between the energy ejdea of the quasi-phase-matching technique is to modulate
change rates and the velocity mismatch between the interadeeriodically the nonlinear susceptibility in order to introduce
ing waves. This type of solitary wave also occurs in otheran additi_onal wave vector that compensates fpr the natural
branches of nonlinear science, such as plasma physics, hjhase mismatch between the counterpropagating fi¢ids
drodynamics, or acoustid¥,8]. Several solitary waves of Under these conditions the slowly varying field envelopes
this class, but with different originating mechanisms, havedt frequencyw; and wave numbek; , obey the coupled par-
been extensively investigated in the field of nonlinear opticdial differential equations:

[9-11]. In particular, the similarity between three-wave in-

teraction solitary waves and the self-induced transparency dA;  JA; . . A1

soliton[12] governed by the sine-Gordon equation has been ot 9z A= AsA; +i Kl&_yzv (18
established 8]. Besides this latter case, energy-exchange-

induced solitary waves have been observed experimentally in

the context of stimulated Ram&h0] and Brillouin[11] scat- ‘9_A2 r ‘9_A2
tering. In the particular case of backward interaction in qua- ot 2 9z
dratic nonlinear media, their spontaneous formation has been

predicted in both the amplifigil3] and the cavity{14] con-

) - dA; dA;
figurations. —try—

We consider here the backward phase-matching configu- at 9z
ration of the nondegenerate three-wave interaction in qua-
dratic media. We report, for the first time to our knowledge,with  w3;=w,+w; and kz=k,+K-k;, where K
on a hybrid solitary wave that arises from the combined ac=2=/A, A being the spatial period of the grating. For defi-
tion of two distinct mechanisms corresponding to the twoniteness we callA;,A,,A; the signal, idler, and pump
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FIG. 1. Typical solitary-wave solution in the pure one-
dimensional case. Parameters afe=0, w,=0.3, u»,=0.35, us
=0.

waves, respectively. For convenience, the field amplitudes,
the timet, the space coordinateg,{), and the damping
ratesy,; are normalized with respect to the pump amplitude
E, at the input of the crystal and with respect to the para-
metric coupling coefficient o;=2ndv,/A1n; (where

n;, v;, andd, respectively, are the refractive index, the
group velocity at frequencw,;, and the effective nonlinear
susceptibility, i.e., Ai/Eq—A;; toEx—t; (z,y)01Ep/vy
—(z,¥); ¥i(01Eg) " *—ui. In these units, the diffraction
coefficients areq;=v;o;Eq/2v2k; , while the nonlinear sus- T
ceptibility and group velocity parameters are= o /o, and g R

ri=vi/vy (i=1,2. From now on, we will assume for sim- ¢ 5 Hybrid solitary-wave generation: evolution of spatial
plicity and without loss of generality thai;=2p,=2 and  ympiitudes profiles of the signéd) and pump(b) envelopegalong

ry=rp=1. ) ) ) the longitudinal(z) and transverséy) axis] in the signal reference
In a recent work we investigated Eqel) in the pure  frame defined by {=z+t,7=t) (amplitudes are given in units of
one-dimensional case(=0) and found a family of solitary- Eg,).

wave solution$13] whose characteristic shape is represented
in Fig. 1. The solution is reached starting from any initially only way to keep constant the energy transfer in order to
localized profile of the signal envelope in the presence of generate stationary field structures. This approximation is
counterpropagating continuous pump. In order to investigatesual for solitary waves that belong to the second class and
the existence of hybrid solitary waves, we introduced heravill be discussed later.
the transverse dimension through the diffraction terms in Under these conditions we solve numerically Ed3s.ex-
Egs.(1) (x;#0). Noting the particular symmetry of Eqd)  tending to two dimensions the procedure outlined in Ref.
which are invariant under the transformatioA;(A,,A;)  [18]. A typical result is illustrated in Fig. 2 that shows the
—(—A;,—A,,Az), we can easily anticipate the existence of spatial profile along the longitudinal and tranverse axis of the
dark topological structure across the transverse profile of theignal and pump waves in the signal reference frame defined
solitary wave. Indeed, the sign indeterminationfaf,A, in by ({=z+t,7=t). In this example the damping parameters
Egs.(1) should allow for the parametric growth of the signal are u,=0.3,u,=0.35 and the diffraction parameters ate
and idler modes with a phase differencemin two distinct =x,=10 3,k3=0.5x10 3. As the initial condition int
regions of the transverse space. Such a phase defect wou0, we took a plane wavés(z,y,t=0)=1 for the pump.
form a dark topological solitary wave if it could be stabilized For the signal we considered a transverse dark profile
through a mutual compensation of diffraction and nonlinearbounded along the longitudinak axis A;(zy,t=0)
ity. Due to the nontrivial energy exchange mechanism thatcetanj A(y—L/2)]z(L —z), wheree, A are constantd, is
forms the longitudinal solitary-wave structure in the counter-the size of the numerical window, and for the idler a zero
propagating waves, this transverse stabilization mechanisiield A,(z,y,t=0)=0. After a complex transient £ 10) the
is not obvious and should be checked numerically with greathree interacting fields self-structurate in the form of the an-
care. ticipated hybrid solitary wavet{30). The same solution is

