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Information-theoretic wavelet noise removal for inverse elastic wave scattering theory
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A discussion of noise removal in ultrasoufedastic wavg scattering for nondestructive evaluation is given.
The methods used in this paper include a useful suboptimal Wiener filter, information theory and orthonormal
wavelets. The multiresolution analysBIRA), due to Mallat, is the key wavelet feature used here. Whereas
Fourier transforms have a translational symmetry, wavelets have a dilation or affine symmetry which consists
of the semi-direct product of a translation with a change of scale of the variable. The MRA describes the scale
change features of orthonormal wavelet families. First, an empirical method of noise removal from scattered
elastic waves using wavelets is shown to markedly improvd ttend|? error norms. This suggests that the
wavelet scale can act as dial to “tune out” noise. Maximization of the Kullback-Liebler information is also
shown to provide a scale-dependent noise removal technique that sufijpartioes not provethe intuition
that certain small energy coefficients that are retained contain large information content. The wavelet MRA
thereby locates “islands of information” in the phase space of the signal. It is conjectured that this method
holds more generallyf.S1063-651X99)14403-9

PACS numbg(s): 41.20.Jb, 11.86-m, 62.30:+d, 89.70+c

[. INTRODUCTION statistical approaches. We conjecture that the method pre-
sented here will hold more generally.

The problem of understanding and removing noise from The organization of this paper is as follows: In Sec. Il the
measured datfl—7] is important and has been extensively formulation of the elastic wavéultrasound nondestructive
studied. Two areas that could benefit greatly from advance§v@!uation applied inverse problem will be presented. In Sec.
in noise removal are nondestructive evaluatiga-11] and I Athe data and the Wiener .fllter regularizer are given, with
medicldiagnostfl2-15, Wahbil1 ] has pubished fun- Y9 fures. The KulbackcLieble cross ennopy and other
damental works on noise removal using splme me'ghpds. It '%1 B. Section Il C contains a short discussion of the multi-
unfortunate that experimental an(_j theoretical physmsts hav?esolution analysis used by Mall&16,17), for orthogonal
overloc_>ked these references. .C0|fman and Wickerhaer wavelets. An empirical scale-dependent wavelet noise re-
and Wickerhausd#] have applied wavelet methods togethermoval method is explained in Sec. IID. In Sec. IIl, the re-
with Shannon information to the problem of noise removal. j X ol

sults of a few calculations are presented. Several results on

Donoho [5] developed a soft thresholding approach aISOempirical scale-dependent calculations are given in Sec. Il A

bafstetﬂ onhV\;gyeIet; ?jn(tj the smoolthnests gfbthe iltgna:: L ith four figures and a table, while Sec. IlIB presents the
soft-tnresholding oh data was implemented by SUbtracling ¢, rmation-theoretic results, with two figures. Section IV

an amoun.to\/Z'In(n)/n frqm each Wavel_et coefficilemjk. summarizes our conclusions.
The quantityo, is the variance of the noise and this method

treated each scaleidentically. The author$6] treated the Il. FORMULATION
wavelet scales empirically and found that two to three scales o . )
should retain all coefficients whereas all coefficiefus| The specific inverse problem to be discussed here is scat-

equal to zero. These scales which minimized the error normglied to the nondestructive evaluatioNDE) of engineering
were referred to as “ordinary scale§}. Later, Van Nevel Scattering approaches can be used to estimate the size of the
[7] showed that the Kullback-Liebler information choosesflaw, providing a quantitative basis for determining whether,
approximately the same scales as the empirical method. Thad ultimately when, to replace a flawed part before failure
aspect of noise removal will be presented in this paper. ~ (but not before replacement is necesgaiyre inverse prob-
suboptimal Wiener filtering, multiresolution analysis, infor-
mation theory, and orthonormal wavelets. This synthesis has
resulted in a physical basis for our noise removal algorithm, The signals measured in ultrasonic testing include the ef-
which often is lacking in many other “one size fits all” fects of the measurement system, and are corrupted by noise.

A. Data and Wiener filter regularizer
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FIG. 1. The calculated time domain signal of
a 200um sphere shown together with measured

g o elastic wave noise with SNR 4:1 in polycrystal-
line stainless steel. The solid line is the calculated
time domain scattering signal and dotted line has

-0.5+ 1 the measured noise added to the signal.
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The measurement system response is both band limited anetd and there are half as many data as for the real valued
frequency dependent, resulting in measured signals whicfunctions{f,h,a,i} in the time domain. The problem of deter-

are blurred and distorted estimates of the actual flaw signanining an approximate scattering amplitudléw) from Eq.
tures. The Wiener filter is used to estimate the scatteringp) is an ill-posed problenj13—15,1,2,6,7,18—38because
amplitude of the flaw by attempting to remove the effects ofthe data are band-limited and corrupted by noise. The regu-

the measurement system in the presence of noise. The opfirization of these ill-posed problems can be accomplished
mal form of the Wiener filter requires estimates of the pa-py ysing a Wiener filtef28], Wo:

rameters which describe both the noise and scattering ampli-
tude distributions. H*F

