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Predictions from information-theoretical models of nonequilibrium radiation
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The radiation distribution function used by Darguez and Jo(iPhys. Rev. E51, 158 (1995] has been
recently modified by Dormguez-Cascante and Faraudhys. Rev. E54, 6933(1996]. However, in these
studies neither distribution was written in terms of directly measurable quantities. Here a solution to this
problem is presented, and we also propose an experiment that may make it possible to determine the distri-
bution function of nonequilibrium radiation experimentally. The results derived do not depend on a specific
distribution function for the matter content of the syst¢®1063-651X99)10502-6

PACS numbegs): 05.30—d, 44.40+a, 05.70.Ln

Information statistical theory3,4] has been applied re- necessary to consider a system composed of matter in addi-
cently to generalize the Planck distribution to nonequilibriumtion to radiation[9,10]. Moreover, if a photon has momen-
systemq1,2,5]. This is a relevant problem because, in con-tym p,, we cannot localize it in space. Let us, therefore,

trast with matte{6], a well-established nonequilibrium dis- consider a macroscopically small system, centered at point
tribution for radiation that has been tested in the laboratorys | iin which the matter has an approximately uniform

dcoes n;)t sederlr:1 to dbehavallable attdpresen(tj. Immhz.'h ttemperature. The neighboring regions feed a radiant flux into
ascante and Faraudo have presented a model in whic lf'l?e system. If the density of matter is high enough, photons
radiation distribution function follows from the maximiza-

; £ th diati der th . £ fi dwiII be emitted and absorbed in a highly localized region.
tion of the radiative entropy under the constraints of fixed,y,yor g ¢ circumstances, and assuming for the moment
energy density, fixed energy flux, and vanishing photo

! hao N "hat the matter part of the system is a classical ideal gas, the
number flux[2]. This leads to the radiation distribution entropy density of the system can be writter[ 8.1
1

- S d*ppm
exd Bp,c—y-p,cc+6-c]—1 e

oY)

fr

§=~sm+~sr=—kf folnf,

wherep, andc stand for the photon momentum and velocity,

respectively, ang, 77 andd are Lagrange multipliers. The +2kf d*p,
motivation for requiring an additional constraint of vanishing h3
photon number flux was that the authors of R&fl noted . o
that the distribution previously proposed by Domuez and vyhere the syb:ndexem andr stand for matter and radiation,
Jou, namely1], p andf=f(R,p) are the corresponding momenta and single-
1 particle distributiong11], respectivelyk is the Boltzmann
T.= _ _ , (2)  constant, and is the Planck constant. The entrof§) has
exd Bp,c—vy-p,ccl—1 been recently used in the study of nonequilibrium radiation

can also be obtained by performing a Lorentz boost to 410:12—14. However, Eq(3) corresponds to a very special
frame in which the distribution is that of equilibriufwhich ~ SYStem. In contrast, the Planck distribution describes the

- equilibrium radiation emitted by any blackbody, indepen-
corresponds tey=0 in Eqg.(2)].

Neither of the proposalél) and (2), as they stand, can dently of its composition and state. Thus any theory based on

give a complete description of the radiation emitted by aEq' (3) Is much less general, simply because interactions

o ; ° “among particles caud@n nondilute systemsthe matter en-
r?or.1eqU|I|br|»um sysEem, for in Reffl,Z] .the Lagrangg mul tropy not to depend only on the single-particle distribution
tipliers B, v, andﬁ_ were not written in terms of directly fynction: in general, one must work with the phase-space
measurable quantities. Here we will derive this depe”denc%istributionpm [15]. We are, therefore, lead to generalize Eq.

