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Percolation in simple patchwise lattices
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We study the site percolation problem on square lattices with two kinds of sites, which are assembled in such
a way that the resulting structures have patchwise topographies. Lattices formed by collections of either
randomly or orderly localized patches of different sizes are generated. The composition of this system is
specified by two independient variabl@sandg, which are the occupation probabilities of each type of patch.
Interesting phase diagrams ip,f)) composition space for the percolative transition are obtained and ex-
plained.[S1063-651X%99)07602-3

PACS numbg(s): 64.60.Ak, 64.60.Cn, 64.70.Pf

Percolation theory has been known for several years and This simple model could represent a ternary material,
has been extensively reviewgtl—10]. It deals with the ef- composed by two conducting species, with conductivitigs
fect of random dilution of elementary geometrical objectandoy,, and an isolating one. Imagine that each sit& ¢or
(spheres, sticks, sites, bonds, elocated in lattices or in the W) patch is either occupied by a piece of conducting mate-
continuum. Upon dilution of the elements, a sharp transitiorfial, with conductivityog(o) and with probabilityp(q), or
is found to occur in the connectivity of the system. The per-by a piece of isolating material, with probability—1p(1
colation threshold is defined as the minimum concentrationd). Then, electrical current can flow from one conducting
or density at which an infinite cluster of occupied elementssite to another, if both sites are nearest neighbors and no
spans the system. The percolation model has many generafiatter which conductivities the sites have. If the occupations
zations, which represent diverse physical situations, and hds@ndq are independent, it is possible to analyze the effect
been applied to numerous problems in a large variety ofhat concentrations, and also the size of the patches and their

fields. They include correlated percolation, extended-rangtPCc@lization(ordered or randoirhave on the percolation and

percolation, directed percolation, polychromatic percolation,CondUCtIon of the sample. Obviously, the conductance of the

etc sampleG depends on concentrations and also on conductivi-
: . . : . . ties, i.e.,G=G(p,q,08,0y)-
The am of the present baper 1S to .|nvest|g.ate the site Let p andq be the occupation probabilities for a site be-
percolation problem in a special lattice with restricted geomq .

v ie. th tchwise lattice. Th latti | | dt ging to the black or white square, respectively. Just as in
elry, I.€., the palchwise atlice. 1hese latlices, largely use 8I?ssical site percolation two adjacent or nearest-neighbor

model adsorptive heterogeneous surfaces, are cOmposed (i sites are considered to be connected to each other, no
two different types of sites, which in turn are grouped into pater which color the sites have. With bdhand W sites
homogeneous patches or finite domains. Our main mOt'Vaoccupied at random, the composition of the system is speci-
tion to study the percolation properties of these structures ie(d by two independent variabl@sandg. If the network is
based on the fact that previous results of adsorption, diffuyery large anc andq are sufficiently small, the size of any
sion, and reaction on both randofi1-13 and ordered cluster is likely to be small. But ip andq are close to unity
patchwise lattice§14—16 have been very interesting from the network should be entirely connected and an infinite
both theoretical and practical points of view. cluster of occupied sites spans the network. For a percolation

Let us consider a square lattice loK L sites, as a board path to occur, botlp and g must be large. How large each
divided in black(B) and white(W) square patches with each one must be depends on the other, tpeandq are interde-
one having? sites. We assume that the numbeBa$quares pendent. The infinite cluster spanning the network will ap-
is the same as the number\&fsquaresB andW patches can pear only for some well-defined pairs of threshold concen-
be put in order onto a square lattice, in such a way that anyrations (.;q.), then a family of percolation thresholds will
B(W) patch has four nearest-neighti(B) patches, so the arise. The smooth curve defined by the family of pairs
resulting structure will be a perfect chessboard lattice ofp.;dc) represents the phase boundary separating the perco-
regular patchwise lattice. But if the squares in a chessboarktive regime from the nonpercolative one.
are randomly occupied by or W patches, we have arandom  Since the lattices prepared on the computer are finites,
patchwise lattice. These lattices can be easily simulated ottere will be a certain probability of finding an infinite span-
the computer. We suppose that the patches are touched toing cluster at any pairg,q) of occupations. Lep,, and
gether, sharing common borders, and any overlap betweey,, be the average percolation thresholds for a finite lattice
them is entirely forbidden. of size L and patches containintf sites. These average

thresholds should approach to the real threshpldandq,
in the infinite lattice, i.e,p,,— P, and g,,—d. when L
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FIG. 1. The phase boundaries for the percolative transition on FIG. 2. The same as Fig. 1, but for random patchwise lattices.

ordered patchwise lattices, for increasing patches. lines are symmetrical under mirror reflection about the plane

p=q, since the problem is invariant under the transforma-
tion p—q and g—p. The critical pair .,9c)
=(0.59,0.59) belongs to all transition lines because the site
percolation threshold in the square lattice is 0.59.

