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Velocity Verlet algorithm for dissipative-particle-dynamics-based models of suspensions
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A velocity Verlet algorithm for velocity dependent forces is described for modeling a suspension of rigid
body inclusions. The rigid body motion is determined from the quaternion-based scheme of OfGeiygut.
Phys.12, 97 (1998]. An iterative method to determine angular velocity in a self-consistent fashion for this
guaternion-based algorithm is presented. This method is tested for the case of liquid water. We also describe
a method for evaluating the stress tensor for a system of rigid bodies that is consistent with the velocity Verlet
alogorithm. Results are compared to the constraint-based rattle algorithm of Anfler€@mput. Phy52, 24
(1993]. [S1063-651%X99)13203-3

PACS numbeps): 47.11+j

I. INTRODUCTION (whereN is the number of particles in the inclusjoand,
hence, can be prohibitively slow for the case of modeling the
There has been recent interest in mesoscopic models #fotion of solid inclusions composed of large numbers of
complex fluids called dissipative particle dynami@PD) particles, it serves as an accurate benchmark to test other
that blend cellular automata ideas with molecular dynamic&'dorithms. - .
methodg 1]. The original DPD algorithm utilized symmetry ' this Brief Report we show how the use of quaternions

properties such as conservation of mass, momentum, arfg represent the orientation of such objel@s7] can greatly

Galilean invariance to obtain hydrodynamic behavior for aincrease the computational efficiency of DPD simulations.

svstem of “mesoscopic” particles which can be thoudht ofQuaternions provide a convenient way to represent the ori-
a>s/, representin cIusE[)ers gf molecules or “lumos” ofgﬂuid entation of rigid objects, since, in contrast to a representation

presenting ; s " in Euler angles, the transformations between body-fixed and
Later modifications of the DPD algorithm resulted in a more : . : :
: . . . . laboratory coordinate reference frames contain no singulari-
rigorous formulation which was consistent with the fluctua-

tion dissipation theorerf2]. Improvements to the tempera- ties when expressed as quaternions. First, we review the de-
P - 'mp P velopment of the equations of motion for the quaternions.

ture behavior of the DPD algorithm were made by mOdlflca'Next we indicate how to efficiently apply the velocity Verlet

il/onl of 6} stqcr?stlc gprﬁmﬁ terrg ar|1d mcorporatmg ahyfloc!f?/algorithm[&% to the quaternion equatiof$0], and demon-
erlet "?‘go”t m which aflowed a farger time step while sti strate its use in the simulation of water. We then discuss the
p_roducmg a sa_’usfactory te_mperatur(_a co_nt[m]. An algq- modifications of the algorithm needed to include the velocity
rithm for modeling the motion of arbitrarily shaped objects ependent dissipative forces in DPD simulations. A proce-
subject to hydrodynamic interactions by DPD was suggestegure for determining the rigid body’s contributidn to the

b)r/o;?ne;;gznb a?ﬂeigﬂg?yrgrggf{f}]}am%,L'?'d Igggé/ IZr?i?:]es stress tensor, consistent with the velocity Verlet algorithm, is
b y 9 y P P given and compared to that derived from the rattle routine.

where the solid inclusion is located and updating their posi-

tioq according to the Euler _equations. Th_e original DPD al- Il. EQUATIONS OF MOTION

gorithm used an Euler algorithm for updating the positions of

free particles, and a leap frog algorithm for updating the The equations of motion for the quaternions have been

position of the rigid body. A motivation of this work was to discussed by several authg11—-13 with varying degrees

develop an efficient algorithm to update both the free parof completeness. Note that the explicit form for the matrix

ticles, and the rigid body position in a manner consistenconnecting the angular velocity of the object in the body-

with the velocity Verlet algorithm. fixed frame and the time derivatives of the quaternions is not
A commonly used velocity Verlet-based algorithm for up- treated with a uniform notation, so care must be taken when

dating the position of rigid bodies is the so called rattle al-comparing the elements of this matrix as presented by dif-

gorithm[5]. The rattle routine solves a set of constraint equaferent authors. For this reason, we present the development

tions that fix the relative positions of particles comprising theof the equations of motion in detail.

rigid body by a relaxation method. Further, the stress tensor The quaternion parameteng, », &, and{ for a individual

(from an atomic view can be directly obtained from the body are related to the Euler angles, as described by Gold-

constraint forces calculated in the algorithm, and is comstein[14], by [7]

pletely symmetric. While the rattle routine is of ordif Y= cos 012)cos( i+ $)12),

7=sin( /2)cod(y— $)/2),
*Electronic address: nicos.martys@nist.gov
Electronic address: RMountain@nist.gov E=sin(812)sin((y— ¢)/12),
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£=cog 612)sin((+ ¢)/12). Ill. INTEGRATION OF THE EQUATIONS OF MOTION

The velocity Verlet algorithni8] was initially introduced

to improve the numerical stability of the leap frog scheme
1) [15]. The velocity Verlet algorithm has subsequently been

derived in a systematic way by means of a time-reversible
The connection of the quaternions with the description of théP@rtitioning of the Louville operator from Ref9], and is
dynamics of the rigid object is through the matrix equation"OW widely use_d in simulations. It is an example of a second
that connects the time derivatives of the quaternions with th@"der symplectic integrator. It has the forms
principal angular velocityw, , )

The quaternions satisfy the constraint

X2+ P+ 82+ 2=1.

x(at)=x(0)+>'<(0)at+(

: 0),

g _ga - X 7, g wpx 2 a( ) (9)
:'7 _ X _gv _51 n wpy 5 ] ) St

2 I R R Y § P X(8)=X(0)+ —[a(0)+a(3)],

)-( -7 gl _gl X 0

wherea(0) is the acceleration term evaluated usk{@).