In order to check the existence and spontaneous formatioreached starting from any signal envelope, provided that it
of such a hybrid dark solitary wave, we consider here thexhibits a transverser-phase shift. This allows us to con-
numerical simulation of the backward amplification processsider the hybrid solitary wave as a strong attractor solution of
of a signal field that exhibits a-phase shift in its transverse the system.
profile and that is localized in time. Note that since we are We plot in Fig. 3 the longitudinal and transverse profiles
looking for a solitary-wave structure induced by the energyof the hybrid solitary wave. As expected, the two-
transfer from the pump to the signal and idler waves, wedimensional structure is hybrid in the sense that, on the one
have to assume zero loss for the pump;€0). It is the  hand, it is localized in the transverse dimension as a dark
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1.2 propagate with a selected subluminous velo¢itg]. The
two-dimensional hybrid solitary wave considered here can be
viewed as being formed by the coupling through diffraction
of a continuous set of longitudinal structures. The important
point is that, because of the phase defect, these longitudinal
solitary waves obviously have different amplitudes as evi-
denced in Figs. @ and 3b). As the selected velocity de-
pends on the amplitude of the solitary wave, one could have
expected that this nonuniform amplitude distribution results
in a certain distribution of the velocities of the longitudinal
solitary waves that would have therefore led to a global
spreading of the two-dimensional structure. The remarkable
and unexpected result is that diffraction coupling locks to-
gether all the longitudinal solitary waves of different ampli-
FIG. 3. Typicals longitudinalg: y=1: b: y=7.5) and trans- tudes and gives rise to the hybrid solitary wave that propa-
verse ¢: ¢(=5; d: {=6) profiles of the hybrid solitary wave in 9ates with a peculiar subluminous velocity.
its asymptotic regimet( 30). To determine the selected velocity, s, remark that
in the regions far from the phase defect, the wavefront is

structure of the first class where diffraction is balanced bycompletely flat and diffraction plays no role. The longitudi-
the nonlinear coupling. On the other hand, its longitudinaln@! profile of the hybrid solitary wave in these regions thus
profile is localized in the form of a solitary wave reminiscent t2kes the same shape as that of the pure one-dimensional
of the second class. Because of its topological nature, theiructure. Therefore, by virtue of the stationarity of the two-
transverse structure is robust and survives all along the traffimensional structure, the selected velocity of the hybrid
sient and asymptotic dynamics. Far from the phase defe&plltary_wave is dete_rmlned _by the velocity of thg pure one-
line located iny=0, the signal and idler envelopes tend to dlmen_S|onaI one. This ve_Iocny has been determined anﬂalytl—
the profile of the longitudinal solitary wave in the absence ofc@lly in Ref. [13] following the Kolmogorov-Petrovskii-
diffraction [this is clearly evidenced by comparing Figap ~ Piskunov conjecturg21] and reads

and Fig. 1. Note that the pump wave is not of the dark type

=]

Amplitudes |A |

0 8 16
C=Z+t

in the transverse dimension, in contrast with the signal and 2_ 2

) , ' : —ui+41—

idler modes[Figs. 3c) and 3d)]. In this respect, the trans- V;:’Mz Pt AV paps @)
verse dark structure of the hybrid solitary wave shares the A4 (py— pp)?

