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We consider the dynamics in phase space in which particles follow Newtonian trajectories that are randomly
interrupted by collisions which equilibrate both the velocity and position of the particles. Collisions are
assumed to be statistically independent events of zero duration and the intercollision time is a random variable
with a negative exponential distribution. For this model, we derive an analytical expression for the Laplace
transform of the survival probability and quadrature expressions for mean first-passage times.
[S1063-651%99)01103-4

PACS numbdss): 02.50.Ey, 05.40-a, 05.60-k

random variable described by the probability densigy !,
wherey is the collision frequency. For this model, we derive
I. INTRODUCTION analytical expressions for both the Laplace transform of the
survival probability and quadratures for mean first-passage
The first-passage time is the time required for a particle tdimes.
reach a boundary for the first time. If the particle is destroyed This model was previously used by Skinner and Wolynes
at this boundary, the first-passage time is just the lifetime of 7] in their analysis of escape of particles from a metastable
the particle. When the dynamics is stochastic, the firstpotential well over a high potential barrier. They found that
passage time is a random variable, and its average over dfir moderate values of, the escape rate predicted by this
realizations of the particle trajectories yields the mean life4model is close to the one obtained from the Bhatnagar-
time of the particle in the system. It is well known that for Gross-Krook mode[8], in which only the velocity of par-
ordinary diffusive dynamics in an arbitrary one-dimensionalticles is equilibrated after a collision.
potential, the calculation of the mean first-passage time can Consider a particle of masa moving in the region—
be reduced to quadraturgk,2]. However, when the dynam- <x=<a. We are interested in the first-passage timextoa
ics of the particle is diffusive in phase spaes described by given an initial positiorx, and velocityv,. We assume that
the Kramers-Klein equatiof8]), the problem of calculating the potentialU(x) increases sufficiently fast as——o so
the mean first-passage time is as yet unsolved. that a normalized phase-space equilibrium distribution corre-
The purpose of this paper is to show that the first-passaggponding to a reflecting wall at=a can be defined as
time problem can be solved analytically for a strong collision
model[4,5], which is an alternative to the model described

by the Kramers-Klein equation for dynamics in phase space. H(a_x)e—ﬁ[<1/2>mv2+ U(x)]
Different collisional models and their application to reaction Ped X,0) = 2 - , (1.1
rate theory were recently discussed by Beffi¢ In this f dxf dv e~ AlW2m?+U(x)]

model, particles follow Newtonian trajectories which are in-

terrupted by collisions of zero duration. These collisions

serve to equilibrate both the velocity and position of the

particles. The time interval between successive collisions is where 3~ 1=kgT is the thermal energy and(x) is the step
function defined add(x)=0 for x<0 andH(x)=1 for x
=0. For the strong collision model, the propagator
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in which x,,i,(E) is the largest root of equatida=U(x) in
P(X,0,t[Xo,v0) the region—ow<x<x,. The first term of Eq.(2.4) is the
time for a particle starting ak, with negative velocity
a —vg to reachxn(E), bounce back, and return tq, with
X0,V0) =~ Ped X,V) f_wdx positive velocityv,, and the second term is the time to travel
directly fromx, to x=a with positive velocityv.

The survival probabilitySy(t|xq,vo) is the probability
that a particle initially at the phase pointyvg) is still in
the system at timé This probability is just equal to 1 up to
subject to the initial condition,P(x,v,t=0|xq,v4) = 8(x thg timet(xq,v), and zero thereafter, which allows us to
—x0) 8(v—v,). Since one is interested in the mean lifetime Wrte
of a particle in the region-<x=<a, we treatx=a as an

g 1dU ¢

-y —+ — — —

X m dx dv

(9P(X,U,t|X0,U0) _
at B

P(x,v,t

-

+ o
XJ do’ P(X’,U’,t|X0,U())

. (12

absorbing boundary, and require tHatx,v,t) satisfies the Solt|X0,00) =H(t(x0,00) ~1). 2.9
absorbing boundary conditions If we denote the Laplace transform of an arbitrary function
P(x=a,0<0|Xg,00)=0 for xo<a, 1.3 9(1) as g(s)=Jge S'g(t) dt, the Laplace transform of the

survival probability can be written as
expressing the fact that no particles enter reentey the o 5X0.00)
system fromx>a. Sy(s|X0,v0) = T (2.6)

