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Electromagnetic fields in ferrofluids
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The behavior of electromagnetic fields in dielectric ferrofluids is considered in detail by employing two
independent methods: linear response and hydrodynamic Maxwell equations. The respective results differ in an
experimentally relevant way. As the calculation takes place where the ranges of validity of both theories
overlap, weak fields and small frequencies, this discrepancy calls for an understanding. The conclusion drawn
here is that the linear response theory is the culprit, and its results are faulty. This paper contains especially the
algebraic details that were left out of a previous, brief publicafigiario Liu, Phys. Rev. Lett.80, 2937
(1998]. [S1063-651X99)07603-3

PACS numbdss): 75.50.Mm, 41.20-q

I. INTRODUCTION or a constant electric field in a conductor. These stationary
electric and magnetic fields are coupled and transverse; they
Linear response theory applies impeccable logic to derivetart off from the boundary and extend over a certain dis-
the properties of the permittivities and . Without explicit ~ tance into the bulk, defining a surface region. Although this
reference, atomic scale distribution of charges and currengistance is frequently tiny, and very ignorable, it turns mac-
— both present and in the past — are accounted for. The re&ibscopic in some magnetic systems such as dielectric ferrof-
parts ofe andu are even functions of the frequenay they  luids [2], where it is around 30 m. Clearly, one is hard
express the reactive response, such as the oscillatory motigressed to find any bulk region here.
of the microscopic charges in the presence of a periodic field. In what follows, in Sec. I, we shall first compare two
The imaginary parts are odd functions @f they param- Ways to close the macroscopic Maxwell equations, via linear
etrize dissipation and absorptiph|. There is no doubt that a response or the hydrodynamic theory. Then, in Sec. Ill, a
great deal of physics is captured by measurifg) and one-dimensional, static, and dissipative solution is presented
w(w), and by calculating them for various systems. How-that is contained only in the hydrodynamic theory. In Sec.
ever, the diagonal structure of the constitutive relations, thdV, the appropriate boundary conditions needed to calculate
fact that the electric field plays no role in the magnetic conthe associated amplitudes are derived. In the last two sec-
stitutive relation, and vice versa, the magnetic field does notions, two experiments are discussed in which this static so-
partake in the electric one, is really an assumption that i¢ution is important.
hard to justify on general grounds, and as we shall see, is not Although this paper is the long version of a previously
always correct even in isotropic media. published short communicatidi3], only part of the discus-
When questioning whether these constitutive relations ar&ion there is repeated here. So the reader is advised also to
(within their linear range of validitygeneral enough to cover consult Ref[3].
all conceivable circumstances and any materials of interest, All formulas in this paper are in the MKSA system of
one must employ an independent macroscopic framework dinits, for easy comparison to experiments. The original for-
at least equal rigor and standing. This is provided by thenulas[3] were in the Heaviside-Lorentz units. It is easy to
thermodynamic and hydrodynamic theory. Presuming locago from one to the other system at any point in this paper by
equilibrium, the hydrodynamic theory is valid for any field employing the following formulas, in which the fields in
strength but confined to low frequencies. The linear responsgKSA are denoted with hats, such és |:|, etc.:
theory, on the other hand, is valid for arbitrary frequencies as

long as the field is sufficiently weak. A comparison must H=H/Viuo, B=Buy,, (1)

therefore take place in the double limit of low frequencies

and weak fields, where both ranges of validity overlap. Here E— E/ e, f)—D\/e— 2
- o’ - o’

agreement in every detail must be expected, but is not found.
And, the discrepancy can be traced to the assumed diagonal -

structure of the constitutive relations, which contradicts basic 0e=CcVen Je=ieVeo, T=06,. ©)
thermodynamic and hydrodynamic considerations.
In linear response theory, if electric and magnetic fields Il. MAXWELL EQUATIONS

are static in a dielectric medium, they are also in equilibrium, h . I , ; . .
and decoupled from each other. The hydrodynamic theory,I The macroscpplcl Maxwe qulﬂa“olns of a stationary, di-
on the other hand, allows them to be both time independerft/€ctric, magnetizable, and polarizable substance are

and dissipating — similar to a constant temperature gradient, .
D=VxHM, V.D=0, 4
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As such, these four equations contain little useful informawhere;':>o depend on temperature and density’ but not

tion (aside from general principles such as Lorentz covarithe frequency. The dissipative fielth® andEP are (for the
ance and charge conservatiofiheir considerable predictive sjmplest case

power only comes into play when they are closed — fre-
quently by employing the linear response theory. Alterna- HP=—(alug)VXE, EP=(Bley)VXH, 1y
tively, we may employ the hydrodynamic Maxwell theory

that was derived only recently by including electromagneticVherea, 3>0 represent Onsagéor transport coefficients,
dissipation systematically3, 4. similar to the viscosity or a diffusion coefficient.

