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Fast algorithm for calculating two-photon absorption spectra
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We report a numerical calculation of the two-photon absorption coefficient of electrons in a binding potential
using the real-time real-space higher-order difference method. By introducing random vector averaging for the
intermediate state, the task of evaluating the two-dimensional time integral is reduced to calculating two
one-dimensional integrals. This allows a reduction of the computation load down to the same order as that for
the linear response function. The relative advantage of the method compared to the straightforward multidi-
mensional time integration is greater for the calculation of nonlinear response functions of higher order at
higher energy resolution.@S1063-651X~99!00603-0#

PACS number~s!: 02.70.2c, 42.65.2k, 78.40.2q, 78.20.Bh
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The measurement of the two-photon absorption coe
cient @1# yields different information from the single-photo
absorption measurement, since the physical processe
volved and selection rules are different. Because of t
there has always been a lot of interest in two-photon abs
tion of various molecules, crystals, and solids@2–9#. To
compare against the experimental data, one would like
have theorerical calculations based on some realistic m
of the material. However, since the two-photon absorptio
a typical nonlinear optical process, its realistic modeling h
always proved difficult for large complex systems@2–6#.

A powerful method that has come to be used widely
large quantum systems is the real time real space hig
order difference method@10,11#, in which the real space is
represented by discrete mesh points, and the time deve
ment of a system is solved by numerically integrating
Schrödinger equation for discrete time steps. The energy l
els and energy eigenstates are obtained by Fourier analy
the numerical solution. The memory requirement scales
early with the number of basis states,N, compared toN2 for
matrix diagonalization, and the method has proved effec
in solving large quantum systems that cannot be solved
conventional methods@11,12#. So far, the large computatio
load has meant that the actual application of the method
been made primarily to the calculation of linear respon
functions of one-particle systems@10,11#. Nevertheless, the
potential scale advantage of the method when applied
large systems invites the speculation that development o
method will be essential in making the calculation of nonl
ear response functions of complex many-body quantum
tems feasible.

In this paper, we report a trial application of the method
the calculation of the two-photon absorption coefficient
noninteracting electrons trapped by a binding potential
exposed to monochromatic light of frequencyv.

The two-photon absorption coefficient is given by@1#

a~2!~v!5S e

\ D 4

(
Ef.EF

(
Ei,EF

3U 1

VE0

`

dt1E
0

t1
dt2e2 i ~v2 ih!~ t11t2!

3 ^Ef ueiHt 1 /\re2 iH ~ t12t2!/\re2 iHt 2 /\uEi&U2

, ~1!
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whereH is the unperturbed Hamiltonian of the system,r is
the electron coordinate operator,h is the frequency resolu
tion, V is the volume of the system, the summation w
respect to the initial stateuEi& must be taken over all state
below the Fermi levelEF , and the summation with respec
to uEf& must be taken over the statesEf.EF .

An important ingredient of the real-time real-spa
higher-order difference method is the use of random vec
as probes to scan the Hilbert space@10,11,13–16#. Among
various types of random vector is the uniform amplitude ra
dom phase vector

uF&5 (
n51

N

un&eifn, ~2!

whose effectiveness has been amply demonstra
@10,11,13–16#. Here, the phasesfn are independent random
variables with uniform distribution in the range@2p,p),
andun& (n51,N) are the orthonormal basis states which a
localized at the mesh points in the real space. Using
property of completeness

^uF&^Fu&F5I ~ identity operator!, ~3!

which obtains after averaging over random realizations
uF& denoted above by the brackets^•••&F , the two-photon
absorption coefficient, Eq.~1!, can be rewritten as

a~2!~v!5S e

\ D 4K U1

VE0

`

dt1

3E
0

t1
dt2e2 i ~v2 ih!~ t11t2!K FUu~H2EF!

3eiHt 1 /\re2 iH ~ t12t2!/\re2 iHt 2 /\

3u~EF2H !UF L U2L
F

. ~4!

