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Fast algorithm for calculating two-photon absorption spectra
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We report a numerical calculation of the two-photon absorption coefficient of electrons in a binding potential
using the real-time real-space higher-order difference method. By introducing random vector averaging for the
intermediate state, the task of evaluating the two-dimensional time integral is reduced to calculating two
one-dimensional integrals. This allows a reduction of the computation load down to the same order as that for
the linear response function. The relative advantage of the method compared to the straightforward multidi-
mensional time integration is greater for the calculation of nonlinear response functions of higher order at
higher energy resolutionS1063-651X%99)00603-(

PACS numbgs): 02.70—c, 42.65-k, 78.40—q, 78.20.Bh

The measurement of the two-photon absorption coeffiwhereH is the unperturbed Hamiltonian of the systamis
cient[1] yields different information from the single-photon the electron coordinate operatoy,is the frequency resolu-
absorption measurement, since the physical processes ition, V is the volume of the system, the summation with
volved and selection rules are different. Because of thisyespect to the initial statfE;) must be taken over all states
there has always been a lot of interest in two-photon absorpelow the Fermi leveEg, and the summation with respect
tion of various molecules, crystals, and soligs-9. To {4 |E;) must be taken over the statBs>Ep .
compare against the experimental data, one would like ©0 Ap" important ingredient of the real-time real-space

have theorerical calculations based on some realistic mOd'ﬁligher-order difference method is the use of random vectors
of the material. However, since the two-photon absorption isa

; . : ; - ! s probes to scan the Hilbert spdd®,11,13-16 Among
a typical nonlinear optical process, its realistic modeling ha%/arious types of random vector is the uniform amplitude ran-
always proved difficult for large complex systei#s-6]. d h ¢

A powerful method that has come to be used widely for om phase vector

large quantum systems is the real time real space higher- N
order difference methofil0,11], in which the real space is D)= 2 Inei¢n @)
represented by discrete mesh points, and the time develop- n=1 '
ment of a system is solved by numerically integrating the
Schralinger equation for discrete time steps. The energy levwhose effectiveness has been amply demonstrated
els and energy eigenstates are obtained by Fourier analyzifg0,11,13—1% Here, the phase$, are independent random
the numerical solution. The memory requirement scales linyariables with uniform distribution in the rande- , ),
early with the number of basis statég,compared tiN” for  and|n) (n=1,N) are the orthonormal basis states which are
matrix diagonalization, and the method has proved effectivgocalized at the mesh points in the real space. Using the
in solving large quantum systems that cannot be solved by gperty of completeness
conventional methodgl1,12. So far, the large computation
load has meant that the actual application of the method has (|®ON®|)p=1 (identity operator, (3)
been made primarily to the calculation of linear response

functions of one-particle systenis0,11]. Nevertheless, the \yhich obtains after averaging over random realizations of

potential scale advantage of the method when applied tgm denoted above by the brackets - )4, the two-photon
large systems invites the speculation that development of th sorption coefficient, Eq1), can be rewritten as

method will be essential in making the calculation of nonlin-
ear response functions of complex many-body quantum sys-

[ e\*/|1 (=
tems feasible. a(z)(w)=(%> <Vf dt,
In this paper, we report a trial application of the method to 0
the calculation of the two-photon absorption coefficient of 4
noninteracting electrons trapped by a binding potential and XJ dtze‘<‘”i’7)“1“2)<® 6(H—Eg)
exposed to monochromatic light of frequeney 0
The two-photon absorption coefficient is given [y « @iHty/hp o= IH(ty—t)lhip g~ iHt 1h
@ (e)“ D 2
a“(w) h) ESE: E<E- X 0(E,:-H)q3> > . 4)
[
1(~ t ) )
X \7f0 dtlfo dt,e(e-in(titty) The operator step functior5]
2
X (et /ire Ht-talipg-iHta i g (1) 6’(X)=;i |Xi) 0(Xi){(Xi] (5)
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can be explicitly constructed for any bounded Hermitian op- 0.015
erator X without solving for the eigenvalueX; and eigen-
vectors|X;). In our calculation, we used an algorithm based
on Chebyshev polynomial expansion, which yief{X) as a
polynomial of the operatox [10,11,15-18