[(L+f)In(1+f,)—f, Inf], 3

and propose how it might be verified experimentally. (3) by (see also, Refg16,17)
It has been recently argued by Nettletdd] that
statistical-mechanical models of radiation, as applied, e.g., ~ dr,
by the authors of Ref§1,2] in their proposals of the distri- S= _kf ey Pm Inpr
butions (2) and (1), cannot be embodied into a thermody-
namically consistent theory because of the nonlocality of the d3p,
radiation field. We share his view, since the nonlocality of +2kf 3 [(L+f)In(1+f,)—f, Inf,], (4)

radiation transfer in vacuum may be seen as a consequence
of the fact that photons do not interact with each other. Thisvhere the first integration is over phase spgt#, V is the
makes, in particular, the evolution of an isolated system tovolume of the system considered above, and the problem
wards equilibrium impossible. Therefore, as pointed out byposed is to determine the radiation distribution under the
Landau and Lifshit8], in a nonequilibrium theory, it is following constraints:
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o dr d3p cisely this definition that allowed Boltzmann to derive the
u=um+ur=f3—NmHm(Fm)pm+2f—srprcfr, (5)  Stefan radiation law from thermodynamics and classical

h="v h electrodynamicq24]. The derivation is done in the usual
way [12] and yields

dr,
(A)= f —=A(T ) P (6) 1
h="v B= 17 (10)
3
,fzzf d°ps p cof (7) Let us, for the sake of mathematical simplicity, restrict
et our attention to near-equilibrium states. We assume that

near-equilibrium states correspond to small values of the ra-

2 Zj d3p,6f ) diation multipliers{x and 5, an ansatz to be checkedpos-
R teriori. By performing a MacLaurin expansion of the distri-

bution (1) up to first order in;/ and &, we obtain

Hereu is the energy density? is the radiative energy flux, 1

and H(I'yy) is the microscopic operator corresponding to f =———

the matter Hamiltonian, e.g., for a single fluid with a pair- exd Bp,c]—1

wise potential energWij(F), one would haveH, (T ) exd Bp;c] . . exdpgpec]l - .

x| 1+ c-4].

=3N [p2/2Mm+ 32,V (Fmj—m) ], with m the molecu-

————————P,CC Yy~ ——————————
W/2m+ 32 exi Bp,c]— 17" " exd Bp,c]-1
lar mass,r,; and p,,; the position and momentum of the

matter particlei, and N the number of particlef16,19,2Q. (1)
A(T,) are any additional operators corresponding, e.g., tdJse of this equation into the constraii® yields
the matter number density, to the conductive flux, etc. The
constraint(8) corresponds to the requirement of vanishing . 18&(3) .
photon number flux, in agreement with the point raised in o= TB% (12
Ref. [2]. Maximization of the entropy densiti#}) under the
constrainty5)—(8) yields where £(z) is the Riemann zeta function, and the integrals
have been performed by making use of the formulas 3.423,2
Pm= ex;{_1_13|-|m(rm)_2 MNA(T) |, 9) and 9.542,1 in Ref[25]. Making use of Eqs(10) and(12)
[ into Eq. (11), we may write the near-equilibrium radiation

and Eq.(1) for f,. The set{\|} are Lagrange multipliers. distribution as

The simplest case for the matter part is that of a classical 1

monatomic ideal gas at rest and with negligible heat conduc- f,=

tion, for which Eqg. (99 becomes p,=Zexp exr{E
m

[—B=N p%/2m], whereZ normalizesp, to unity: this case kT

corresponds to the single-particle Maxwellian distribution, p,C

namely, f,=C exd—pBp3/2m], where C is such that 186(3)KT F{

Jd3pnfm=n, with n the molecular number density. We X 1+(Dr0— (c-y)

stress that, without need to consider such a specific matter m? ex;{p;}—l

content of the system, the radiation distribution is given by kT

Eqg. (1). However, we would like to remark that E€L) will (13)

not hold unless the matter is sufficiently dense: if the matter

were extremely dilute, photons reaching any small region of Use of Eq.(13) into Eq.(7) and integration yields

the system would have been emitted by matter at a different,

completely independent temperature. W_hen maximizing the ﬁ:4(}_ 25[5(3)]2> acZkT577, (14)