The operator step function@15#

u~X!5(
Xi

uXi&u~Xi !^Xi u ~5!
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can be explicitly constructed for any bounded Hermitian o
eratorX without solving for the eigenvaluesXi and eigen-
vectorsuXi&. In our calculation, we used an algorithm bas
on Chebyshev polynomial expansion, which yieldsu(X) as a
polynomial of the operatorX @10,11,15–18#.

If Eq. ~4! were to be numerically implemented straigh
forwardly, the matrix element inside the integral would ha
to be obtained for all necessary combinations of time v
ablest1 and t2 . One would then start with a random vect
uF&, solve the time development according to the Sch¨-
dinger equation, mutiplying operators (r ’s andu ’s! along the
way as required, and take the inner product withuF& at the
end. The number of discrete time steps required for a ca
lation of energy resolutionh scales ash21, so that the direct
implementation of Eq.~4! requires a computation load tha
grows ash22. On top of it, the calculation has to be repeat
for a number of different realizations ofuF& for random
averaging. This is necessary to reduce the fluctuation ari
from the use of random vectors, whose amplitude can b
the same order in magnitude as the final result itself. T
scale of such a computation can easily overwhelm the ca
ity of any computing facility in existence.

However, the computational load can be greatly redu
by inserting the completeness relation~3! in the matrix ele-
ment of Eq.~4! to decompose it into two factors. The absor
tion coefficient is then given by

a2
~2!~v!5S e

\ D 4K U1

VE0

`

dt1E
0

t1
dt2e2 i ~v2 ih!~ t11t2!

3Š^Fuu~H2EF!eiHt 1 /\re2 iHt 1 /\u~Ec2H !uF8&

3 ^F8ueiHt 2 /\re2 iHt 2 /\u~EF2H !uF&‹F8U2L
F

,

~6!

whereuF& and uF8& are mutually independent random ve
tors, andEc is the cutoff energy to be explained below. Th
most costly process of integrating the Schro¨dinger equation
is now used only to obtain two complex functions of a sing
time variable instead of a bivariate function with two tim
variables. Once the necessary complex-valued funct
have been calculated and stored, the two-dimensional
integration may easily be done with a small computer. T
computational load therefore scales only ash21 with the
energy resolution.

The benefit must be weighed against the increased co
having to average over random realizations of intermed
statesuF8&. The statistical variance arising from the rando
sampling is independent of the number of time steps use
the calculation, but is controlled only by the number of ra
dom samples taken. Therefore, the relative advantage o
use of Eq.~6! over the straightforward integration of Eq.~4!
increases as higher energy resolution is required. For
actual numerical implementation of the random sampling
is essential that one have control over the extent of the
bert space to be probed. In Eq.~6!, the extra cutoff factor
u(Ec2H) is inserted for this purpose. The final result shou
be independent of the cutoff energyEc if it is taken suffi-
ciently large. However, a large value ofEc entails a large
random fluctuation, so that a larger number of samples
-
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be required to average out the noise to achieve the s
accuracy. Therefore, the value ofEc must be set as small a
possible provided that its interference with the final resul
kept within the margin of tolerance.

In order to compare the CPU time for the two method
we have computed Eqs.~4! and ~6! for the case of a para
bolic binding potential,

V~r !5
mv0

2

2
r 2, ~7!

with v050.3 a.u. andm being the electron mass. The re
space was represented by 163 mesh points to cover a cubi
volume of linear dimension 16 a.u. For the time develo
ment, discrete time steps withDt50.05 a.u. were used fo
integration of the Schro¨dinger equation. The Fermi energ
was set atEF53\v0 and the frequency resolution wash
5831022 a.u.

In Fig. 1 we compare the results of Eqs.~4! and ~6! with
the analytical result for electrons in the parabolic potent
Both numerical results well reproduce the analytical cu
with the standard deviation standing at 7% at the peakv0
50.3 a.u.! for both cases.