~THP+ Q%) @

The data in this study are taken with a transducer whose A=WuF
square pulses have a central frequency of 12 MHz and drop
to —40 dB at 1 and 23 MHz. A measured signal can be : . 2
modeled as the convolution of the measurement system fun{?‘-S well as a term from information theory. In B8), Q(«)

tion with the flaw impulse response function, plus any noisqf the regularizing term. The optimal Wiener filter is well
il H H 2 —_
present. In the time domain, this signal is given by nown[28] and is given byQqp=Sy(w)/Sa(w), whereSy

and S, are the power spectral densities of the noise and the
t; scattering amplitude. Since this is an inverse problarand

fi:f(ti):f h(ti—t")a(t’)dt’ +n;, (1) consequentlys,) are unknown, and the optimal filter cannot
o be used. The power spectral density of the noise can be es-

timated from measurements and has been done by one of us

instrument response of the transducer. Figure 1 shows a tim((§'P'N) and others, see, €.411,6,7,29,30 The frequency

i ; ] 2
trace of an ultrasonic signal in stainless steel with a signal téﬂdependgnt, 2 sugopnmgll .Wle?her hf'llttfr setsQ t
noise ratio(SNR) of 4:1. The solid line is a calculated noise- _° max{|H(w)|], where=(0,1) is a thresholding parameter

; : . : typically is set to 0.0L It corresponds to a limit of-60 dB
free time domain scattering amplitude from a 200+ ( ) ;
spherical void in steel, and the dotted line is a signal with thefor the dynamic range Of the _data. The signal scattered from
grain noise(as measured by one of us, S.P.Ndded. The the flaw and the acoustic noise occupy the same frequency

measurement system used here results in grain scatteri ndow, so no Iow_—pass fllte_r or smoothllng In time can re-
noise that is band limited and coloréilequency dependent . ove the noise \./wthout' Iosmg information about the ﬂ'aw
within the bandwidth resulting in time domain correlations itself. The suboptimal Wiener filter acts as a bandpass filter,

and autocorrelation behavior in time that do not have Dgac "¢MoVIng much of the distortion due to the colored fre_-
falloff. The Fourier transform of Eq(l) is quency response of the measurement system. The suboptimal

filter does not achieve noise removal, nor change the SNR

where n;=n(t;) is the additive noise anti is the known

F(0)=H()A(®)+N(w) ) within the bandwidth, since information about both the flaw
and the noise are passed through the filter. It is well known
in the continuous frequency case, and that Eq.(3) often performs poorly for real da{@8], imply-
ing that additional information is needed. If one has indepen-
Fi=F(w)=H(w)A(w))+N(w)) denta priori information, it may be incorporated by replac-

ing Eq. (3) with the expression
with {I=1,2,...M/2} in the discrete case. After the Fourier R
transformation, the functiong=,H,A,N} are all complex val- A(w)=WgF+C(F), (4)
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FIG. 2. The real part of the noise free scatter-
ing amplitude for a 20Qsm sphere as passed
through the suboptimal Wiener filter.

Volts

5 10 15 20 25 30
Frequency (MHz)

whereC(F) is a positive-definite cost functional that carries B. Information theory concepts

the additional nonredyndapt information. In REX8] this is In Ref. [34] the Shannon entropy was used instead of the
done for the case of imaging, where one knows from expescattered energy from flaws, to detect flaws in Plexiglas. It
rience[28,17] that the edge sets are blurred by removing toowas found that the entropy measure outperformed other mea-
much of the high-frequency content of the signal. Anothersures commonly in use. In Refi3,4,35, the Shannon en-
common regularizer is a smoothness condition on the apropy was used to select a “best” wavelet basis. In the work
proximate solutior{5,24]. A different approach using infor- considered in this paper, the problem is to reconstruct the
mation theory and wavelets that involves part of each ofkcattering amplitude which is quite different from these two
these hypotheses is developed here. It is directly based @roblems, and it was found that the Shannon entropy per-
recent studies of ultrasonic grain noise in NDE formed poorly for our task. This paper shows a new way to
[11,7,29,31,30,3R The choice of wavelet family will pro- combine scattering and information methods.