The 4x 4 matrix in this equation is orthogonal, so that the While the systematic derivation for translz_iti_onal degrees
transformation is singularity free. of freedom does not apply to rotation of a rigid body, one
Equations of motion for the quaternions are obtained byan still propose a velocity-Verlet-like algorithm for the
transforming the Euler equations for a rigid body that has théluaternions. Here we adopt the scheme proposed by Ome-
center of mass fixed, and is subject to torqdésin the Yan[10]. The conditions on the quaternior@,Q,=1 and

principal frame, QaQa:o, are incorporated into the coefficient of a con-
. straint force with the fornf ,= —2AQ, so that the integra-
wpx=Ny/ I+ wpyop 1, =111, tor for Q,, takes the form
Wpy =Ny /lyF wp (1= 1)1y, 3 Qu(8)=Q,(0)+Q,(0)at
) 2 2
®p,= N,/ + wpwp (1= 1)1, N (5;) Qa(0)+fa(0)(82t) _ 10

into a quaternion form using the following sequence of ma-
. . . . . _ T
trix _operations. First, define matrice®=(£,7,{,x)" and  The conditionQ,,(8t)Q,(t)=1 leads to an explicit expres-

W= (@px,@py, wp,,0)7 SO that Eq(2) becomes sion for the coefficient\, namely,
Qu=3M W, (4) (81)2A=1—s,(8t)22
where repeated Greek indices are summed. Now —\J1=51(8t)2—5,(5t)3— (53— 52) (1) /4,
w,=2M7,Q, (5) 1
and where the s; terms are sums:s;=Q,(0)Q,(0), s,
_ ) o =Q,(0)Q.(0), and s3=Q,(0)Q,(0). For small 8, A
W,=2M],Q,+2M},Q,=7,, 6)  —s,0t/2.

. . . ] . The updated values fd,(5t) and®,(st) are obtained
whereT is obtained from the right-hand side of E&) with using Eqs(4) and(8), with values forwp,, wpy, andw,, at

7,=0. This reduces to St obtained by solving the Euler equatiofgs. (3)]. Since
— B CT o wp, IS proportional towpzw,,, it is necessary to iterate the
Qp=2Mp, 7, Mpg,M . Qa, @) second member of E@3) in order to obtain a self-consistent

result. Here we suggest a scheme that converges rapidly.
First determine thev-independent part o[bpa(ét) which

S =L Ma T — 57O, 8 involves just the torque$Eqg. (3)], and call it T, (8t). A
Qs=2 Mgy Ty~ Qu(QuQu) ® zeroth estimate fow,,(dt) is then

which in turn simplifies to

when the condition®,Q,=1 andQ_,Q,=0 are applied. St

Note that the explicit form of the matrid depends on the 0Q(8) =, (0)+ =[wp(0)+ T, (SD)]. (12
order of the quaternion parameters in the ma@ijxand that pa pa 2P “
different authors have made different choices. The general
form for the equations of motion foQ,, is independent of This estimate forwp,(dt) is then used to estimate the
this choice, but any given implementation must be internallyw-dependent part of the right-hand side of E@), say
consistent. 9L w(4t)]. The first estimate fot,,(dt) is then
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0.010 . . V. DPD MOTION OF LARGE RIGID BODIES

Forces in DPD depend both on the relative positions and
velocities of particles. Hence a predictor velocity must be
estimated to input into the force calculations. A reasonable
approach to determine a predictor velocity could be based on
an estimate of angular velocity & 6t/2 derived from the
quaternion equations of motion. However, to match more
closely the trajectories obtained from the rattle routine that
strictly follow the velocity Verlet algorithm, the predictor
velocity was simply based on the average velocity obtained
in moving from positiorx(0) to x(4t) in Eq. (9). Otherwise,

‘ the quaternion and rattle routines may not be consistent ex-
5 10 15 20 cept in the limit of infinitesimally small time step.
t (ps) The following modifications were then made to velocity

equation in Eq(9):
FIG. 1. The departures from the average energy for SPC/E water
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over a 20-ps time interval are shown for the algorithm discussed St —x(0
above as a line with circles, and for an algorithm where the con- ] ) BN ~ x(4t) —x(0)

. ; ) . - X x(0)+\ dta(0) (15
straints on the quaternions are imposed by scaling as a line with 2 ot
squares.

and
(1)(&)_ (0)(&)4_ ﬂ (0) (13
wpa _wpa 2 ga . ] ] St ~[ St
x(5t)=x(0)+§ a(0)+al ét,x > (16

