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Predictions from information-theoretical models of nonequilibrium radiation
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The radiation distribution function used by Domı´nguez and Jou@Phys. Rev. E51, 158 ~1995!# has been
recently modified by Domı´nguez-Cascante and Faraudo@Phys. Rev. E54, 6933 ~1996!#. However, in these
studies neither distribution was written in terms of directly measurable quantities. Here a solution to this
problem is presented, and we also propose an experiment that may make it possible to determine the distri-
bution function of nonequilibrium radiation experimentally. The results derived do not depend on a specific
distribution function for the matter content of the system.@S1063-651X~99!10502-6#

PACS number~s!: 05.30.2d, 44.40.1a, 05.70.Ln
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Information statistical theory@3,4# has been applied re
cently to generalize the Planck distribution to nonequilibriu
systems@1,2,5#. This is a relevant problem because, in co
trast with matter@6#, a well-established nonequilibrium dis
tribution for radiation that has been tested in the laborat
does not seem to be available at present. Domı´nguez-
Cascante and Faraudo have presented a model in whic
radiation distribution function follows from the maximiza
tion of the radiative entropy under the constraints of fix
energy density, fixed energy flux, and vanishing pho
number flux@2#. This leads to the radiation distribution

f r5
1

exp@bprc2gW •prccW1dW •cW #21
, ~1!

wherepr andcW stand for the photon momentum and veloci
respectively, andb, gW , anddW are Lagrange multipliers. The
motivation for requiring an additional constraint of vanishi
photon number flux was that the authors of Ref.@2# noted
that the distribution previously proposed by Domı´nguez and
Jou, namely@1#,

f r̃5
1

exp@bprc2gW •prccW #21
, ~2!

can also be obtained by performing a Lorentz boost t
frame in which the distribution is that of equilibrium@which
corresponds togW 50 in Eq. ~2!#.

Neither of the proposals~1! and ~2!, as they stand, can
give a complete description of the radiation emitted by
nonequilibrium system, for in Refs.@1,2# the Lagrange mul-
tipliers b, gW , and dW were not written in terms of directly
measurable quantities. Here we will derive this depende
and propose how it might be verified experimentally.

It has been recently argued by Nettleton@7# that
statistical-mechanical models of radiation, as applied, e
by the authors of Refs.@1,2# in their proposals of the distri
butions ~2! and ~1!, cannot be embodied into a thermod
namically consistent theory because of the nonlocality of
radiation field. We share his view, since the nonlocality
radiation transfer in vacuum may be seen as a consequ
of the fact that photons do not interact with each other. T
makes, in particular, the evolution of an isolated system
wards equilibrium impossible. Therefore, as pointed out
Landau and Lifshitz@8#, in a nonequilibrium theory, it is
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necessary to consider a system composed of matter in a
tion to radiation@9,10#. Moreover, if a photon has momen
tum pW r , we cannot localize it in space. Let us, therefo
consider a macroscopically small system, centered at p
RW , within which the matter has an approximately unifor
temperature. The neighboring regions feed a radiant flux
the system. If the density of matter is high enough, phot
will be emitted and absorbed in a highly localized regio
Under such circumstances, and assuming for the mom
that the matter part of the system is a classical ideal gas
entropy density of the system can be written as@8,11#

s̃5 s̃m1 s̃r52kE d3pm

h3
f m ln f m

12kE d3pr

h3
@~11 f r !ln~11 f r !2 f r ln f r #, ~3!

where the subindexesm andr stand for matter and radiation
pW and f 5 f (RW ,pW ) are the corresponding momenta and sing
particle distributions@11#, respectively,k is the Boltzmann
constant, andh is the Planck constant. The entropy~3! has
been recently used in the study of nonequilibrium radiat
@10,12–14#. However, Eq.~3! corresponds to a very specia
system. In contrast, the Planck distribution describes
equilibrium radiation emitted by any blackbody, indepe
dently of its composition and state. Thus any theory based
Eq. ~3! is much less general, simply because interactio
among particles cause~in nondilute systems! the matter en-
tropy not to depend only on the single-particle distributi
function: in general, one must work with the phase-spa
distributionrm @15#. We are, therefore, lead to generalize E
~3! by ~see also, Refs.@16,17#!

s̃52kE dGm

h3NV
rm ln rm

12kE d3pr

h3
@~11 f r !ln~11 f r !2 f r ln f r #, ~4!

where the first integration is over phase space@18#, V is the
volume of the system considered above, and the prob
posed is to determine the radiation distribution under
following constraints:
3710 ©1999 The American Physical Society
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ũ5ũm1ũr5E dGm

h3NV
Hm~Gm!rm12E d3pr

h3
prc fr , ~5!

^Al&5E dGm

h3NV
Al~Gm!rm , ~6!

FW 52E d3pr

h3
prccW f r , ~7!

0W 52E d3pr

h3
cW f r . ~8!