vide the smoothness, and the choice of wavelet s¢tdeise The problem of defining a measure of information is
explained in later sectiongjives a nonlinear threshold. By somewhat recer{28,36,37,3% but much progress has been
using wavelets and information theory, one can effectivelynade. The Shannon informatidg is defined as

add more information to the problem to improve the noise N
removal prgcess and further redupe the_error norms of the lg= kE pi log,(p)), (58
reconstruction. The wavelet multiresolution analysis natu- i=1

rally suggested the present approach and it seems to clarify

the usefulness of the scale structure of wavelets for thesgherek is a positive constanp; is the probability of théth
transient signals. event, aniN events are present in the signal. It is well known
In order to facilitate the study of scattering amplitude es-that maximizing the Shannon entropy corresponds to the uni-
timation with noise removal, noise corrupted flaw signalsform distribution,p;=1/N for eachi.
were generated using measured acoustic noise from a stain- The Shannon informatiof86,28 has proven very useful
less steel block, the measurement system response for &n communications, signal processing, and statistical me-
actual ultrasonic system, and computer generated flaw signahanics, where its applications are called maximum entropy.
tures. The noise corrupted signals for itile flaw were cre-  When there is little or no prior information, the uniform dis-
ated asf(t)=h(t)r(t)+bn(t) whereb is a scaling factor tribution with one or a few physical constraints is often a
used to generate the desired SNR,29,30,28 This proce- good choice. However, this choice corresponds to minimum
dure is described in more detail in RERO]. Dozens of sig- information, which is not a natural goal for many inverse
nals were generated for spherical flaws with radii of 75, 100problems. In these problems, maximum information on cer-
150, 200, 250, and 30pm. The SNR'’s studied were 10:1, tain features—such as the boundary of a flaw or a cancer, the
8:1, 6:1, 4:1, and 2:1. Many examples of signals and reconsize of some foreign object, or the material parameters of the
structions are availablesee Ref[33)). scattering body—is the quality needed. Often, experimental-
The 200um sphere is thought to be the critical size whichists (and even theoristgperform a least-squares fit to some
indicates impending failure of a metal. Figure 1 depicts aknown function in order to interpret and characterize an ex-
time trace for a 20Q#m spherical void with SNR 4:1 while periment. If there is a firm experimental and theoretical basis
Fig. 2 shows the Fourier domain representatiogal part for the given function, this can be a powerful technidsee
only) of the signal after filtering with the suboptimal Wiener Ref. [23], where a careful inverse analysis showed such a
filter. form to occuj. In these cases the Fisher information matrix
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and the Cramer-Rao theord@8] are very useful. If there is them Riesz base&@ frame is a basis plus many additional
not a firm basis for the assumed function, however, this apredundant elementsBoth discrete and continuous wavelets
proach may not be applicable and can yield nonsensical reexist, but we will restrict our attention to the discrete case
sults. since finite sets of measured data are being studied. This
One method of taking priori information into accountis study will use orthonormal bases so that frames are not
to use the negative of a cross-entropy functional as the meaeeded herécontinuous wavelets require frame®ne fam-
sure of information. One cross-entropy functional with aily of discrete wavelets is written afp*\lfjk(x):(j,k)ezz}
number of desirable features is the Kullback-Liebler infor-whereZ is the set of integers ari¢f is the Cartesian product
mation measurg37]. There are a number of other measuresof two (indexX sets. The functional';, are defined by the
of information/entropy, but they are not considered here. Thelilation operatoD : the product of a translation by and
information(entropy in the Cramer-Rao structuf@8,35,3§  a scale change of'2 of a single wavelet functiof¥ (x) for
has been shown to be directly related to shift entr(g8). which
AssumptionOf all probability distributions to contain the , _
real and imaginary parts of the scattering amplitude, with the Wii(x):=(D W) () = 212W (21x — k) (7a)
constraints of finite energy, causality, and unitarity, we
choose the one which is closest to arpriori probability
distribution of known scattering amplitudes,Q
={q4,.--.G;,..-}- When no such probability is given, we
take the uniform distribution foN data.

provided ¥ satisfies the three conditions{a) the linear
span(the set of all linear combinatiopsf all ¥;’s form a
Riesz basis fot.?(R"), (b) the admissibility condition that

If p={p;} is a measured set & values of a scattering O<cy<es (7b)
amplitude, andj is aN-vector of values taken from the given yith
probability distributionQ, then
¥ (k)|?
N
pi Cy= | ——5—dk, (70
k= _iEl p |092(é) (5b) K
= i

whereW (k) is the Fourier transform of the functio#r(x),
is the Kullback-Liebler cross information, Equati@b) can  and(c) ¥(x) has zero mean

be interpreted as a measure of the discrepancy bet@een
e P, the probability space of the reconstructed scattering
amplitude, andj e Q, the reference scattering amplitude. By
minimizing this discrepancy, the maximum information or
minimum entropy is obtained. If no such probability distri- For signalsf e L1(R")NL?(R") the Grossmann-MorldCal-
bution Q is known, the uniform distribution is chosen. This deror [45] inverse automatically exists. The completeness

¥ (0)= f:\lf(x)dx= 0. (7d)

reduces the Kullback-Liebler information according to of the{W,} allows wavelet analysis of any signbk L? by
N examining and comparing its wavelet coefficients
=—3 plog| -
KL ™ “~ p; 100, 1N Cjk(f):<f|quk> (8a)
N If feLY(R")NL?R"), then

N
Z,l P logz(llN)—iZ)l pi logy(py)
um=§cMHWMm (8b)

1,(N) +15(p), (6)

and the Grossmann-Morlet inverse of E&g) exists and is a
Jgconstruction irL*(R?).

