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Electromagnetic fields in ferrofluids

Mario Liu*
Institut für Theoretische Physik, Universita¨t Hannover, 30167 Hannover, Germany

~Received 29 September 1998!

The behavior of electromagnetic fields in dielectric ferrofluids is considered in detail by employing two
independent methods: linear response and hydrodynamic Maxwell equations. The respective results differ in an
experimentally relevant way. As the calculation takes place where the ranges of validity of both theories
overlap, weak fields and small frequencies, this discrepancy calls for an understanding. The conclusion drawn
here is that the linear response theory is the culprit, and its results are faulty. This paper contains especially the
algebraic details that were left out of a previous, brief publication@Mario Liu, Phys. Rev. Lett.,80, 2937
~1998!#. @S1063-651X~99!07603-5#

PACS number~s!: 75.50.Mm, 41.20.2q
riv

en
re

ot
el

w
th
n
n
t
n

a
r
e
k
th
c
ld
n
a
s

ies
er
n
o
s

ld
m
or
e
en

ary
they
is-

his
c-
rof-
rd

o
ear
, a
ted

ec.
late
sec-
so-

ly

so to

f
or-
to
by

n

di-
I. INTRODUCTION

Linear response theory applies impeccable logic to de
the properties of the permittivitiese andm. Without explicit
reference, atomic scale distribution of charges and curr
— both present and in the past — are accounted for. The
parts ofe andm are even functions of the frequencyv; they
express the reactive response, such as the oscillatory m
of the microscopic charges in the presence of a periodic fi
The imaginary parts are odd functions ofv; they param-
etrize dissipation and absorption@1#. There is no doubt that a
great deal of physics is captured by measuringe(v) and
m(v), and by calculating them for various systems. Ho
ever, the diagonal structure of the constitutive relations,
fact that the electric field plays no role in the magnetic co
stitutive relation, and vice versa, the magnetic field does
partake in the electric one, is really an assumption tha
hard to justify on general grounds, and as we shall see, is
always correct even in isotropic media.

When questioning whether these constitutive relations
~within their linear range of validity! general enough to cove
all conceivable circumstances and any materials of inter
one must employ an independent macroscopic framewor
at least equal rigor and standing. This is provided by
thermodynamic and hydrodynamic theory. Presuming lo
equilibrium, the hydrodynamic theory is valid for any fie
strength but confined to low frequencies. The linear respo
theory, on the other hand, is valid for arbitrary frequencies
long as the field is sufficiently weak. A comparison mu
therefore take place in the double limit of low frequenc
and weak fields, where both ranges of validity overlap. H
agreement in every detail must be expected, but is not fou
And, the discrepancy can be traced to the assumed diag
structure of the constitutive relations, which contradicts ba
thermodynamic and hydrodynamic considerations.

In linear response theory, if electric and magnetic fie
are static in a dielectric medium, they are also in equilibriu
and decoupled from each other. The hydrodynamic the
on the other hand, allows them to be both time independ
and dissipating — similar to a constant temperature gradi
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or a constant electric field in a conductor. These station
electric and magnetic fields are coupled and transverse;
start off from the boundary and extend over a certain d
tance into the bulk, defining a surface region. Although t
distance is frequently tiny, and very ignorable, it turns ma
roscopic in some magnetic systems such as dielectric fer
luids @2#, where it is around 30 m. Clearly, one is ha
pressed to find any bulk region here.

In what follows, in Sec. II, we shall first compare tw
ways to close the macroscopic Maxwell equations, via lin
response or the hydrodynamic theory. Then, in Sec. III
one-dimensional, static, and dissipative solution is presen
that is contained only in the hydrodynamic theory. In S
IV, the appropriate boundary conditions needed to calcu
the associated amplitudes are derived. In the last two
tions, two experiments are discussed in which this static
lution is important.

Although this paper is the long version of a previous
published short communication@3#, only part of the discus-
sion there is repeated here. So the reader is advised al
consult Ref.@3#.

All formulas in this paper are in the MKSA system o
units, for easy comparison to experiments. The original f
mulas@3# were in the Heaviside-Lorentz units. It is easy
go from one to the other system at any point in this paper
employing the following formulas, in which the fields i

MKSA are denoted with hats, such asÊ, Ĥ, etc.:

Ĥ5H/Amo, B̂5BAmo, ~1!

Ê5E/Aeo, D̂5DAeo, ~2!

%̂e5%eAeo, ĵ e5 j eAeo, ŝ5seo . ~3!

II. MAXWELL EQUATIONS

The macroscopic Maxwell equations of a stationary,
electric, magnetizable, and polarizable substance are

Ḋ5¹3HM, ¹–D50, ~4!

