
PHYSICAL REVIEW E MARCH 1999VOLUME 59, NUMBER 3
Percolation in simple patchwise lattices
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We study the site percolation problem on square lattices with two kinds of sites, which are assembled in such
a way that the resulting structures have patchwise topographies. Lattices formed by collections of either
randomly or orderly localized patches of different sizes are generated. The composition of this system is
specified by two independient variables,p andq, which are the occupation probabilities of each type of patch.
Interesting phase diagrams in (p,q) composition space for the percolative transition are obtained and ex-
plained.@S1063-651X~99!07602-3#

PACS number~s!: 64.60.Ak, 64.60.Cn, 64.70.Pf
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Percolation theory has been known for several years
has been extensively reviewed@1–10#. It deals with the ef-
fect of random dilution of elementary geometrical obje
~spheres, sticks, sites, bonds, etc.! located in lattices or in the
continuum. Upon dilution of the elements, a sharp transit
is found to occur in the connectivity of the system. The p
colation threshold is defined as the minimum concentra
or density at which an infinite cluster of occupied eleme
spans the system. The percolation model has many gene
zations, which represent diverse physical situations, and
been applied to numerous problems in a large variety
fields. They include correlated percolation, extended-ra
percolation, directed percolation, polychromatic percolati
etc.

The aim of the present paper is to investigate the
percolation problem in a special lattice with restricted geo
etry, i.e., the patchwise lattice. These lattices, largely use
model adsorptive heterogeneous surfaces, are compos
two different types of sites, which in turn are grouped in
homogeneous patches or finite domains. Our main mot
tion to study the percolation properties of these structure
based on the fact that previous results of adsorption, di
sion, and reaction on both random@11–13# and ordered
patchwise lattices@14–16# have been very interesting from
both theoretical and practical points of view.

Let us consider a square lattice ofL3L sites, as a board
divided in black~B! and white~W! square patches with eac
one havingl 2 sites. We assume that the number ofB squares
is the same as the number ofW squares.B andW patches can
be put in order onto a square lattice, in such a way that
B(W) patch has four nearest-neighborW(B) patches, so the
resulting structure will be a perfect chessboard lattice
regular patchwise lattice. But if the squares in a chessbo
are randomly occupied byB or W patches, we have a rando
patchwise lattice. These lattices can be easily simulated
the computer. We suppose that the patches are touche
gether, sharing common borders, and any overlap betw
them is entirely forbidden.

*Author to whom correspondence should be addressed.
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This simple model could represent a ternary mater
composed by two conducting species, with conductivitiessB
andsW , and an isolating one. Imagine that each site ofB ~or
W) patch is either occupied by a piece of conducting ma
rial, with conductivitysB(sW) and with probabilityp(q), or
by a piece of isolating material, with probability 12p(1
2q). Then, electrical current can flow from one conducti
site to another, if both sites are nearest neighbors and
matter which conductivities the sites have. If the occupatio
p andq are independent, it is possible to analyze the eff
that concentrations, and also the size of the patches and
localization~ordered or random! have on the percolation an
conduction of the sample. Obviously, the conductance of
sampleG depends on concentrations and also on conduc
ties, i.e.,G5G(p,q,sB ,sW).

Let p andq be the occupation probabilities for a site b
longing to the black or white square, respectively. Just a
classical site percolation two adjacent or nearest-neigh
filled sites are considered to be connected to each other
matter which color the sites have. With bothB andW sites
occupied at random, the composition of the system is sp
fied by two independent variablesp andq. If the network is
very large andp andq are sufficiently small, the size of an
cluster is likely to be small. But ifp andq are close to unity
the network should be entirely connected and an infin
cluster of occupied sites spans the network. For a percola
path to occur, bothp and q must be large. How large eac
one must be depends on the other, thenp andq are interde-
pendent. The infinite cluster spanning the network will a
pear only for some well-defined pairs of threshold conc
trations (pc ;qc), then a family of percolation thresholds wi
arise. The smooth curve defined by the family of pa
(pc ;qc) represents the phase boundary separating the pe
lative regime from the nonpercolative one.