Strictly speaking, the reconstruction is taken as the in-
verse solution which minimizes an error norm. Equati®a
is called the wavelet analysis of a sigiiddy a fixed wavelet
family {¥;(x):(j,k) € Z%}. Hence Eq.(8b) is called the
wavelet reconstructiorisynthesig of feL(R")NL2(R").

Wavelets[40—44,38,45,46,1]7have been shown to have The scale changes by & the new feature of wavelets when
improved localization properties over windowed Fouriercompared to Fourier analysis of signals. It corresponds to
transforms, to have good noise removal properties, effectiveooming in to finer detailsx—27'x, and zooming out to
edge detection abilities, and the capability of treating nonstaeoarser detailx— 2'x(j>0). For this reason, special atten-
tionary stochastic processes. In physics they have recenthjon is paid to the scale structure of these inverse reconstruc-
been used in electronic structure calculatigag], in the tions. The multiresolution structure, which was first intro-
formulation and study of correlation functions which arise induced by Malla{16,17], will be used to obtain a new scale-
particle productior{48], and to detect structures in galaxies dependent noise removal process from a Wiener filter
[49] and two-dimensionaPlD) turbulencg50]. Wavelets are  regularized inverse reconstruction. The reader is reminded
basis sets, or frames for finite energy signalsLA{RRV). that the term “synthesis” is general, but that reconstruction
These basis sets satisfy a stability inequality which makeshould only be used when it is known in what space “lives.”

wherel is the Shannon information as defined in Egp).
Thus, maximum entropy methods are a special case
Kullback-Liebler information wherQ is the uniform distri-
bution.

C. Multresolution analysis for orthogonal wavelets
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Also, a reconstruction in the noise-free case with completeiseful “trick” by Frieden[28] and then uses the maximiza-
data has a solution that exists, is unique, and depends cotien of I, by removing small coefficients on some scales,
tinuously on the initial data. However, these conditions aresubject to a signal energy constraint. This constraint requires
not met in measured data. that the signals have an energy greater than or equal to that

Since only orthogonal wavelets are used in this study, thémplied by the given approximate SNR. The constraint is
MRA of Mallat [16,17] is used; various other types of wave- essential and is assumed in order to avoid removing useful
lets (including nonorthogonalare discussed in Ref§l4,7,  signal energy while eliminating energy due to various noise
22,40,42-44,38,45 processes. In this sense, the inverse problem is somewhat

A multiresolution analysis of 2(R') is a nested sequence analogous to the combined first and second laws of thermo-
of closed subspacd¥}; . of L2(RY) whereZ is the set of dynamics shown in Eq4).

all integers, for which condition&a)—(d) are satisfied: (a) Frieden’s trick is to take the complex valued estimated
ViCVj.1, YjeZ; (b) Ujcz V; is dense in.?, scattering amplitude&(w) and the noise-free calculated ref-
AV, ={0}; erence scattering amplitud@(iu), and trgat them as inde-
jelZ ' pendent real variables, i.e., [Aéw)], IM[A(w)], etc., using

the absolute values after an appropriate normalization, to en-
(o f(t)eV;ifandonlyif f(2t) e V;_,, VjeZ; (d) ascaling able their use in the information cost functional. To show the
function ® exists, whichV e Z satisfies dependence on scales explicitly, expand &9.as

{@}(1) = (Dj®)(1):=22D (2t k) |k e Z}; (9) 1

|KL:2 (IKL)jk:Z E Pjk 109, %
and is an orthonormal basis fof;. At each scalg, the 1k Ik ik
scaling subspac¥; is the low frequency bandpass part of Using Eq.(8b) for a fixed wavelet family, one has
Vi1, and the closed wavelet subspasg is the high fre-
quency band pass part9f ;. The wavelet families written .
in Eq. (7a) provide an orthonormal basis for the spaveés, A(w)zzk CikWjk(w) (1339
for eachj. The scale functions in Eq9), together with the I
wavelet functions in Eq(7a), are generated from finite sets ;4
of masking coefficientgh, :k=1,...N} for which the dila-
tion equations