If either @ or B vanishes, the hydrodynamic theory is
identical to the linear response theory:(#ay a=0, then

D_q- N — D_ . M
The linear response theory starts from the diagonal con'-_| =0; thereforeD=VxH, henceE"=(f/)D, so E

A. Linear response theory

stitutive relations =D/e+(Ble)D, or Die=EM/(1-iwpel ), as in Egs.
(6) and(7).
D=e(w)EM, B=pu(w)HM. (6) However, there are quite a number of systems in which

] ) . _andp are both finite. Then the linear response and hydrody-
Since we are only interested in the low frequency behaviorpamic theory are not equivalent. The purpose of this paper is
we shall exclude, in the inverse permeabilitieg(/) and o work out the difference, and find an experimentally rel-
1/u(w), terms higher than linear in the frequenoy So, for  eyant situation in which this difference is large.

dy——lw, we have, quite generally, Strictly speaking, the significance eof and 8 have al-
_ — ready been introduced above: They parametrize the imagi-
e(w)= € )= s 7) nary parts of the permeabilities in the linear response theory,

and are transport coefficients in the hydrodynamic theory.
However, it is frequently useful to have a more intuitive
The static permeabilities are=e(w—0),u=pu(w—0), Understanding: In a simple, relaxative, modeland 3 are
while a andIB parametrize the imaginary parts dw) and C|Ose|y related tOJ'M and Tp, the relaxation time of magne-
u(w). All four parameters are real, positive, frequency in-tization and polarization, respectively:

dependent, and chosen to coincide with the hydrodynamic — — _ _
ones below. a=T1y(u— o), B=T7p(e—€)le. 12

1—iw,8:/60, #lw) l—iwa;/,u,o.

(See the Appendix for a derivation of these formulas.
Hydrodynamic theories are only valid for small frequen-
The Maxwell equationg4) and (5) remain, but the con- cies, and the one considered here is valid for

stitutive relations are given d8,4]

B. Hydrodynamic theory

omy<l, w7p<l. (13
HY=H+HP, EM=E+E®, ®
[Aiming for an accuracy of, say 10%, the limit i® 7y,
where ~0.3, as the neglected terms ard wry)?, in the real part
of w.] In the notation of this paper, Eq&l2) and(13) impl
H=4du/éB, E=4du/doD 9 ] pap 062 (13) imply
Bw<l, aw<l. (14
are thermodynamic derivatives,being the energy density.
They contain only equilibrium information, and are functions Two also rather frequent combinations aw, and xaw
of all the thermodynamic variables such as temperature anghich, depending on system properties, need not be small

pressure. ) compared to 1.
(Note an important step here: Takiny and B as the

variables,.and the twp temporal _of the Maxwell equa_tions as IIl. A DISSIPATIVE STATIC SOLUTION

the associated equations of motion, the hydrodynamic theory

distinguishes betweel,H and EM ,HM: The first are the The static solutions of the linear response theory are those
thermodynamic conjugate variables, the latter the respectivevery student of physics is familiar with, from introductory
fluxes of D,B, defined solely by the Maxwell equations — |€Ctures in electromagnetism. Settiag-0 in Egs.(7), the
they are therefore given the superscrithtand referred to as Maxwell eqqat|0n$4) and_(5) qnly contain SO lutions that are
the Maxwell fields below. Usually, this differentiation is not €ither electric or magnetic, given, respectively, by

made, leading necessarily to the caveat that the basic ther-

modynamic form VXE=0, V-(eE)=0, (15
du=H-dB+E-dD VXH=0, V-(uB)=0. (16)
is only valid for nondissipative systems].) In one-dimensional geometries — of width— these are
Returning to the linear, weak field, limit, the thermody- simply constant fields. If the boundary conditions change
namic, constitutive relations reduce to with time slowly, oscillating with a frequency in the quasi-

o o static regimec/w>L, the internal field will also oscillate,
H=B/u, E=Dle, (10 but remain constant in space.
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If either a or B vanishes, the hydrodynamic theory is, asnamic Maxwell theory possesses more boundary conditions.