total entropy of such a system, volume integrals would ap- 3 5

pear in the exponents in E(P) [19,21,23, so that the dis-

tribution modulus of radiation would be different from that whereai8w5k4/15c3h3 is the blackbody constant. In order

of matter(i.e., B, # Bm). Such a case would certainly com- to relatey to the temperature gradient, we first calculate the

plicate any th_ermodynamicall_y consigtgnt app_roqch, as WeBressure tensor of radiation, i.e[26], 5:2fR3(d3pr/

as the derivation of any specific prediction. This is in agrees PRV Ki FEQ1D). It ] " that

ment with the remarks by Essgx3] and Nettletoj 7] on the )(_pr c)cef,, making use of E o ): is easily seen tha

thermodynamical implications of the nonlocality of radiative the integrals of the terms irc( y) vanish, and

transfer in vacuum.

-1

In order to obtain testable predictions, it is necessary to . aT4 100
relate the Lagrange multiplier8, y, and & to measurable P=—- 0 1 0f, (15
guantities. The identification of the Lagrange multipl@is 0 0 1

based on the thermodynamical definition of temperafiyre
which identifiesT ™! with the partial derivative of the en- where use has been made of formula 3.411.1 in [2H].
tropy with respect to the energy of the systpth It is pre-  We now assume, in order to obtain relatively simple expres-
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sions, that the system is in a steady state. As it is well known
[27,9], from the gray radiative transfer equation, it follows
that c(dPxi/dx+ dPy;/dy+ dPzildz)= — oF;, with o the

absorption coefficient and=x,y,z. Therefore, use of Eqs. -
(15) and(14) allows us to relate;/ to measurable quantities, B!
FIG. 1. Experiment proposed in order to determine the distribu-
c_ 1 1 tion function of nonequilibrium radiation. The system considered
y= VT. (16) . NP .
05 ockT? has a nonuniform temperature distribution. In Figs. 2 and 3 we
1- —6[5(3)]2 present the predictions for the spectra of thermal radiation emitted
a

in the directionsA andB (such spectra can be measured by means

. . . ) . of spectrophotometers located, e.g., at points of observaticand
The intensity(per unit solid angleof radiation is related to B).

the photon distribution function through,=(2hv3/c?)f,
[28]. Thus, making use of Eq$13) and(16) and expressing

2
the intensity per unit wavelength\ &c/v=ch/p,c), |Aeq:2hc 1 (19)
A5 hc
hc  18£(3)kT ex‘{m -1
2 A 2
|A:2hC ! 1— 7 We will consider this equilibrium result for comparison pur-
AS o E 1 405 ) poses only. The problem is then to determinevhether the
kT 1_?[5(3)] predictions of Eq.17) differ enough from the equilibrium

result(19) so that such differences may be measured experi-
he mentally, and(ii) whether Eq.(17) changes the predictions
exr{ of Eq. (18) in such a way that the experiment proposed in
« 1 KTA a-%7) 17 Fig. 1 allows us to determine which one of them, if any,
ok T? hc ' corresponds to the physical reality. In order to answer both
ex;{m guestions, we consider the radiation leaving the system in
Fig. 1 in the direction of the temperature gradigine., di-
rection B in Fig. 1, which corresponds toX- VT)=|VT|]
and the opposite directigfi.e., directionA in Fig. 1, which

-1

whereQ =c/c is a unit vector.