If Eq. (4) were to be numerically implemented straight- 0.010 |
forwardly, the matrix element inside the integral would have
to be obtained for all necessary combinations of time vari- 3
ablest; andt,. One would then start with a random vector 8
|®), solve the time development according to the Sehro
dinger equation, mutiplying operators¢ and #’s) along the 0.005 |
way as required, and take the inner product With at the
end. The number of discrete time steps required for a calcu-
lation of energy resolutiom scales as;” %, so that the direct
implementation of Eq(4) requires a computation load that
grows asy 2. On top of it, the calculation has to be repeated 0.000
for a number of different realizations d¢fP) for random 00
averaging. This is necessary to reduce the fluctuation arising
from the use of random vectors, whose amplitude can be of g1, 1. Two-photon absorption coefficient?(w) of electrons
the same order in magnitude as the final result itself. Therapped in a parabolic potential. The results obtained by the use of
scale of such a computation can easily overwhelm the capagxs.(4) and(6) are shown by the dotted curve and the solid curve,
ity of any computing facility in existence. respectively. The analytical result is shown by the dashed line.

However, the computational load can be greatly reduced
by inserting the completeness relati(8) in the matrix ele- pe required to average out the noise to achieve the same
ment of Eq.(4) to decompose it into two factors. The absorp- accuracy. Therefore, the value Bf must be set as small as
tion coefficient is then given by possible provided that its interference with the final result is
o4 kept within the margin of tolerance.
o

%fmdtlftldtzei(w”])(tlHZ) In order to compare the CPU time for the two methods,
0 0
X<<q)| G(H _ EF)ethllﬁrefthllﬁa(EC_ H)|(I)/>

o [a.u.]

a(zz)(w)z

we have computed Eg$4) and (6) for the case of a para-
bolic binding potential,

- | ? VBELL R 7
X<(I)r|e|Ht2/ﬁre7|Ht2/h0(EF_H)lq)»qj’ > , (r)_ 2 re ()
@

®  with wo=0.3 a.u. andn being the electron mass. The real
where|®) and|®’) are mutually independent random vec- Space was represented by*Ifiesh points to cover a cubic
tors, andE, is the cutoff energy to be explained below. The volume of linear dimension 16 a.u. For the time develop-
most costly process of integrating the Sakinger equation ment, discrete time steps witht=0.05 a.u. were used for
is now used only to obtain two complex functions of a singleintegration of the Schdinger equation. The Fermi energy
time variable instead of a bivariate function with two time was set atEr=3%wy and the frequency resolution wag
variables. Once the necessary complex-valued functions 8X 102 a.u.
have been calculated and stored, the two-dimensional time In Fig. 1 we compare the results of Eqd) and(6) with
integration may easily be done with a small computer. Thghe analytical result for electrons in the parabolic potential.
computational load therefore scales only ms' with the  Both numerical results well reproduce the analytical curve
energy resolution. with the standard deviation standing at 7% at the peaai (

The benefit must be weighed against the increased cost 0.3 a.u) for both cases.

having to average over random realizations of intermediate The result for the straightforward implementation of Eq.
stateg®'). The statistical variance arising from the random(4) is an average over 200 runs with differedt)’s. The
sampling is independent of the number of time steps used i@PU time on a single processing unit of Fujitsu VPP500 was
the calculation, but is controlled only by the number of ran-1.5X 10° sec for each run, totaling 3:010° sec (= 83 h) to
dom samples taken. Therefore, the relative advantage of thechieve 7% accuracy. For the calculation according to Eq.
use of Eq.(6) over the straightforward integration of E@)  (6), an average was first taken over 50 different samples of
increases as higher energy resolution is required. For thgb’) with a fixed |®). The result was then averaged over
actual numerical implementation of the random sampling, itL00 different samples of®). The total of 5000 runs of
is essential that one have control over the extent of the Hilintegrating the Schinger equation took 63810* sec
bert space to be probed. In E@), the extra cutoff factor (=19 h) to achieve the same 7% accuracy at the peak. If the
0(E.—H) is inserted for this purpose. The final result shouldstatistical standard deviation is to be brought down to 1%, an
be independent of the cutoff ener@y if it is taken suffi-  average over #=49 times more samples will have to be
ciently large. However, a large value & entails a large taken, which translates to X50" sec (=174 day$ and
random fluctuation, so that a larger number of samples wilB.3x 10° sec (=38 day$ for Egs.(4) and (6), respectively.
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10" space soon becomes unmanageable with increddin@f
more significance is the potential of the present strategy to be
used to facilitate the calculation of nonlinear response func-
L | tions of higher order. A numerical calculation of a nonlinear
response function of ordertypically involves computing an
n-dimensional integral of the type