properties of the spatial topological phase defect found in

degenerate optical parametric oscillatptg]. In particular, . . . - .
as%n the optic?al pargmetric oscillator, the pum?J envelope irWe _checked t_)y _numerlcal simulation the validity Of*th's the-
the form of a hump sitting on a constant background is ex_oretlcal prfdmtlon. We  found a d|screpancwzg_heor
plained by the local frustration of the frequency conversion™ Yznum/Vzaum DEtween the numerical and theoretical val-
process due to the zero value of the signal and idler intensHes ofV} less than 0.1%.
ties imposed by the phase defect. In order to clarify the experimental conditions required
The hybrid solitary wave proved to be robust with respectfor the observation of hybrid solitary waves, let us note that,
to modulational instabilities. In all our numerical simulations according to Eq.(2), their velocity V; can be arbitrarily
we could not identify any growing modes that might be re-small and even 0. Due to the short typical lengths of avail-
sponsible for modulational instability. This result contrastsable quadratic crystals, the generation of solitary waves of
with the previously reported quadratic spatial dark solitarythe second class in copropagating phase-matching configura-
wave that was shown to be always modulationally unstabldion is not feasible because it requires prohibitive pump pow-
[3]. Let us emphasize that the robustness of the hybrid soliers. Conversely, on the backward configuration, arbitrarily
tary wave is intimately related to the backward configurationsmall velocities are possible which makes the hybrid solitary
of the parametric interaction considered here. Indeed, due twaves observable with relatively low pump intensities. This
large wave velocity differences, the backward interaction issimply because the time spent in the crystal can be made
responsible for a strong localization of the signal and idlersufficiently long to allow transient dynamics and complete
components along the longitudinal ax®0,14. Under this  buildup of the fields to take place within the crystal length.
condition, a given point of the pump carrier wave only inter- According to Eq.(2), we haveV; =0 when the pump am-
act with the daughter waves over a very short ticoethe  plitude E, is chosen such thag,+ uo=(y1+ v2)/o1Eq
order of the pulse duratignwhich prevents the onset of the =2. Moreover, for this particular case of zero velocity, we
modulational instability. may expect to generate the stationary hybrid solitary wave in
Let us remark that the hybrid solitary wave does notthe presence of pump losg.{#0). Indeed in this case, the
propagate with the velocity of light in the quadratic material energy transfer from the pump to the signal and idler waves
but rather with a specific subluminous velocity. This is vis-remains constant since the signal and idler envelopes do not
ible in Fig. 2 where we see that the steady-stag, fort move with respect to the exponential pump profile. For non-
>30) structure drifts uniformly to the right in the signal zero velocity in the case of nonzero pump loss, the solitary
reference frame. This is not surprising since we have showwave has to adapt its shape to each value of the pump am-
in the one-dimensional cas&;&0) that the solitary waves plitude and is therefore no longer stationary.
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FIG. 4. Signal and pump amplitudes profiles of the zero-velocity hybrid solitary awelitudes are given in units &).

We simulated Eqs(1) with the following diffraction pa-
rametersc; = k,=2X10 2, k3=10"2 and the damping pa-
rametersy; =12 cm%, y,=3 cm!, y;=0.5 cm?! that
corresponds to a pump intenslty: 30 MW/cn? launched in
a crystal of length.=7 cm with an effective nonlinear co-
efficient of d=50 pm/V. The simulation has been per-

linearity all along its propagation since interaction with the
signal and idler waves only takes place over a small region
of the longitudinal axis.

In summary, we showed that backward nondegenerate
parametric interaction in quadratic media sustains a new type
of two-dimensional hybrid solitary waves. The structure of

formed in the laboratory reference frame starting from thelh€Se ner\:v n.onlineﬁr waves rﬁsult§ frorr; the ir:terplay ?f the
same initial conditions as in Fig. 1. After a complex transient™WO Mechanisms that are at the origin of two classes ot qua-

the three interacting fields self-structurate in the form of a0ratic solitary waves that were up to now considered sepa-

a ; 4 X .
zero-velocity hybrid solitary wave whose asymptotic Signalrately in nonlinear optics. These mechanisms are, on the one

and pump envelopes are represented in Fig, 4. Owing to ithand, the balance _between diffraction e_lnd nonlinearity thqt
: - . BEads to a dark solitary-wave structure in the transverse di-
Zero ve'Iocny, we have bee:-n able to pursue the NUMENCE,ension and, on the other hand, a net energy exchange be-
integration over very I.ong. tlmeg. In the_examp|e of Fig. 2, ween the interacting velocity-mismatched waves which
t=2000 corresponds in dimensional units to 20 ns. Carefuleads 1o longitudinal confinement. Our numerical simulations
checks of the numerical simulations allow us to concludeshow that the dark hybrid solitary waves are stable against
that the hybrid solitary wave is rigorously stationary andmodulational instability contrary to their purely diffractive
robust against modulational instabilities. counterpart. Moreover, the hybrid solitary waves can have an
Let us note that a bright counterpart of the dark hybridarbitrarily small velocity, which makes them observable ex-
solitary wave presented here cannot be expected contrary fserimentally in quadratic crystals of practical lengths. The
what is found in the well-known purely diffractive solitary experimental observation of this hybrid solitary structure
waves, Refs[2—4]. Indeed, a transversely limited pump would be of great interest for the fundamental study of spon-

beam cannot see its own diffraction compensated by the nortaneous localization phenomena in nonlinear optics.
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