Ar<w>=§ AP (). (130
o ()= hd(2t—k), (108 | N
k Using the trick, together with Eqg133, (13b), Eq. (12
becomes
V()= (—1)*khy_ @(2t—k) (10b) N, .
K B A Rea(w) ]k
IKL_; kgl R &(w)]jx log, Rda (o)l

are satisfied for eacke Z. These masking coefficients are
tabulated in a number of the referend¢d®,38,44, and the Nj
most recent version of masking coefficients with a number of + 2 > Im[a(w)]jx log,
corrections is available in Ref44]. The MRA is a tightly k=l

woven mathematical structure since the palr(t), ¥(1);} The maximumly, is obtained subject to the energy con-

are.compgctI}/ supported a_md still generate an orf[honormaétraim using the wavelet coefficients of the real and imagi-
basis forL<(R"). This amazing mathematical result is due to -
nary parts ofA(w). The sums ovek run from 1 toN; (an

Daubechied46]. It is often advantageous to require addi- . ; _ ) .
tional smoothness conditions beyond E€7d) for k integer erendmg on the scabe The scattering amplitudes
—123..m for someme 7. m>2 were suitably normalized and the absolute values taken to
"’ ’ ’ allow for the probabilistic interpretation, the lower ca&e
) and a, indicating the estimated and the reference scattering
f tp(t)dt=0, (1D amplitudes divided byEA(w;) and A, (w), respectively.
Thusa,(w) plays the role of the reference distributignn
which increases the ability of the wavelet family generatedhe Kullback-Liebler information. A different use of the
by ¥ to approximate fine details. These are shown to beKullback-Liebler information was used by Coifman and
useful for ultrasound in the next section. A tradeoff existsSaito[35] for classifying features of a signal. The real and
between the minimum interval of support of a wavelet familyimaginary parts of the estimated scattering amplitude were
and the order of approximation. also treated separately here. This approach will also be dis-
The wavelet analysis and synthesis E&s), (8b) will be  cussed.
used as follows in our studies of inverse elastic wave scat- The wavelet analysis of a discrete signal suclh iasEgs.
tering. In the empirical method of Sec. Il HD, the analysis is(10) or (2) has a perfect reconstruction by E@b) if all
performed by calculating the wavelet coefficiefts ) of a  wavelet coefficients are retained. The signal is said to be
signal and treating different sets of scales as described. Trmpressed if all of the small wavelet coefficiefig| <e (a
information-theoretic Kullback-Liebler method starts with a threshold are discarded, provided the imperfect reconstruc-

Im[a(w)Jjk
Im[a, (o))

(14
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tion of f is deemed satisfactory. These small coefficients con- TABLE I. Thel* and|? error norms of 20Qwm spherical voids
tain a small amount of the signal energy, and compressioif stainless steel with SNR 8:1 f@®4,010,C18 wavelets for the
ratios of 20 or 30:1 are common. We take the opposite viewensemble average of 30 signals. The noisy, suboptimal Wiener filter
point: a small energy coefficient may be important, espe&rror is given near the top of the list and the error norms for six
cially if it carries a large information content. The locations cheices of exceptional scales are presented for comparison.

of the zeros, maxima, and minima of the scattering ampli-
tudes are several key features for this paper. The small coef- )
ficients near any of these features increase the accuracy Mj/ener filter

I2Real 1?2Ilmag I1*'Real 1'Imag

0.86918 1.24146 0.93163 1.46722

their determination. D4 wavelet
1_'he inverse reconstruction here vylll begin with the sqb-je: 1,2 035294 038552 036349  0.46548
optimal Wiener filter regularized estimate of the scattering —23 0.19973 0.30495 0.20180 0.36515
amplitude. Thd(R) (or vision norm is given by —34 0.17827 0.26589 0.18186 0.31476
N =45 0.27568 0.25965 0.29410 0.30977
e1=> |A(w) —Alw), (153 =5,6 0.27654  0.25730  0.28591  0.30230
| =3,45 0.17953 0.25774 0.18159 0.30622

D10 wavelet

2 .

and thel “(R), or energy norm is jo=1,2 031748 038308 0.36102  0.48856
N =2,3 0.23943 0.29939 0.25952 0.38376
£2:=> |Alw)—Alw)]?, (15b) =3,4 0.20858  0.21956  0.21942  0.27978
! =45 0.24385 0.19542 0.27386 0.25554
~ . ) ) ] =5,6 0.22349 0.23036 0.25927 0.29983
whereA is the estimated scattering amplitude, is the ref- —345 0.21030 0.21052 0.22525 0.26764

erence scattering amplitude, afdis the number of data ;g v,va{velet

points. The number of data points limits the number of scale

: . - . Je=1,2 0.33870 0.39060 0.39086 0.46942
j that can be used in the analysis; fd=256 or 512(as in ?""

data, j,..=7 or 8, withj, =0. | tice i is ch =23 0.23207 0.30046 0.27017 0.35717
Sen to be Tees than the Meoretical maximum. In order to ~34 047162 024619 020648 026002
investigate the effects of the order of approximation ig’g 85;2;8 g'g;;g 8;22;2 8'21;3
(smoothness of the analyzing wavelets, several wavelet ~— : ' ' '