In ordered lattices we observe that the larger the patch the
more spread the percolation zone becomes. More interesting
is the behavior in random lattices; enlarging the patches

From finite-size scaling of percolation it is well known
that the thresholds depend an(see Stauffer and Aharony,
Ref.[9]).

Thus, any pair of average thresholds,(,q,,) for a lat-
tice of sizel and patches witl? sites, approaches to the true
pair (p¢,q.) according to the scaling law

Pay—Pe~L Y, q fixed makes the percolation thresholds increase.
v e ' ’ In the simplest situation with both sites randomly located
Qay—Gc~L ¥, p fixed, |=const, (1)  (I=1), the transition boundary is the straight line+q)/2

=0.59, i.e., the average concentration is expected to be equal
wherev is the critical exponent of the correlation lengih  to 0.59 for the full random distribution of sites, like in the

which diverges at any paimpg,dc). classical site percolation.
Let Ap andAq be the root mean-square deviations of the  From many Monte Carlo simulations, series expansions,
thresholds observed from their average values, i.e., and a few analytical calculations, is well known that the
percolation thresholds depend on both the space dimedsion
(AP)2?={(Pay— (Paw))2)={(P2,) — (Pav)? and the coordination number Many efforts to find exact
relations between these quantities have been made, but with
(AQ)?={(ap—(Uan))?)=(02,) — (Qar) . (2)  limited success. Very recently, Galam and Mauger have re-

ported universal formulas, which yield within an excellent
But these rms deviations also scale with the system’s sizgccuracy both site and bond percolation thresholds, in regu-
[9], lar lattices at dimensiond<7 [17], and in anisotropic and
s 1 _ aperiodic lattices at dimensioms=2,3[18].

Ap~L~™, Ag~L"7", I=const 3 We can explain qualitatively these percolative behaviors
by means of an effective coordination number. Consider first
the evolution of the thresholdy} (1)=q.(p=1) corre-

Paw—Pe~AP, Qa—0c~AQ, |=const. (4)  sponding to the pure white site percolati@re., all the black
sites present in chessboard lattices, Fig. 1. Clearly, the
Using the scaling law(1), and taking the universal and largerl is, the lower the percolation thresholdg§(l) are. In
exact valuev=4/3, we can find the family of percolation the case of patches of sike 1, any white site has effectively
thresholds §.,q.), i.e., for each fixed value daf (or p) we 8 neighbors, Fig. @), and for patches of sizZe=2, a given
plot the observed thresholgs,, (or q,,) versusL ™" and  white site has now 13 connecting neighbors, Figh)3The
then extrapolate to the interceptigny (or g.) by letting L effective coordination number for ordered structures with
—oo. In our calculations, different ratiosL/l (L/I patches of sizé=2 can be easily obtained as follows. Imag-
=16, 24, 36, 48, 64, and 96vere used in order to obtain a ine a white square witl? sites; then three different types of
good statistical accuracy of the sampling. These simulationsites are distinguished, Fig(d3: (i) sites at corners, with
were carried out using the Parix parallel computer. Zo(l)=61—-1+2(1-1) effective neighborsii) sites at
Numerical results, obtained by finite-size scaling for siteedges(excluding sites at cornersvith zg4(1)=31+(1—1)
percolation on ordered and random patchwise lattices, are 1 effective neighbors, andii) centered sites, with only
shown in Figs. 1 and 2, respectively. Note that the criticalz.,=4 neighbors. Since a square withsites has 4 corner

Then combining Eq(1) with Eq. (3), we have



3708 BRIEF REPORTS PRE 59

20 T T T T T T
0 W(Z)
L
15 4 —a—  yP S
—— <z()>
A
N
= 104 .
N
\%
5 - i
0 1 T T T
0 10 20 30 40 50

)