we saw, identical to the linear response theory; if betand

B are finite, it contains more structure. Settibg B=0 in
Egs.(4) and(5), the set of equations to be solved are
VX[H—(alu) VXE]=0, V-(uB)=0, (17)

VX[E—(Bleg) VXH]=0, V-(eE)=0. (18

(This comes in handy, of course, since the amplitufles
need definite values for any solution to be uniquely deter-
mined) As in the case of the linear response, these boundary
conditions are derived from the equations of motion them-
selves(Therefore, they should not be considered as indepen-
dent and additional information, which is the usual point of
view in mathematics.

There is a useful formalism for doing this, developed for

These are satisfied by the one-dimensional, exponential séydrodynamic theories of systems with spontaneously bro-
lution, in which both the electric and magnetic field partici- ken symmetrieg5]. It yields boundary conditions that are

pate,
E=Eox+ (1ep) [E,eZDN1e ey, (19
H=Hoy+alBpol€-e* N —c ey, (20
where
A=c\aB. (21

rather general, valid where the hydrodynamic theory is. Both
depend on the same input: conservation laws, broken sym-
metries, and irreversible thermodynamics. The microscopic
information about the boundary is parametrized in surface
Onsager coefficients, the magnitude of which is unknown
within the given frame. As any transport coefficient, they

need to be determined either experimentally, for a given pair
of substances forming the interface, or in a microscopic cal-
culation employing a specific model. There are two types of
boundary conditions: The first states the continuity of the

Being essentially the relaxation time of magnetization anchormal component of the fluxes, of those variables that are

polarization, cf. Eq.(12), the coefficientsa and B vary
greatly, from 8~10"1° s for transparent dielectrics, to

defined and independent on both sides of the interface, as in
Egs. (23) and (24). The second type are Onsager relations

~10° s for ferrofiuids; while water, with a permanent mo- given by the surface entropy producti®y, the expression

lecular dipole moment, is in the middle rangg=10"°s. So
a water-based ferrofluid should have a cologsal3x 10°

for which is extracted from the continuity of the total energy
flux (which contains both the material and field contributions

cm. Clearly, if we can identify situations in which the am- [4]).

plitudes of the exponential decay.+#0, linear response

We study two types of interfaces, vacuum-ferrofluid

theory is proven wrong — for weak fields and linear consti-(VFI) and conductor-ferrofluidCFl). Both “vacuum” and

tutive relations.

“conductor” stand for an electromagnetically inert medium

The above calculation assumes a dielectric medium withhat is only weakly dissipative, withh and 8 so small thai
zero conductivity. This is of course an idealized concept, ags microscopic, andE®, andHP are negligible for the given
the conductivityo is never truly zero. In fact, strictly speak- frequency. It behaves like a vacuum if nonconducting, and

ing, any system becomes conducting in the limit>0, for

possesses botk and H as independent variables. If it is

which case the above calculation needs to be generalizedonducting,o/€,> w, only the magnetic field is retained as

yielding the decay length
N2=apBc?/(1+ 0Pl ep). (22

It remains unchanged from E¢RD) if oB/ey<1, i.e., if the

relaxation timerp of the polarization is much smaller than

the charge relaxation time, /o

IV. BOUNDARY CONDITIONS

The boundary conditions of the linear response theory are

AEM=0, AHM=0 (23)
for the components tangential to the interface, and

AD,=0, AB,=0 (24)

for the normal ones. They are obtained by integrating the
Maxwell equations over an infinitesimally narrow slab across

the boundary(Notations, here and especially belowis the
interface normalAA=Agq— Ayigni; @andA, and A, are the

normal and perpendicular componentsAfA,=A-n, with
n pointing to the right, say along.)
Because the associated differential equatiohd and

an independent variable, with the electric one givenby
=V XH/o. (Since the conditiowr/ ey> w can always be sat-
isfied by lowering the frequency, the “conductor” may be
taken as the low frequency limit.Finally, “ferrofluid”
stands for any systefii) that is nonconductingfor the given
frequency, (ii) is strongly polarizable and magnetizable, and
(iii ) in which bothEP andHP are important. The boundary
conditions for the VFI are