Here ũ is the energy density,FW is the radiative energy flux
and Hm(Gm) is the microscopic operator corresponding
the matter Hamiltonian, e.g., for a single fluid with a pa
wise potential energyVi j (rW), one would haveHm(Gm)
5( i 51

N @pmi
2 /2m1 1

2 ( j Þ iVi j (rWm j2rWmi)#, with m the molecu-

lar mass,rWmi and pW mi the position and momentum of th
matter particlei, andN the number of particles@16,19,20#.
Al(Gm) are any additional operators corresponding, e.g.
the matter number density, to the conductive flux, etc. T
constraint~8! corresponds to the requirement of vanishi
photon number flux, in agreement with the point raised
Ref. @2#. Maximization of the entropy density~4! under the
constraints~5!–~8! yields

rm5 expF212bHm~Gm!2(
l

l lAl~Gm!G , ~9!

and Eq.~1! for f r . The set$l l% are Lagrange multipliers
The simplest case for the matter part is that of a class
monatomic ideal gas at rest and with negligible heat cond
tion, for which Eq. ~9! becomes rm5Z exp
@2b(i51

N pmi
2 /2m#, whereZ normalizesrm to unity: this case

corresponds to the single-particle Maxwellian distributio
namely, f m5C exp@2bpm

2 /2m#, where C is such that
*d3pmf m5n, with n the molecular number density. W
stress that, without need to consider such a specific ma
content of the system, the radiation distribution is given
Eq. ~1!. However, we would like to remark that Eq.~1! will
not hold unless the matter is sufficiently dense: if the ma
were extremely dilute, photons reaching any small region
the system would have been emitted by matter at a differ
completely independent temperature. When maximizing
total entropy of such a system, volume integrals would
pear in the exponents in Eq.~9! @19,21,22#, so that the dis-
tribution modulus of radiation would be different from th
of matter~i.e., b rÞbm). Such a case would certainly com
plicate any thermodynamically consistent approach, as w
as the derivation of any specific prediction. This is in agr
ment with the remarks by Essex@23# and Nettleton@7# on the
thermodynamical implications of the nonlocality of radiati
transfer in vacuum.

In order to obtain testable predictions, it is necessary
relate the Lagrange multipliersb, gW , anddW to measurable
quantities. The identification of the Lagrange multiplierb is
based on the thermodynamical definition of temperatureT,
which identifiesT21 with the partial derivative of the en
tropy with respect to the energy of the system@4#. It is pre-
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cisely this definition that allowed Boltzmann to derive th
Stefan radiation law from thermodynamics and classi
electrodynamics@24#. The derivation is done in the usua
way @12# and yields

b5
1

kT
. ~10!

Let us, for the sake of mathematical simplicity, restr
our attention to near-equilibrium states. We assume
near-equilibrium states correspond to small values of the
diation multipliersgW anddW , an ansatz to be checkeda pos-
teriori. By performing a MacLaurin expansion of the distr
bution ~1! up to first order ingW anddW , we obtain

f r5
1

exp@bprc#21

3S 11
exp@bprc#

exp@bprc#21
prccW•gW 2

exp@bprc#

exp@bprc#21
cW•dW D .

~11!

Use of this equation into the constraint~8! yields

dW 5
18j~3!

p2b
gW , ~12!

wherej(z) is the Riemann zeta function, and the integra
have been performed by making use of the formulas 3.42
and 9.542,1 in Ref.@25#. Making use of Eqs.~10! and ~12!
into Eq. ~11!, we may write the near-equilibrium radiatio
distribution as

f r5
1

expFprc

kT G21

3H 11S prc2
18j~3!kT

p2 D expFprc

kT G
expFprc

kT G21

~cW•gW !J .

~13!

Use of Eq.~13! into Eq. ~7! and integration yields

FW 54S 1

3
2

135

p6
@j~3!#2D ac2kT5gW , ~14!

wherea58p5k4/15c3h3 is the blackbody constant. In orde
to relategW to the temperature gradient, we first calculate t

pressure tensor of radiation, i.e.,@26#, PWW 52*R3(d3pr /
h3)(pr /c)cWcW f r , making use of Eq.~13!. It is easily seen that
the integrals of the terms in (cW•gW ) vanish, and

PWW 5
aT4

3 S 1 0 0

0 1 0

0 0 1
D , ~15!

where use has been made of formula 3.411.1 in Ref.@25#.
We now assume, in order to obtain relatively simple expr
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sions, that the system is in a steady state. As it is well kno
@27,9#, from the gray radiative transfer equation, it follow
that c(]Pxi/]x1]Pyi /]y1]Pzi/]z)52sFi , with s the
absorption coefficient andi 5x,y,z. Therefore, use of Eqs
~15! and~14! allows us to relategW to measurable quantities

gW 52
1

12
405

p6
@j~3!#2

1

sckT2
¹W T. ~16!