Now usew{.)(t) to constructg [ w™(8t)], and then to

generate the second estimate &gy, (6t): ) ,
for the rattle routine and for the center of mass motion of the

@ 0 ot D rigid_ _body When_using the quaterrjion—based algorithm. In
Wpe(08) =y, (6t)+ ?ga . (14 addition Eq.(15) is used to determine the DPD forces be-
tween particles for both the rattle and quaternion algorithm.
This process can be continued until the desired level of conThe final position and velocity of the solid body’s constituent
vergence has been reached. We find that three iterations aparticles is derived from the quaternion equations. We used
sufficient for the examples discussed in Sec. IV. Equations = 1 for our simulations. For further discussion of the effect
(10—(14) constitute the “constraint force algorithm.” of varying \, see Ref[3].

A related algorithm for integrating the equations of mo-  whijle the rigid body contribution to the stress tensor is
tion for quaternions, that is patterned after the original Verleteadily calculated from the rattle routine, the constraint
algorithm, was described by Svanbegtf]. His “mid-step  forces contributions are not immediately obtained from our
implicit algorithm™ is similar to a velocity Verlet algorithm  quaternion algorithm. However, because the motion of the
that iteratesQ, and imposes th&€,Q,=1 andQ_,Q,=0 rigid body closely follows the trajectory obtained by the
conditions by scaling. Omelydi0] showed that a velocity rattle routine, we can approximate the constraint forces con-
Verlet algorithm with scaling for quaternions is inferior to tributions by considering the velocity Verlet algorithm. Let
the version described above. This is illustrated by the exa;(0) be the acceleration of particleon the rigid body

ample discussed next. which results from the sum of nonconstraint forces due to all
particles (including those in the rigid bodyand the con-
IV. ENERGY CONSERVATION FOR WATER straint forces from particles in the rigid body. That 83,

_E.—pFnc 4 pgc ;

The constraint force algorithm has been used to integraté Fi=F%+F i where the superscripts nc aadorrespond
the equations of motion of 216 SPCJE7] water molecules to nonconstraint forces and the constraint forces, respec-
at ambient conditions with a time stép=2 fs. Results for a tively. Since all the nonconstraint forces are known, as well
20-ps interval are displayed in Fig. 1 as a ragged line wittfS the velocity and positions of the particletatO andt
circles. The quantityE) is the average energy for the 20-ps — 9t the sum of the constraint forces on particlean be
interval, andAE = E(t) —(E). The sloping line with squares derived by assuming that particles follow the same time evo-
is for the same system using a “scaling algorithm,” where glution as that derived from the rattle routine using E(.

velocity Verlet algorithm is used to integra®@, and Q, and(16).

with linal to im th nstraints. Clearly this demon- We now show that the sum of the constraint forces on
: tSC?h gto _pt_)tse ft?\co s ? 'Sff ca yl sth €MON4ach particle is all that is needed to determine correctly the
strates the superiorily of the constraint 1orce algorithm Ovel, . qint force contribution to the stress tensor. First, the

the scaling algorithm. NOt.e tha_t a similar figure was given bycontribution to the stress tensor from constraint forces is
Omelyan[10]. However, in this case the running average

(E(t)) instead of E) is used in the denominator. Use of the
running average can be misleading because it can mask a c 1N ECo(f_f 1
systematic drift in energy. Tap Z.ZJ IR 9
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wherei andj correspond to all particles in the rigid body. order. Indeed, for the time 3step used hefes 0.01, out re-
Note thatFS;=—F¢;, and that the sum of constraint forces \S/Lg:feii'; %Orqrs]';tem wittd(5t°), the accuracy of the velocity
on particlei due to particleg is F¢= 3 FC We can then gonthm.

write VI. CONCLUSION

We have developed and tested a velocity Verlet algorithm
a,B 22 Flja(rl i for a dissipative-particle-dynamics-based model describing
the motion of rigid body inclusions. A simple procedure for
R calculating the stress tensor contribution from the rigid body
22 F”a - 22 F.,a is which is consistent with the velocity Verlet algorithm was
given. The velocity Verlet algorithm for DPD is less sensi-
. . tive to variation in time step size than the Euler algorithm
12 FP ar, 12 F]a is presented in the original DPD papers, thus significantly im-
proving numerical accuracy at little computational cost. Al-
though the original motivation of the paper was to improve
z FiCaFi ) upon the original DPD algorithm such that the DPD particles
[ p which represent a solvent and the rigid body motion are
. R treated in a self-consistent fashion, the numerical techniques
SinceF"® is known anda; can be estimated from Eq€9)  presented in this paper should not be limited to DPD.
and (16), we can determin&® to the accuracy of the algo-
rithm, and determine contributions to the stress tensor from ACKNOWLEDGMENTS
the two parts of the velocity Verlet algorithm. Comparing  N.S.M. would like to acknowledge support for this re-
stress tensor values between the rattle and our quaternigearch from the National Institute of Standards and Technol-
algorithm, we found agreement to six significant figures andpogy Program on High-Performance Construction Materials
further, that the stress tensor was symmetric to the sama&nd Systems.
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