=3,4,5 0.17225 0.25131 0.20975 0.28050

families were used: D4-D28, DS8-DS20, andC6-C24,
whereDN stands for Daubechies minimum phase wavelets;,
DSN for Daubechies least asymmetric, aBil for Coiflets

(as per Daubechid€1]), and the integeN here denotes? into six or seven scales using a fixed wavelet family. In this
from Eq. (11). part of the study we limited the choice of wavelet family to

D4, D10, D28, DS8, andC18. Following the decomposi-
tion, a variety of combinations of scales were used as excep-
. . ] ] ) tional scales, and the coefficients were pruned. With this new
In this subsection we will now discuss the technique ofcoefficient set, the inverse wavelet transform is performed,
pruning coefficients by scale versus chopping them by comgyhich results in a new reconstruction of the scattering am-
parison with a size thresholgl . By chopping we mean the pjityde. The error norms were then calculated again using
removal of all coefficientsc;|<e., which is a standard this new estimate. The sets of scales that were used as ex-
technigue. Pruning entails partitioning the scd@4.,...ima¢  ceptional scales included several triplds.{,,j3) and all
into “ordinary” and “(_exceptlonal”_ s_,cales. The ordinary “doublets {;,j,). The threshold parameter, was found to
scales are ones for which the coefficients are chopped, Whl|§epend on the SNR, ranging from=0.2 at SNR 10:1, to
the exceptional scales do not undergo any chopping. The = (.35 at SNR 8:1, ta;,=0.75 at SNR 2:1. Some results
assumption is that the exceptional scales may contain smalf the empirical pruning and thresholding for sets of excep-
coefficients with low signal energies, but that these scalegona scales and a few wavelet families are shown in Table .
have a high information content with regard to the signal.omy one triplet(3,4,5 was found to provide low error
This suggests the question of whether these exceptiong@lorms. A number of other flaw radii were studied in R6s.
scales]j¢} exist and, if so, which values gfare exceptional 7] and many more results from these works are available via
and what threshold valug; should be used. This empirical the \WWW [33].
of why this method would improve the reconstructions. tried in the hopes of explaining that the choice of exceptional
To determine if there is a clear dependence on the scalegales gave a useful noise removal structure. Methods pro-
j, the following numerical experiment was performed: The posed by Donoh¢5], Coifman and WickerhauséB5s], and
andI? error normgEgs.(153, (15b)] were calculated for 30 \wickerhausef38] were tried. Donoho’s method used soft
Wiener filtered reconstructions of flaws of known radii-  thresholding with different threshold values in different
tially 200 um) and a fixed SNR(initially 8:1) using the scales. Soft thresholding is different from the chopping de-
suboptimal filter given in Eq(3). A wavelet decomposition  scribed earlier, in that all coefficients are reduced in magni-
of both the real and imaginary part of the estimated scattefude by the threshold amount and any coefficient less than
ing amplitudeA(w) was performed, decomposing the signalthe threshold is set to zero. The other methi&&38 were

D. Empirical wavelet scales for noise removal
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FIG. 3. The real part of the noise-corrupted
scattering amplitude, using the suboptimal
Wiener filter, with SNR 6:1. Contrast this with
Fig. 2.

Volts
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based on Shannon informatigentropy. The methods ifi5]  tion of the SNR, an energy threshoiéd dependent on the
produced reconstructions that were comparable to the resuWiNR, and the knowledge that a flaw is present in the time
in Fig. 3, except that some cases were worse. When conwindow. The reference distribution is taken from the real and
puter generated noise was used, it performed well and thgnaginary parts of the reference scattering amplitude for a
published results were reproduced, but the method was congiven flaw size. For realistic flaws, the flaw would not be
pletely unable to treat the measured ultrasonic grain noisgpherical and the effective radius would be different in dif-
studied here. The improvements obtained by u$B®38  ferent incident sonification directions of the backscatter. This
were smaller and more erratic than the empirical thresholdgt,ation would require the use of a Radon transform, such as
ing. The results of the empirical thresholding will be Shownthose used if13,22,27, and is well worth pursuing later.

in the next section. Also, a Lagrange multiplier coefficient on the Kullback-
_ o ) Liebler information term in Eq(16) should be studied.
E. Kullback-Liebler maximization for noise removal By maximizing the information measure in E@.4), the

The information-theoretic technique, which was found toresulting error norms given by Eq&l5g and (15b) are sig-
give results very similar to the empirical method just de-nificantly reduced. Given an estimate of the signal to noise
scribed, was a constrained Kullback-Liebler informaig] ratio one can estimate the expected total energy contained in
maximization approach. This is a maximum information orthe signal of interest. The power spectral density of the mea-
minimum entropy method, in contrast to the maximum en-sured signal(true signal plus noigeis given by S;=Sj
tropy approach. The constraints include ¢hpriori informa-  + Sy whereS, andSy are the power spectral densities of the

1.5 T T T T T

FIG. 4. The result(solid line) of empirical
thresholding using .= 3,4,5, and wavelet family
C18 compared to the noise free cddetted ling.
This is for the real part of the scattering ampli-
tude, with a SNR 10:1.
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1
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FIG. 5. The result(solid line) of empirical
thresholding using .= 3,4,5 and wavelet family
D10, compared to the noise free caGiotted
line). This is for the imaginary part of the scatter-
ing amplitude, with SNR 8:1.