II. SURVIVAL PROBABILITY AND LIFETIME

IN THE ABSENCE OF COLLISIONS The lifetime of a particle initially at Xo,vo) is the time

integral of the survival probability,
In the absence of collisions the motion is deterministic

and the total energf of a particle is a constant of motion, - 2
o g ofap  Soltlxo,00) dt=84(0]x0,00) = t(x0,00), (2.7
mv3 mo2(t) as it should be.
E=——+U(Xo)=——+UX(1), (2.1 One is often interested in the situation where the system is

prepared with an initial distribution that coincides with the
where xo=x(0) andvo=v(0) are the initial position and €quilibrium distribution,pe{(Xo,vo). In this case, the equi-
velocity of the particle, respectively. For a deterministic mo-librium averaged survival probabilitgy(t) is given by
tion, one can calculate the time needed for a particle to cover

. R a +o0
a certain distance as So(t):f dxof dvSo(t[X0,v0) Ped X0, V0)- (2.8)

dx m 2
:J'W“E):f dx[m] : (220 Instead of using Eq(2.5) in Eq. (2.8) to obtain Sy(t), the
following analysis turns out to be simpler. Using the defini-

in which v (x|E) is the velocity of the particle obtained from t|ona of . the  survival  probability, So(t|Xo,v0)
Eq. (2.1). The particle is able to reach the absorbing bound-=J = =8X/ Z=dv Go(X,v,t|X,v0), Where Go(X,v,t|Xo,v0)
ary atx=a if simultaneously(i) its energy is greater than IS the Green’s function of Eq1.2) with y=0, we write the
U(a), i.e., E=U(a): and (i) there is no potential barrier time derivative of Eq(2.8) as
greater tharE betweenx, andx=a, i.e., U(X)<E for xq
<x<a. When these conditions are not satisfied the particledsoﬁ
never reaches the absorbing boundaryxat. This can be dt
formulated in terms of the timg(xq,v,) taken by a particle

initially at (xq,v0) to reach the absorbing boundary-a, = fa dXof+deofa de'Hcdv aGO(X'va’t”XO’UO)
®,  E<UmnaXo)
07 w0, E=Unalxe), 20 XPedo .00
o) a + o
Whereuma)&XO):{ma){u(x)];xosxsa}' and :_f dv Uf dXof deGo(a,v,t|Xo,v0)
0 —® —
%o m 12
wtsoo 2" o el H XPedarvo) =9
a m 12 mvS The second equality of this expression, which represents the
+f dX[ m] » E=——+U(Xo).  flux escaping the system, is obtained in replaci/dt by
Xo

the expression in the right hand side of Ed.2) with y
(2.9 =0, integrating the resulting expression oveandv and
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using the boundary conditionGq(x,v— *=,t|Xq,v0)=0
andGy(a,v<04t|Xq,v0) =0, as stated in Eq1.3).
Next, we use the detailed balance relation

Go(a,v,t

X0,00)PedX0:v0) = Go(Xg, —vg.tla,—v)
Xped—v) (210

to transform Eq(2.9) into

dSy(t o a
Sdot( ):_fo dv vpeq(a,v)fiocdxo

+ oo
X f dvoGo(Xg,v0,tla, —v)

=- fowdv vPed@,0)So(tla,—v), (2.11)

BRIEF REPORTS

PRE 59

Ill. SURVIVAL PROBABILITY AND MEAN LIFETIME IN
THE PRESENCE OF COLLISIONS

We are now in position to deal with the case of propaga-
tion in the presence of collisions as described by @pR).
The Green's functionP(x,v,t|Xy,v0) is related to the
collision-free Green's functionGy(X,v,t|Xg,vg9) by the
Dyson-type equation

t a
P(X,v,t|Xg,v0) =€ "'Go(X,v,t|Xg,v0) + yf dt’J dx’
0 —
+o0 ,
xf dv’ e "G (x,v,t—t|x",v")
a
XpecKX',U')f dx”