FIG. 5. The same as Fig. 4, but for random patchwise lattices.

z,,=21 z=12 z,=4 The three functionsy(y , Y, ¢d and the resulting ef-
_ . . fective coordination numbée(l)) are shown in Fig. 4. Note

FIG. 3. In g chessboardl_lke squart_e lattice Wlth all the blathhat the contribution tGiZ(l)> coming from sites at corners
squares occuplecp_: 1, any site belonging toa Whltt_a square has, o ichas for largd. If |—o, (z(1)) reaches a maximum
effectively (&) 8 neighbors ifl =1, (b) 13 neighbors ifl =2, (c) value(z,)= 20, which explains why the percolation thresh-
15.11 neighbors if=3, and so on, see E¢p). old g (1) first decreases withand then saturates to a well
defined value~0.27.

The situation corresponding <1 is clear: If not all the
black sites are filled, the effective coordination number is
lower than that given by Eq5), and theng.(p,l)>qg (1).
(z()) =B+ )+ ‘ﬂ(ct)('):iz(S' -3) The same reasoning can be used to understand the perco-

I lation properties of random structures. In this case it is evi-
dent that the biggdris, the higher the percolation thresholds
N 4(1-2) 4+ 4(1-2)? 5 qs (1) are, Fig. 2. But for these structures we cannot obtain
|2 1z’ explicitly an effective coordination number. However, it is
even possible to distinguish the same three types of sites, so
we can write

sites, 4(—2) edges sites, and £ 2)? centered sites, the
effective coordination number is

being valid for anyl=2.

2 2 2
D B W (D) =v @)+ y @D+ ). (6)
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FIG. 4. Evolution of the effective coordination numie(l)) in FIG. 6. The percolation thresholff as a function of for both

ordered patchwise lattices, when the dimendiaof the patch is the chessboardlike square latti¢grcles and random patchwise
increasing. Here, all the black squares are fillpe-(). lattices(squares
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It is clear that the contribution coming from centered sitesproblems, and here means that percolation is either favored
is p2() =y D()=401-2)17?, for =2, by the random distribution of small patches or by the ordered
Numerical results for the functions,bg,)(l),w(ezd)(l), distribution of large patches. As is expected from percolation

w(z)(l) and for the resultingz(1)) are shown in Fig. 5. Note theory, in the limitl— oo, the transition lines for both lattices
thi':t for small patches the main contribution(&t!)) comes coincide in a well-defined and universal critical line since at
from sites at corners, however, such a contribution vanisheg‘IS limit the percolation problem does not depend on lattice
for largel. This fact is due to the presence of large clusters o etlalls. lusi h ted ol lati
black sites, which are likely to be very ramified giving a _ "l conclusion, we have presented a simple percolation

great number of effective connections among white sites. Agnodel in which two types of independent sites are located

| increases, the black clusters become less ramified and thgﬁher in a chessboard structure or in random patches. The

the number of perimetrical sites decreases, so their contrib esults abs_olutely agree in all limits with well-known results
tion to the effective neighbors also ,decreases [ rom classical percolation. However, we have shown that

—, (2(1)) goes slowly downwards and reaches a mini-fransition boundaries are largely affected by the size of the

— : : . patches as well as by their geometrical distribution.
tmhtltans]h\gall:jque’*<(zlos>firitzi.r?(':r\:avzgjs ‘\ainma;]SdVtvr?gntzgtggfgslatgog Future effort.s will be addres_sed_ to study the relation be-
. C tween conduction and percolation in these structures.
well-defined value~0.27.

It should be noted that in the limit—<, the percolation This work was partially supported by CONICEArgen-
thresholdqgg in both lattices approaches the vale).27, tina) and Fundacion Antorcha@rgenting. The European
Fig. 6. However, we have shown that their effective coordi-Economic CommunityProject No. ITDC-24Dis greatly ac-
nation numbers are rather different. This is an interestinknowledged for the provision of valuable equipment. The
result and proves that the geometrical distribution of sites iauthors would like to acknowledge stimulating discussions
an important property to be taken into account in percolatiorwith V.D. Pereyra, J.L. Riccardo, and C. Uebing.
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