Since the lattices prepared on the computer are fini
there will be a certain probability of finding an infinite spa
ning cluster at any pair (p,q) of occupations. Letpav and
qav be the average percolation thresholds for a finite latt
of size L and patches containingl 2 sites. These averag
thresholds should approach to the real thresholdspc andqc
in the infinite lattice, i.e,pav→pc and qav→qc when L
→`.
3706 ©1999 The American Physical Society



n
,

e

he

siz

d
n

a
on

ite
a

ca

ne
a-

site

the
ting

hes

ed

qual
e

ns,
he
on

with
re-
nt
gu-

ors
rst

e

ith
g-
f

r

o s.

PRE 59 3707BRIEF REPORTS
From finite-size scaling of percolation it is well know
that the thresholds depend onL ~see Stauffer and Aharony
Ref. @9#!.

Thus, any pair of average thresholds (pav ,qav) for a lat-
tice of sizeL and patches withl 2 sites, approaches to the tru
pair (pc ,qc) according to the scaling law

pav2pc;L21/n, q fixed,

qav2qc;L21/n, p fixed, l 5const, ~1!

wheren is the critical exponent of the correlation lengthj,
which diverges at any pair (pc ,qc).

Let Dp andDq be the root mean-square deviations of t
thresholds observed from their average values, i.e.,

~Dp!2[Š~pav2^pav&!2
‹5^pav

2 &2^pav&
2,

~Dq!2[Š~qav2^qav&!2
‹5^qav

2 &2^qav&
2. ~2!

But these rms deviations also scale with the system’s
@9#,

Dp;L21/n, Dq;L21/n, l 5const. ~3!

Then combining Eq.~1! with Eq. ~3!, we have

pav2pc;Dp, qav2qc;Dq, l 5const. ~4!

Using the scaling law~1!, and taking the universal an
exact valuen54/3, we can find the family of percolatio
thresholds (pc ,qc), i.e., for each fixed value ofq ~or p) we
plot the observed thresholdspav ~or qav) versusL21/n and
then extrapolate to the interceptionpc ~or qc) by letting L
→`. In our calculations, different ratiosL/ l (L/ l
516, 24, 36, 48, 64, and 96! were used in order to obtain
good statistical accuracy of the sampling. These simulati
were carried out using the Parix parallel computer.

Numerical results, obtained by finite-size scaling for s
percolation on ordered and random patchwise lattices,
shown in Figs. 1 and 2, respectively. Note that the criti

FIG. 1. The phase boundaries for the percolative transition
ordered patchwise lattices, for increasing patches.
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lines are symmetrical under mirror reflection about the pla
p5q, since the problem is invariant under the transform
tion p→q and q→p. The critical pair (pc ,qc)
5(0.59,0.59) belongs to all transition lines because the
percolation threshold in the square lattice is 0.59.

In ordered lattices we observe that the larger the patch
more spread the percolation zone becomes. More interes
is the behavior in random lattices; enlarging the patc
makes the percolation thresholds increase.

In the simplest situation with both sites randomly locat
( l 51), the transition boundary is the straight line (p1q)/2
50.59, i.e., the average concentration is expected to be e
to 0.59 for the full random distribution of sites, like in th
classical site percolation.

From many Monte Carlo simulations, series expansio
and a few analytical calculations, is well known that t
percolation thresholds depend on both the space dimensid
and the coordination numberz. Many efforts to find exact
relations between these quantities have been made, but
limited success. Very recently, Galam and Mauger have
ported universal formulas, which yield within an excelle
accuracy both site and bond percolation thresholds, in re
lar lattices at dimensionsd,7 @17#, and in anisotropic and
aperiodic lattices at dimensionsd52,3 @18#.

We can explain qualitatively these percolative behavi
by means of an effective coordination number. Consider fi
the evolution of the thresholdqc* ( l )[qc(p51,l ) corre-
sponding to the pure white site percolation~i.e., all the black
sites present!, in chessboard lattices, Fig. 1. Clearly, th
larger l is, the lower the percolation thresholdsqc* ( l ) are. In
the case of patches of sizel 51, any white site has effectively
8 neighbors, Fig. 3~a!, and for patches of sizel 52, a given
white site has now 13 connecting neighbors, Fig. 3~b!. The
effective coordination number for ordered structures w
patches of sizel>2 can be easily obtained as follows. Ima
ine a white square withl 2 sites; then three different types o
sites are distinguished, Fig. 3~c!: ~i! sites at corners, with
zco( l )56l 2112(l 21) effective neighbors,~ii ! sites at
edges~excluding sites at corners! with zed( l )53l 1( l 21)
11 effective neighbors, and~iii ! centered sites, with only
zce54 neighbors. Since a square withl 2 sites has 4 corne

n FIG. 2. The same as Fig. 1, but for random patchwise lattice
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sites, 4(l 22) edges sites, and (l 22)2 centered sites, the
effective coordination number is