(3.9

+ oo
4 4 n !
which relates the time derivative of the equilibrium-averaged x f,x do” P(X",".t'[X0,00)-

survival probability to the survival probability of particles
starting atx=a with negative velocity. We introduce the The survival probabilitys(t|x,,v) describing the fate of the

transition state rat&rgt as the escape rate (dS,/dt) att
=0, i.e.,
kT e AU@

12
27Tm) fa

kTST:J vpeq(a,v)dv=< .
° e AU dx

(2.12
Using this, we rewrite Eq2.11) as

dSy(t o
%= —Krst f Bmue M 2S5 (t/a, —v)dv.
0

(2.13

Taking the Laplace transform of this relation with the initial
condition S5(0)=1, and making use of the expression for

Sy(t|a, —v) from Eq.(2.6), we find

. 1 kst (™
Sy(s)==~ T—STJ pmve A1 — e ST |dy.
0

S 52
(2.149

In this equation,T(v) = 79(a,—v), as given in Eq(2.4), is
the time period required by a particle startingxata with
negative velocity—v to reach the turning poink,;,(E),
bounce back, and return to=a. Now, by making the trans-
formation e=mv?/2, we obtain

KrstB
2

éo(s):é— f:e’ﬁf[l—e’ST(E)]de, (2.15

where the period (€) is now given by

a

dx

1/2
T(e)=2f } ., (218

Xmin(€)

m
2[e+U(a)—U((X)]

in which xqyin(€) is the largest root of equatioa=U(x)
—U(a) in the region—o<x=<a.

particle initially at &q,vo) is given by
a +o
S(t|X0,Uo):J' dxf dU P(X,U,t|XO,Uo). (32)
The integration of Eq(3.1), with respect toc andv leads to

t !
S(t|X0,Uo):e_ytSO(t|X0,U0)+ ’)’f e_Y(t_t )So(t_tl)
0

Xs(t,|X0,U0)dt,, (33)

in which Sy(t|xg,v0) is the survival probability in the ab-
sence of collisions as defined in Sec. Il. Taking the Laplace
transform of Eq(3.3), and solving the resulting equation for

S, we find

So(s+ ¥|%o,v0)

~ : (3.9
1-ySo(sty)

é(S|X0vUo):

in which Sy(s|Xo,v,) andS,(s) are given in Eqs(2.6) and
(2.15, respectively.
Since the mean first passage time i8Xg,vq)

=3(0|xq,v,), Making use of Eqs(2.3, (2.4), and (2.6)
yields

7(X0s00)
kfl, %mv(2)+ U(X0)<Umax(xo)
k—l[l_e—?’To(XOvvo)], %mv3+ U(Xo)zumax(xo)’

(3.5

where 74(Xq,vg) is given by Eq.(2.4) and we have defined
the ratek as

k=[1-75(7)]= kTSTBf:e_BE[l—e_’T(E)]dE,
(3.6
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whereT(€) is given by Eq.(2.16). It is clear from this rela- wherek is given by Eq.(3.6).

tion thatk<y. When y—0, k is proportional toy, as one On the other hand, when the initial preparation is taken to
would expect, whereak— krst when y—. This is the be the equilibrium distributionp(Xo,vo), given in Eq.
consequence of the fact that the strong collision model doeg 1), the survival probabilitys(s) becomes

not describe diffusive dynamics in the high collision fre-

qguency limit.
When the initial condition is taken to be the equilibrium . Sy(s+7)
distribution restricted by additional condition that the initial =0 (3.10
energy of particles is smaller than(a), i.e., 1-7S(sty)
PedX0:00) . o N
In this case the equilibrium-averaged mean lifetimds
PedXo.00)H[3Mug+U(Xo) —U(a)] given by,
a + o !
f dxf dv PeqXo,v0)H[ 3Mu3+U(xo) —U(a)] -
3.7 =Y " (3.11)
the survival probabilityé_(s), obtained by averaging Eg.
(3.4) over this initial distribution is Comparison of Eq¥3.9) and(3.11) shows thatr_ is larger
thanr by exactlyy !, which is the expectation time for the
3 (o= 1 38 occurrence of a collision. This stems from the fact that when
-(s)= (s+ y)[1— ySo(s+ 7)]' 38 the ;ystem is initially prepared according p)gq(xo,vo)_ no
particles can escape from the system prior to the first colli-
The corresponding mean lifetime is sion. To summarize, we have shown that for the strong col-
lision model the calculation of the mean first passage time
7 =3_(0)= E 3.9 can be reduced to quadrature for an arbitrary one-
- k’ ' dimensional potentidl (x).
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