AHM=0, AEM=0, (25)
{HP=FVeoluo  EPXN. (26)

Those for the CFl are
AEM=0, (27)
Veolmo EM={,AHXN, (28)
Veolmo E=7F{HPXn; (29)

in addition toAD,=0 andAB,=0.
Equationg25) and(27) belong to the first type of bound-
ary conditions, and state the continuity of querSkH{V'

(18) are an order higher in spatial derivative, the hydrody-=0 is not a generally valid boundary condition at the CFl, as
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the corresponding variable is not an independent one on They can be measured in a small air gapth its long di-

the conductor side. So instead we havely'~EM, EP, cf.  mension along) inside the ferrofiuid — because the normal

Eq. (30).] component oD andB are continuous, cf. Eq24).
The rest are Onsager relations, with three dimensionless

coefficients{,,{,,{3>0, and all quantities referring to the

. i . L B. Hydrodynamic prediction
ferrofluid. The upper sign holds if the ferrofluid is on the

right, the lower one does if it is on the left. Equatit26) is The hydrodynamic Maxwell equations contain solutions
derived by starting from the expression for the total energytermed thesq modes[4]) that the linear response theory
flux [4], does not possess. For the given geometry, they assume the
form given in Eqs(19) and (20).
Q=Tf+EMXHM—-EPXxHP+ ..., (30) It is useful to first understand a technical point: Although

this solution remains valid for finite frequencies, as long as
with f the entropy flux andr the temperature. Inserting)  Lw/c<1, we may not treaE, and H, as strictly uniform
AHY,AEM=0, and (i) EP, HP=0 on the vacuum side, when calculatings® andHP via Eq. (11) and Eqs(19) and
we obtain (20). This is becaus&, andH, contain terms~expiw(x/c
*t), and the spatial derivative in E(L1) leads to terms- o,

ie terms~D,B, which are relevant in the present context. To
include these terms, we rewrittHP=—(a/uo)VXE

AQ,=TAf, +f ATF[HP-(EPXR)]+---, (31

where AQ,=0 because of energy conservation. Identifying
—TAf, as the positive, singular entropy production of the = (al p10) (B+V XEP), or

surfaceRg, the two termsHt and +(EtD>< n) are shown to b . )

be a thermodynamic force-flux pair whidsimilar tof , and H”=(al o) B+ AV XV XH. (37
AT giving rise to the Kapitza resistan¢@ye proportional to
each other. Isotropy of the interface then only allows the
scalar Onsager coefficiedt,. The factoryey/ug was in- o . )
cluded to rendet; dimensionless. E”=(Bleg)D+N\VXVXE. (38)

The two Onsager relations, Eq28) and(29), are derived )
in a similar manner, the only difference being the lack ofNOW when calculating the terms\®, we may mdeed take

AH{VI:OI The entropy productioR,=—TAf,, therefore, E, andH, as spatially constant, as the termsw? are of
contains two terms instead of one higher than the considered order. The results are

Similarly,

_ - M - D1.A 1
TAfn—anT—F[E XAHFEXH ].n+-.. (32) E zeﬁDX—\/—_[(‘: e(z L)/)\+£ e Z/)\]X (39)
yielding two Onsager relations, Eq28) and(29). Note that °

AH=0 is retrieved from Eq(28) if EM, a nonequilibrium
quantity in conductors, vanisheg-or the sake of simpler =—By w/ [5 ez LIN_g e=ZNy. (40)
display, no cross coefficients have been incluged.

V. FIRST EXPERIMENT, DIELECTRIC BOUNDARIES Together with Egs(19) and (20), the Maxwell fields are

given as
A. Linear response prediction
~ M_ 10— 5
Consider az axis with three regionsz<0 is region 1, 0 HY=[Ho+ (a/uo)Bly=H®Y, (42)
<z<L isregion 2, and>L is region 3. Only region 2with o R
a width say ofL=1 cm) contains ferrofluid; regions 1 and 3 EM=[Eq+(Bleg) D]x=E®x. (42

consist of a dielectric substance with negligible field dissipa-

tion for the given frequenciesHP® EP=0. (It is the  We now calculat€. by inserting Eqs(39) and(40) into Eq.
“vacuum’ in the above senspApplying tangential fields (26):