We will now make a proposal in order to test this result Jp - .
experimentally. We also find it interesting to compare it with corresponds to@-VT)=—|VT[]. In Fig. 2 we plo_t the
the one that follows from the maximization of the entropy spectra for the Cas"éAZEOOO K, Tg=2001 K, a uniform
density (4) under the constraintés)—(7), without including ~ temperature gradient ¥ T|=5 K/m, ando=0.1 m* [12],
the constraint8). This yields the distributiori2) (which was as predicted by Eq(17) and also by Eq(18). The dashed
considered in Ref{1]) instead of Eq(1). By repeating the

same calculations as above, one finally finds 18 ' ' ' :
T 2hc? 1 e A O Eq.(17) |
AT Eq. (18)
\® exp{—khc -1 w2k Ny T Ea.(19) |
TA
hc Ei 10 .
he 1 MmN . L y
okT ex 1 T, =2000 K
kTN s T,=2001 K
18 T osf dT/dx = 5 K/m A
18 -~
which is the intensity corresponding to near-equilibrium dif- 04 r
fusion theory. In contrast with the intensifg7) (which has I
been derived here for the first timeEq. (18) has been pre- 02
viously derived, both phenomenologicall29,26 and from .
information theory[12]. ool 1., R T S
In order to illustrate the predictions of the res(il?), and 0 ! 2 8 4 s
to compare it with the previously derived intensityg), we A (um)

qonS|der a system W'th a _nonur_nfor_m temperature d_|str|bu- FIG. 2. Comparison between the spectra predicted by the distri-
tion. Such a system is depicted in Fig. 1. In the special casg o, function derived in the present pagdotted curvesand by

of a uniform temperature, the radiation would be Planckianear_equilibrium diffusion(full curves, for the experiment pro-

in agreement with eE[her FG&N) or Eq. (18) for the special  posed in Fig. 1. In this figure, the dashed line is a Planckian spec-
case of equilibriumYT=0), trum (either at temperaturé, or Tg).
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Eq. (17)
— Eq.(18)

T,=2000K
T,=2001K
o=01m"
A= 1.4I pum
0 1 2 3 4 5
Temperature gradient (K/m)

(Lhe ) L (%)

FIG. 3. Corrections to the Planckian intensity as a function o
the temperature gradient, for the experiment proposed in Fig. 1:€-
These corrections have been computed according to the distributi

function derived in the present pafdéne dotted curves are plots o
(Ix=Tred/11eg X100] and tonear-equilibrium diffusion theory

[the full curves are plots ofi{ — lheq/Ire<100].
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should make it possible to determine which one, if any, of
both intensities corresponds to nonequilibrium radiation.

Because Fig. 2 depicts a very specific case, in Fig. 3 we
present the correction with respect to the equilibrium ap-
proximation in terms of the temperature gradient. In thermal
equilibrium (VT|=0), the intensity is Planckiafsee Eq.
(19)] and there is no correction. The higher the temperature
gradient, the larger the corrections are.

Let us finally mention that, in spite of what is claimed in
Ref.[2], it is not clear that one can conclude that E®)
corresponds to equilibrium simply because this distribution
acquires a Planckian form in a specific frame. According to

{Ed. (18), such radiation is emitted by matter WIiliT #0,
i.e., it corresponds to a nonequilibrium system. Moreover, if

dpbservers in Fig. 1 are in motiofrelative to the emitting
¢ System, they can certainly determine whether this motion is

consistent or not with a Planckian emission in the rest frame
of the emitting system. Such points clearly show that theo-
retical attempts to solve the problem of nonequilibrium ra-
diation via information theorye.g., Refs[1, 2, 13, and the

line in Fig. 2 corresponds to the equilibrium, or Planckian,present papémvould really benefit from an experimental ap-
approximation(19). From Fig. 2, it is seen that the correc- proach to this fundamental question.

tions of near-equilibrium diffusion theorjfEq. (18)] are as The author is very pleased to thank D. Jou, J. E. Llebot,
large as 13%. On the other hand, the vanishing-photon-fluand P. Roura for their comments. Computing equipment
model derived in the present padég. (17)] yields an ad- used in this paper has been partially funded by the DGICYT
ditional correction of about 6%. The difference between bothof the Ministry of Education and Culture under Grant No. PB
models is thus important enough so that such an experime®6-0451.
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