^z~ l !&5cco
~1!~ l !1ced

~1!~ l !1cce
~1!~ l !5

4

l 2
~8l 23!

1
4~ l 22!

l 2
~4l !1

4~ l 22!2

l 2
, ~5!

being valid for anyl>2.

FIG. 4. Evolution of the effective coordination number^z( l )& in
ordered patchwise lattices, when the dimensionl of the patch is
increasing. Here, all the black squares are filled (p51).

FIG. 3. In a chessboardlike square lattice with all the bla
squares occupied,p51, any site belonging to a white square h
effectively ~a! 8 neighbors ifl 51, ~b! 13 neighbors ifl 52, ~c!
15.11 neighbors ifl 53, and so on, see Eq.~5!.
The three functionscco
(1) ,ced

(1) ,cce
(1) and the resulting ef-

fective coordination number^z( l )& are shown in Fig. 4. Note
that the contribution tôz( l )& coming from sites at corner
vanishes for largel. If l→`, ^z( l )& reaches a maximum
value ^z`&520, which explains why the percolation thres
old qc* ( l ) first decreases withl and then saturates to a we
defined value'0.27.

The situation corresponding top,1 is clear: If not all the
black sites are filled, the effective coordination number
lower than that given by Eq.~5!, and thenqc(p,l ).qc* ( l ).

The same reasoning can be used to understand the p
lation properties of random structures. In this case it is e
dent that the biggerl is, the higher the percolation threshold
qc* ( l ) are, Fig. 2. But for these structures we cannot obt
explicitly an effective coordination number. However, it
even possible to distinguish the same three types of sites
we can write

^z~ l !&5cco
~2!~ l !1ced

~2!~ l !1cce
~2!~ l !. ~6!

FIG. 5. The same as Fig. 4, but for random patchwise lattice

FIG. 6. The percolation thresholdqc* as a function ofl for both
the chessboardlike square lattice~circles! and random patchwise
lattices~squares!.
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It is clear that the contribution coming from centered si
is cce

(2)( l )5cce
(1)( l )54(l 22)2/ l 2, for l>2.

Numerical results for the functionscco
(2)( l ),ced

(2)( l ),
cce

(2)( l ) and for the resultinĝz( l )& are shown in Fig. 5. Note
that for small patches the main contribution to^z( l )& comes
from sites at corners, however, such a contribution vanis
for largel. This fact is due to the presence of large clusters
black sites, which are likely to be very ramified giving
great number of effective connections among white sites.
l increases, the black clusters become less ramified and
the number of perimetrical sites decreases, so their contr
tion to the effective neighbors also decreases. Ifl
→`, ^z( l )& goes slowly downwards and reaches a mi
mum value^z`&'12.5, which explains why the percolatio
thresholdqc* ( l ) first increases withl and then saturates to
well-defined value'0.27.

It should be noted that in the limitl→`, the percolation
thresholdqc* in both lattices approaches the value'0.27,
Fig. 6. However, we have shown that their effective coor
nation numbers are rather different. This is an interest
result and proves that the geometrical distribution of site
an important property to be taken into account in percolat
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problems, and here means that percolation is either favo
by the random distribution of small patches or by the orde
distribution of large patches. As is expected from percolat
theory, in the limitl→`, the transition lines for both lattice
coincide in a well-defined and universal critical line since
this limit the percolation problem does not depend on latt
details.

In conclusion, we have presented a simple percolat
model in which two types of independent sites are loca
either in a chessboard structure or in random patches.
results absolutely agree in all limits with well-known resu
from classical percolation. However, we have shown t
transition boundaries are largely affected by the size of
patches as well as by their geometrical distribution.

Future efforts will be addressed to study the relation
tween conduction and percolation in these structures.
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