* t n-1 :
dtl dtz . dtnel(w1t1+w2t2+--~+wn'[n)
0 0

t
0

time [s]

X <<q)|6feth1/héle—iH(tl—tz)/ﬁéze—m(tz—tg)m
_ _e—iH(tn,l—tn)/ﬁéne—thn/ﬁéi|q)>)(b, (8)

where eaclO represents some operator. While the straight-
forward evaluation requires computation time proportional to

10° o n~ ", it may be possible to reduce the CPU time as far down
10° 10" 102 10° as ton times that for the linear response function by inserting
1/m [au.] the completeness relatiof3) and decomposing the matrix

) . element inton factors. This may be regarded as a version of
FIG. 2. Relation between the energy resolution and the totaj,q guantum Monte Carlo method, and the use of importance

CPU time for calculating the two-photon absorption coefficient tosampling technique§l4,19 will be vital in reducing the
1% statistical accuracy. The solid line and the dotted line are forévaluation time. In fact, the use &(E.—H) in Eq. (6) is
. L [of .

calculation according to Eq$6) and (4) of the text, respectively. . . - . .
The cross and the circle are the projected CPU time for energgir;icydlmentary method of improving the sampling eff

resolution =8x10"2 a.u. based on the actual calculation per- The insertion of random intermediate vectors is not th
formed with the same resolution but to 7% accuracy. € Iinsertion of rando e . ediate vecto s s nhot the
only way to reduce the CPU time of evaluation of the

In Fig. 2, we show the estimated CPU time to achieve 194 dimensional mtegr_al. For ‘?Xamp'e* the sta_ndar(_j Monte

2 . arlo random sampling technique may be applied directly to
statistical accuracy for various values of frequency resolu- X : ;
! ) the evaluation of the integr&B). If one adopts uniform ran-
tion. The relative advantage of the use of random vectors foy,

. . . dom sampling in then-dimensional time space, the CPU
the intermediate state should grow as higher frequency resg- ; . g :

o . . . ime for integration of the Schdinger equation scales as
lution is required. The actual lapse time of computation can _ 1 times the number of samoles required for the statistical
be reduced nearly by an order of magnitude if the computa—” . C samp q
averaging, which is precisely the same as for the case of

tion is parallelized to use all the 30 processing units on ; ! . o
Fujitsu VPP500 at RIKEN. random vector insertion above. In either case, the statistical

The present calculation was done for the specific case 0rpethod of evaluation suffers from the familiar negativg sign
noninteracting electrons trapped in a parabolic potentialpmblem[lg]' S0 th?‘t some _scheme needs to be _dewseql to
improve the sampling efficiency. Nevertheless, it remains

only in order to test the relative advantage of the algorith . - ) e
and to compare against the analytical result. The compultEFue that the size of statistical variance is independent of the

code admits an arbitrary potential, and work is under way toelr;erggt;t?:gé:ﬁ'Or?]’efr?oghsatfgr S‘[T]%u'ga?ciIZ?i\(/)ing‘gi?uhs-ct? dz:n-
extend the present calculation to electrons in various pseudg- y 9

potentials. Extension of the algorithm itself to deal with an honlinear coefficients at a high resolution of frequency.
interactingM-particle system is straightforward, although so-  All calculations reported here were performed on a
lution of the Schrdinger equation in the @ -dimensional  Fujitsu VPP500 at RIKEN.
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