Volts
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estimated signal and the noise, respectively. Since SNRMit on the energy had been reached, or the information
=Sa/Sy we can write S;— Sy=SyX(SNR). This allows given by Eq.(14) had been maximized. In the next section
one to approximate the amount of energy that can be digesults for both the empirical and the information theoretic
carded safely in the Kullback-Liebler maximization process.approach are presented.
No iteration in the algorithm is allowed to violate this con-
straint. lIl. RESULTS

To maximize Eq(14), given the needed priori informa-
tion, one begins by calculating a baselige using the initial
A. Any changes made to the estimate must increase the A few of the results from the empirical scale-dependent
information content, i.e., maximize E¢L4). Following this  pruning technique will first be presented and discussed.
initialization, a wavelet coefficient;, [ from Eq.(133] is  Thirty signals were formed from measured noise in stainless
chosen at random, from any scale, and reduced by a smaiteel combined with calculated scattering amplitudes. Initial
percentage. The reduction of a wavelet coefficient is acnoisy estimates of the scattering amplitude were then calcu-
cepted for the new estimate #f if the energy constraint is lated using the suboptimal Wiener filter. Table | presents the
not violated, and if the information content is increaség ( results for a subset of the exceptional scale selections, and a
>1n_1). The process is then repeated until several hundredubset of the wavelet families used, for a particular flaw
iterations pass without any changes being accepted. Twadius, at SNR 8:1. From our calculations and the others
conditions usually resulted in this convergence: A loweravailable via the WWW33], two observations follow: (1)

A. Empirical wavelet scale-dependent noise removal

15 T T T T T

FIG. 6. The result(solid line) of empirical
thresholding usingj.=1,2 and wavelet family
D4, compared to the noise free cddetted ling.
This is for the real part of the scattering ampli-
tude, with SNR 8:1.
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FIG. 7. A Kullback-Liebler maximum infor-
mation reconstruction of the 20@m scatterer in
stainless steel, using ti210 wavelet family, and
a 90% threshold for the energy.
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There was a clear scale dependence wyiti3,4,5 or 4,5 why it works—a question to be addressed in the next section.
(intermediate frequencigss the best choices, whife=1,2

(high frequency performed poorly. (2) There was no clear B. Kullback-Liebler information theoretic wavelet noise
“best” choice of wavelet. Overall, theD4 wavelet per- removal

fornjed the worst, while theD10 VYOI’ked the best -for The best answer found so far, to the question of why
Im[A(w)], andC18 was the best for R&(w)]. Wavelets with  empirical pruning works is that the relative information
more smoothness performed markedly better than those WIIGe|ative to the known reference distributia) is maxi-

less differentiability. This agrees with the observations ofizeq.

Tobocmar{14,19 with analytic wavelets. _ In Fig. 7, a reconstruction maximizing the Kullback-
The noisy Wiener filtered scattering amplitude estimates jop|er information[given in Eq.(14)] is shown. The scat-
are all similar to Fig. 3. Ideally, the noise removal proceduretering amplitude shown is for a 20@m sphere, with SNR
would result in a plot similar to the one seen in Fig. 2. In 10:1, using aD28 wavelet. The result from using the same
order to better understand the 40—-50 % reduction inlthe scattering parameters, but a different wavelet famidi0)
and|? error norms over the noisy Wiener filtered estimates,s shown in Fig. 8, ané a plot of the relative error norms for
some figures will be shown. A few of the cases where thge, signals using 10 wavelets is shown in Fig. 9. These
method failed, such as fgg=1,2, or using thd4 wavelet,  reconstructions are of reasonably good quality, and many

are also presented. Reconstruction of the real part of thggre of similar quality were also obtained. In fact, thend
scattering amplitude for a 206m sphere with SNR 8:1, 2 gror norms of ten KL information theoretic reconstruc-

using empirical scale dependent pruning with wavelet family;jong were better than the empirical thresholding metfasd
C18, jo=3,4,5, is shown in Fig. 4. The solid line is the can pe seen from Fig)90ne concern was that the algorithm
theoretical noise-free case for comparison. Figure 5 displaygas overtrained, and not robust outside the initial test popu-
the results for the imaginary part using &0 wavelet, and  |ation of spheres. The concern was that, given a signal with
scalesj.=4,5. Note some large amplitude oscillations in theq flaw scattering present, the algorithm would still return a
region 20—35 MHz, which would require more smoothing reconstruction that looked like a flaw scattering amplitude.
than is provided by the empirical pruning, but the main scatrg test the algorithm, the reference distributionvas kept
tering features up to 20 MHz are accurate. The last examplgg the reference scattering amplitude, while the experimen-
in Fig. 6 illustrates t.he dependence of the recon§truct|on ORylly measured grain noise was input as the signal. The result
the choice of exceptional scales and wavelet family. Numeryf the KL noise removal algorithm then gave the dotted line

ous noise artifacts appear, but the principal features are regaconstruction in Fig. 10. These results reassured us that the
ognizable (although somewhat inaccurateThe noise re- gise removal system was sound and robust.