The intensity~per unit solid angle! of radiation is related to
the photon distribution function throughI n5(2hn3/c2) f r
@28#. Thus, making use of Eqs.~13! and~16! and expressing
the intensity per unit wavelength (l5c/n5ch/prc),

I l5
2hc2

l5

1

expF hc

kTl G21S 12

hc

l
2

18j~3!kT

p2

12
405

p6
@j~3!#2

3
1

skT2

expF hc

kTl G
expF hc

kTl G21

~V̂•¹W T!D , ~17!

whereV̂5cW /c is a unit vector.
We will now make a proposal in order to test this res

experimentally. We also find it interesting to compare it w
the one that follows from the maximization of the entro
density ~4! under the constraints~5!–~7!, without including
the constraint~8!. This yields the distribution~2! ~which was
considered in Ref.@1#! instead of Eq.~1!. By repeating the
same calculations as above, one finally finds

Ĩ l5
2hc2

l5

1

expF hc

kTl G21

3S 12
hc

l

1

skT2

expF hc

kTl G
expF hc

kTl G21

~V̂•¹W T!D ,

~18!

which is the intensity corresponding to near-equilibrium d
fusion theory. In contrast with the intensity~17! ~which has
been derived here for the first time!, Eq. ~18! has been pre-
viously derived, both phenomenologically@29,26# and from
information theory@12#.

In order to illustrate the predictions of the result~17!, and
to compare it with the previously derived intensity~18!, we
consider a system with a nonuniform temperature distri
tion. Such a system is depicted in Fig. 1. In the special c
of a uniform temperature, the radiation would be Plancki
in agreement with either Eq.~17! or Eq. ~18! for the special
case of equilibrium (¹W T50W ),
n

t

-
se
,

I leq5
2hc2

l5

1

expF hc

kTl G21

. ~19!

We will consider this equilibrium result for comparison pu
poses only. The problem is then to determine~i! whether the
predictions of Eq.~17! differ enough from the equilibrium
result~19! so that such differences may be measured exp
mentally, and~ii ! whether Eq.~17! changes the prediction
of Eq. ~18! in such a way that the experiment proposed
Fig. 1 allows us to determine which one of them, if an
corresponds to the physical reality. In order to answer b
questions, we consider the radiation leaving the system
Fig. 1 in the direction of the temperature gradient@i.e., di-
rection B in Fig. 1, which corresponds to (V̂•¹W T)5u¹W Tu]
and the opposite direction@i.e., directionA in Fig. 1, which
corresponds to (V̂•¹W T)52u¹W Tu]. In Fig. 2 we plot the
spectra for the caseTA52000 K, TB52001 K, a uniform
temperature gradient ofu¹W Tu55 K/m, ands50.1 m21 @12#,
as predicted by Eq.~17! and also by Eq.~18!. The dashed

FIG. 2. Comparison between the spectra predicted by the di
bution function derived in the present paper~dotted curves! and by
near-equilibrium diffusion~full curves!, for the experiment pro-
posed in Fig. 1. In this figure, the dashed line is a Planckian sp
trum ~either at temperatureTA or TB).

FIG. 1. Experiment proposed in order to determine the distri
tion function of nonequilibrium radiation. The system consider
has a nonuniform temperature distribution. In Figs. 2 and 3
present the predictions for the spectra of thermal radiation emi
in the directionsA andB ~such spectra can be measured by me
of spectrophotometers located, e.g., at points of observationA8 and
B8).
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line in Fig. 2 corresponds to the equilibrium, or Planckia
approximation~19!. From Fig. 2, it is seen that the corre
tions of near-equilibrium diffusion theory@Eq. ~18!# are as
large as 13%. On the other hand, the vanishing-photon-
model derived in the present paper@Eq. ~17!# yields an ad-
ditional correction of about 6%. The difference between b
models is thus important enough so that such an experim

FIG. 3. Corrections to the Planckian intensity as a function
the temperature gradient, for the experiment proposed in Fig
These corrections have been computed according to the distrib
function derived in the present paper@the dotted curves are plots o
(I l2I leq)/I leq)3100] and to near-equilibrium diffusion theory

@the full curves are plots of (Ĩ l2I leq)/I leq3100].
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should make it possible to determine which one, if any,
both intensities corresponds to nonequilibrium radiation.

Because Fig. 2 depicts a very specific case, in Fig. 3
present the correction with respect to the equilibrium a
proximation in terms of the temperature gradient. In therm
equilibrium (u¹W Tu50), the intensity is Planckian@see Eq.
~19!# and there is no correction. The higher the temperat
gradient, the larger the corrections are.

Let us finally mention that, in spite of what is claimed
Ref. @2#, it is not clear that one can conclude that Eq.~2!
corresponds to equilibrium simply because this distribut
acquires a Planckian form in a specific frame. According
Eq. ~18!, such radiation is emitted by matter with¹W TÞ0,
i.e., it corresponds to a nonequilibrium system. Moreover
observers in Fig. 1 are in motion~relative to the emitting
system!, they can certainly determine whether this motion
consistent or not with a Planckian emission in the rest fra
of the emitting system. Such points clearly show that th
retical attempts to solve the problem of nonequilibrium
diation via information theory~e.g., Refs.@1, 2, 12#, and the
present paper! would really benefit from an experimental ap
proach to this fundamental question.

The author is very pleased to thank D. Jou, J. E. Lleb
and P. Roura for their comments. Computing equipm
used in this paper has been partially funded by the DGIC
of the Ministry of Education and Culture under Grant No. P
96-0451.
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