17, with a finite frequencyw,

(L1a/\o)B—(BlJeg)D=A_E,~A.E, (43

EX=E'X=E®X, H¥y=Hly=H®y, (33)
we have in region 2, because of Eg@3), (gla/‘/M_O)BH'B/ ‘/6—0)D=A+5+_A‘g‘ ' (44)
EM=E®%, HY=H®Y. (39 here
—(r. TR (7 [TA_11a-LA
All fields are uniform. The field andB are, to linear order Ar=({ValB+1),  A=({Val—1)e "0 (49

in the frequency, The resolved amplitudes are

_ BDIe;  L1aBl\uo

B/uw=(1+iwam ug)HY. (36) 5*_(A+—A,) (AL +A_)’

D/e=(1+iwBel €g) E®X, (35)

(46)
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ﬁD/\/e—o glaB/\/% is, with conducting walls, much more pronounced.
E=A=A) (AFA) (“47)
o e A. Linear response prediction
~Combining the results of Eqé41) and(42) for Eq andHo We retain the geometry of Sec. V, and again consider a
with that of Eqs.(46) and (47) for £., we finally find the  ayis with the three regions. Region 2 still contains ferrofluid;
expression for the fielEgs. (19) and (20)]. regions 1 and 3 now consists of a conducting substance,
If £. were zero, the fields in region 2 would be where HP,EP=0 still holds. Applying tangential fields
~ oA alongx, andy, of vanishing frequencyw—0 (though high
E=Eox=[E*~(B/€0)DIx, (48) enough to ensure that the ferrofluid remains dielegtrie
- - keep
H=Hoy=[H*—(a/uo)Bly. (49

o E3x=EXx=E®%, (56)
(Note the discontinuity~D,B, in the fieldsE and H —
though this is not usually apparent, as we only deal \&fth ~ While the magnetic field acquires a constant gradient,
andHM in the linear response theory. Note also that these

two terms were erroneously omitted in RE3].) Taking the Hl=[H"~cE®2]y, (57

respective second term as a small perturbation, cf. @4s, ~

we may approximate H3=[HR—oE®(z—L)]y. (58
D= cE~ £ o (With E¥=VxXHYY o, the electric field is clearly depen-

dent) The boundary conditiongEgs. (23)] render the fields
within region 2 constant and the same as outside:

B=puH~uH (51)
2_ pex 2_pQL_QYyR
to obtain E*=E", H=H"=H" (59)
D/e=E=(1+iwBel €5 E®X, (52) B. Hydrodynamic prediction
o - R The linear response solution holds in regions 1 and 3; but
B/lu=H=(1+iwaul/ ue)H®Y, (53)  inregion 2, the fields are predicted to behave differently. The

_ ) ) boundary condition§Eqgs.(27) and (28)] yield
which agree with the linear response reslifsg. (35 and

(36)]. The point is, of course, irrespective of the valuel of Eo= E®X, (60)
thesq amplitudes.. are always finite. And the results from
the linear response theory are not valid. Ho=3(H-—HR), (61)

If A\<L, we may setA_=0 and take the field contribu-
tion ~&, to be well separated from that&_. Close toz More precisely, the symmetry of E¢61) only expresses the
=0, only the term~&_ contributes, fact that essentially the same boundary condition is valid on
each sides of region 2. The actual valueHdf— HR depends

| gex BD+ e? [ B 5 glaB 4 on ¢,, i.e., HR is not independent dfi“.
- _ 2 Zp-2pBllx ; " .
€0 A, eg| Ve o The third boundary conditiofEq. (29)] determines theq

amplitudesE.. . Applying it twice, for both boundaries, and

partly eliminating the discontinuities in the field of the linear €MPloying formulas39)—(42), we first find

response theory: If =0, the electric field is continuous, and f—f —¢ 62)
if £;=0, the magnetic field is. So a more gradual change to R
the bulk values of Eq948) and(49) is achieved as a result leading to arE field symmetric az=L/2, and an associated,

of the sq modes. , , antisymmetric H field:
For \>L and (;Va/B—1)L/IN<1, (i.e., assuming that

{1 is not large enough to compensate for the smallness of E=Ey+ Vle,(e P +eZ LN, (63)