The result for the straightforward implementation of E
~4! is an average over 200 runs with differentuF& ’s. The
CPU time on a single processing unit of Fujitsu VPP500 w
1.53103 sec for each run, totaling 3.03105 sec (. 83 h! to
achieve 7% accuracy. For the calculation according to
~6!, an average was first taken over 50 different samples
uF8& with a fixed uF&. The result was then averaged ov
100 different samples ofuF&. The total of 5000 runs of
integrating the Schro¨dinger equation took 6.83104 sec
(.19 h! to achieve the same 7% accuracy at the peak. If
statistical standard deviation is to be brought down to 1%,
average over 72549 times more samples will have to b
taken, which translates to 1.53107 sec (.174 days! and
3.33106 sec (.38 days! for Eqs. ~4! and ~6!, respectively.

FIG. 1. Two-photon absorption coefficienta (2)(v) of electrons
trapped in a parabolic potential. The results obtained by the us
Eqs.~4! and~6! are shown by the dotted curve and the solid cur
respectively. The analytical result is shown by the dashed line.
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In Fig. 2, we show the estimated CPU time to achieve
statistical accuracy for various values of frequency reso
tion. The relative advantage of the use of random vectors
the intermediate state should grow as higher frequency r
lution is required. The actual lapse time of computation c
be reduced nearly by an order of magnitude if the compu
tion is parallelized to use all the 30 processing units
Fujitsu VPP500 at RIKEN.

The present calculation was done for the specific cas
noninteracting electrons trapped in a parabolic poten
only in order to test the relative advantage of the algorit
and to compare against the analytical result. The comp
code admits an arbitrary potential, and work is under way
extend the present calculation to electrons in various pse
potentials. Extension of the algorithm itself to deal with
interactingM-particle system is straightforward, although s
lution of the Schro¨dinger equation in the 3M -dimensional

FIG. 2. Relation between the energy resolution and the t
CPU time for calculating the two-photon absorption coefficient
1% statistical accuracy. The solid line and the dotted line are
calculation according to Eqs.~6! and ~4! of the text, respectively.
The cross and the circle are the projected CPU time for ene
resolution h5831022 a.u. based on the actual calculation pe
formed with the same resolution but to 7% accuracy.
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space soon becomes unmanageable with increasingM. Of
more significance is the potential of the present strategy to
used to facilitate the calculation of nonlinear response fu
tions of higher order. A numerical calculation of a nonline
response function of ordern typically involves computing an
n-dimensional integral of the type

E
0

`

dt1E
0

t1
dt2•••E

0

tn21
dtnei ~v1t11v2t21•••1vntn!

3Š^FuÔfe
iHt 1 /\Ô1e2 iH ~ t12t2!/\Ô2e2 iH ~ t22t3!/\

. . . e2 iH ~ tn212tn!/\Ône2 iHt n /\Ôi uF&‹F , ~8!

where eachÔ represents some operator. While the straig
forward evaluation requires computation time proportiona
h2n, it may be possible to reduce the CPU time as far do
as ton times that for the linear response function by inserti
the completeness relation~3! and decomposing the matri
element inton factors. This may be regarded as a version
the quantum Monte Carlo method, and the use of importa
sampling techniques@14,19# will be vital in reducing the
evaluation time. In fact, the use ofu(Ec2H) in Eq. ~6! is
one rudimentary method of improving the sampling ef
ciency.

The insertion of random intermediate vectors is not
only way to reduce the CPU time of evaluation of th
n-dimensional integral. For example, the standard Mo
Carlo random sampling technique may be applied directly
the evaluation of the integral~8!. If one adopts uniform ran-
dom sampling in then-dimensional time space, the CP
time for integration of the Schro¨dinger equation scales a
h21 times the number of samples required for the statist
averaging, which is precisely the same as for the case
random vector insertion above. In either case, the statis
method of evaluation suffers from the familiar negative si
problem @19#, so that some scheme needs to be devised
improve the sampling efficiency. Nevertheless, it rema
true that the size of statistical variance is independent of
energy resolution, so that it should be advantageous to
ploy statistical methods for the calculation of high-ord
nonlinear coefficients at a high resolution of frequency.

All calculations reported here were performed on
Fujitsu VPP500 at RIKEN.
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