moval was performed using @4 wavelet with exceptional
scalesj.=1,2.

As stated before, a large archive of other calculations,
encompassing many other flaw radii, many different wavelet From the table and the ten figures, both scale-dependent
families, and varying SNR’s are available via the WWW empirical thresholding and the information-theoretic
[51]. These results are a sample from the greater ensemble Killback-Liebler noise reduction methods were shown to
work. From the table and the figures it seems that a thresholidnprove the reconstructions of ultrasound scattering ampli-
g;=1.5/SNR, with exceptional scal§gs=3,4,5 orj.,=4,5 tudes over those obtained from a suboptimal Wiener filter.
improves the scattering amplitude estimate by removing &he empirical thresholding has no physical basis, but it does
good deal of noise. This immediately raises the question ofhow that the time-frequency representation of wavelets pro-

IV. DISCUSSION
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FIG. 8. Same as Fig. 7 with a 50% threshold
level for the energy.
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vides an additional mathematical tool to improi@ make SNR’s all choices of scales and wavelets passed some noise
worse the inverse reconstructions. The information-theoreticartifacts through the noise removal process. Nevertheless, the
Kullback-Liebler approach minimizes the discrepafepd  noise removal technique shown works much better than the
thereby error normsbetween a noisy Wiener filtered signal suboptimal Wiener filter, and the Kullback-Liebler cross-
and a noise-free reference signal. This corresponds to maxinformation theory gives a physical basis for the method.
mizing the information or minimizing the entropy while pre-  Information-theoretic inverse theories have certain advan-
serving the noise free signal energy. Actually this processages over statistical methods, one of which is analogous to
does not contradict the maximum entropy method becausine combined first and second laws of thermodynamics in
these experiments incorporate additional information. TheEq. (4). This combination requires that the information in the
additional knowledge is encoded in the reference distributiortost functional must be nonredundant from that in ke
Q which is required for the KL information measure. In ad- error norm. The fact that the KL method works well suggests
dition, there is additional structure which has not yet beerthat theL? energy error and the KL information are not
used: the unitarity of the scattering amplitude. For forwardredundant. In thermodynamics, this crucial requirement of
scattering,®@=0, this exclusion would not be a good idea, nonredundance is taken into account by the “equation of
but the problems would be manageable for the backscattestate” of the material. In inverse problems, the equation of
ing studied here. state is unknown and, in this sense, is the knowledge which
The method developed camand doek fail in some in- is sought here. This study has shown that the KL information
stances. The example in Fig. 6 shows that noise artifacts caa largely independent of the energy error, in contrast to the
persist after applying empirical thresholding. At the lower poor performance of the Shannon informat{@j. This line
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j FIG. 9. The relativel? error norms for ten
§°~°25' R signals are shown as circles, while the error
g norms for signals after noise removal using the
0.021 . 7 KL technique are shown as.
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0.004 information available about a problem should be used. The
cost functional approadi28] allows the use of more of the
priori information available, which can appear in two inde-
pendent parts of the analysis.

Another desirable feature of the KL approach is the fact
that minimal input information is required; all that is needed
is a reference probability distributio® and an approximate
estimate of the SNR. It is also desirable that the Kullback-

0.002

0.000

@ -0.002 Liebler information reduces to the maximum entropy method
'é if Qis chosen to be a uniform distribution. The fact that, for
-0.004 a few samples, the empirical thresholding produced smaller
error norms than the KL method suggests that better choices
may exist for a reference probability distribution. The
-0.006 method of Coifman and Saitf35] will be studied in the
future. The combination of the performance of the empirical
~0.008 — e ——— thresholding and its close relation to the maximum informa-

tion method may say something about orthonormal wavelet

families themselves. That is, different scales carry different

amounts of energy and information, and they are not the
FIG. 10. Grain noise in the time domain is shown as the solidsame. The exceptional scales are islands of information in

line, while the dotted line represents the signal following noisethe time frequency plane. We conjecture that this is true for

removal using the KL information maximization, using the noise pther inverse problems besides the ultrasonic problem stud-

free scattering amplitude reference distribut@nThis figure helps  jed here[51-55,47—50

support our claim that the algorithm is not overtrained, and is ro-

bust.
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