L/A~1 cm/30 m=3x10 %) the especially simple and

time-ind dent It , - RN

ime-independent results emerge H=Ho— \al(Bug)(e 2N — ez LNy, (64)
E=E®, H=H®Y, (55)

Furthermore, the amplitude is given as

valid to O(L/\)°. Finally, it is useful to remind ourselves

that anE field normal to the interface does not couple to the &= EO(A*_A”‘/:’ (65
sg mode, and will not result in finite amplitudes. . where
VI. SECOND EXPERIMENT, CONDUCTING BOUNDARIES A+E(§3 /a/,8+ 1) (66)

As we shall see, subject to a plausible assumption, the R
difference between linear response and hydrodynamic theory A_=({3\JalB—1)e
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E
E
Ferrofluid Ferrofiuid
z z
FIG. 1. The electric field foL>\. FIG. 3. The electric field foL.<<\.
cf. Figs. 1 and 2. VIl. SUMMARY

As discussed, the value of the surface Onsager coefficient

. 4 - Studying macroscopic electrodynamics for low frequen-
{3 is unfortunately(as ye} unknown. However, since it has ying P y d

been chosen as a dimensionless quantity. it does not haCieS and small fields, such that linear constitutive relations
anv cause to strav far from unit —qunlesé/’there is a hidde\é%d terms linear in the frequency suffice, discrepancies were

y y far frof Y- ; . found between linear response and the hydrodynamic theory.
symmetry reason forcing it to vanish or diverge ConSIStentIyCareful deliberation shows that the routine neglect, in the

- . . - . . D
Ior any EF\}\./'ltLItEIS 'aneﬁ]q |nf|n||§e, g}f{_‘l DEf%g) fo(;ctisH . linear response theory, of cross constitutive terms and spatial
0 vanish. With Eq(64), this implies =4, ahdthere Is dispersions to be the reason for this. In particular, a station-

no d|ffere_nce from the linear response r_esu_lts_ for the eTXpe”élry, dissipative field configuration, in which both the electric
mental circumstances under consideratidris is a crucial

diff p th Its of Sec. V. where the di and the magnetic field participate, is shown to be erroneously
iterence from he results of sec. V, where the discrepancy, o q oyt by this omission. In ferrofluids, this field configu-
persists irrespective of the value of.)

if he other hand ins fini isely if ration should be a dominating effect. Two experiments, with
» on the other handgs remains finite, more precisely it nqaries of different electromagnetic behaviors, are sug-
gested that should verify these results.

{3LIN<], (67)
APPENDIX
the above results may be expanded to become
We start with
E fal \/E - M - M
—=-—\/7 =cV X =—cVX
E.-2x Vg (68 D=cVxH", B cVXEY, (A1)
and the relaxation equation for the magnetization,
HO_H_Z_L/2 [£25) .
= Y \/BMO’ M=—(M—=Mgj/ 7y, (A2)

h
The E field vanishes in the limit/\—0 because the con- where

stant term~(L/\)° in £, exactly cancel€E, in Eq. (19). M=B_HM (A3)
With L=1 cm andA=30 m, the quotient./\ is indeed
small in the envisioned experiment, so we may conclude thatlectric dissipation, from the dynamics of a polarization, is

E<E,, (see Figs. 3 and)4 neglected,
\ H .
Y Ferrofluid
\ Ferrofluid

z ~N |°

FIG. 2. The magnetic field fob>\. FIG. 4. The magnetic field fob <<A.
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EM=E=D. (A4)

The equilibrium value of the magnetization is

Meg=xmH=(xm/®)B, xu=p—1. (A5)

D=cV X 8H— (myxm/1)B, (A9)

or

D=cV X H—(myxm/z)CV XE. (A10)

Taking 6 to denote the deviation from the respective static

value, we rewrite Eq(A2) as
— iy M= — M+ (xm/w) 5B, (A6)
or
M~ (1+iwry)(xm/®)SB. (A7)
Inserting this into
D=cV X (8B— M), (A8)

we have

Identifying the second term as acV X E, we obtain

a=ryxm/p=mm(n—1)u. (Al1)

Finally, we switch from the Heaviside-Lorentz units to the
MKSA units by multiplying both the denominator and nu-

merator with ug, while noticing that; in the MKSA is
Mo,

a=myxwm /= rm(n— po) . (A12)

The formula forB may be obtained analogously.
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