Ḃ52¹3EM, ¹–B50. ~5!
3669 ©1999 The American Physical Society
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As such, these four equations contain little useful inform
tion ~aside from general principles such as Lorentz cov
ance and charge conservation!. Their considerable predictive
power only comes into play when they are closed — f
quently by employing the linear response theory. Altern
tively, we may employ the hydrodynamic Maxwell theo
that was derived only recently by including electromagne
dissipation systematically@3,4#.

A. Linear response theory

The linear response theory starts from the diagonal c
stitutive relations

D5e~v!EM, B5m~v!HM. ~6!

Since we are only interested in the low frequency behav
we shall exclude, in the inverse permeabilities 1/e(v) and
1/m(v), terms higher than linear in the frequencyv. So, for
] t↔2 iv, we have, quite generally,

e~v!5
ē

12 ivbē/e0

, m~v!5
m̄

12 ivam̄/m0

. ~7!

The static permeabilities areē5e(v→0),m̄5m(v→0),
while a andb parametrize the imaginary parts ofe(v) and
m(v). All four parameters are real, positive, frequency
dependent, and chosen to coincide with the hydrodyna
ones below.

B. Hydrodynamic theory

The Maxwell equations~4! and ~5! remain, but the con-
stitutive relations are given as@3,4#

HM5H1HD, EM5E1ED, ~8!

where

H[]u/]B, E[]u/]D ~9!

are thermodynamic derivatives,u being the energy density
They contain only equilibrium information, and are functio
of all the thermodynamic variables such as temperature
pressure.

~Note an important step here: TakingD and B as the
variables, and the two temporal of the Maxwell equations
the associated equations of motion, the hydrodynamic the
distinguishes betweenE,H and EM,HM: The first are the
thermodynamic conjugate variables, the latter the respec

fluxes of Ḋ,Ḃ, defined solely by the Maxwell equations —
they are therefore given the superscriptM, and referred to as
the Maxwell fields below. Usually, this differentiation is n
made, leading necessarily to the caveat that the basic
modynamic form

du5H•dB1E•dD

is only valid for nondissipative systems@1#.!
Returning to the linear, weak field, limit, the thermod

namic, constitutive relations reduce to

H5B/m̄, E5D/ ē, ~10!
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where m̄,ē.0 depend on temperature and density, but
the frequency. The dissipative fieldsHD andED are~for the
simplest case!

HD52~a/m0!¹3E, ED5~b/e0!¹3H, ~11!

wherea,b.0 represent Onsager~or transport! coefficients,
similar to the viscosity or a diffusion coefficient.

If either a or b vanishes, the hydrodynamic theory
identical to the linear response theory: If~say! a50, then

HD50; thereforeḊ5¹3H, henceED5(b/e0)Ḋ, so EM

5D/ ē1(b/e0)Ḋ, or D/ ē5EM/(12 ivbē/e0), as in Eqs.
~6! and ~7!.

However, there are quite a number of systems in whicha
andb are both finite. Then the linear response and hydro
namic theory are not equivalent. The purpose of this pape
to work out the difference, and find an experimentally r
evant situation in which this difference is large.

Strictly speaking, the significance ofa and b have al-
ready been introduced above: They parametrize the im
nary parts of the permeabilities in the linear response the
and are transport coefficients in the hydrodynamic theo
However, it is frequently useful to have a more intuitiv
understanding: In a simple, relaxative, model,a and b are
closely related totM andtP , the relaxation time of magne
tization and polarization, respectively:

a5tM~m̄2m0!/m̄, b5tP~ ē2e0!/ ē. ~12!

~See the Appendix for a derivation of these formulas.!
Hydrodynamic theories are only valid for small freque

cies, and the one considered here is valid for

vtM!1, vtP!1. ~13!

@Aiming for an accuracy of, say 10%, the limit isvtM
'0.3, as the neglected terms are;(vtM)2, in the real part
of m.] In the notation of this paper, Eqs.~12! and~13! imply

bv!1, av!1. ~14!

Two also rather frequent combinations areēbv, and m̄av
which, depending on system properties, need not be s
compared to 1.

III. A DISSIPATIVE STATIC SOLUTION

The static solutions of the linear response theory are th
every student of physics is familiar with, from introducto
lectures in electromagnetism. Settingv→0 in Eqs.~7!, the
Maxwell equations~4! and~5! only contain solutions that are
either electric or magnetic, given, respectively, by

“3E50, “•~ ēE!50, ~15!

“3H50, “•~m̄B!50. ~16!

In one-dimensional geometries — of widthL — these are
simply constant fields. If the boundary conditions chan
with time slowly, oscillating with a frequency in the quas
static regime,c/v@L, the internal field will also oscillate
but remain constant in space.
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If either a or b vanishes, the hydrodynamic theory is,
we saw, identical to the linear response theory; if botha and

b are finite, it contains more structure. SettingḊ, Ḃ50 in
Eqs.~4! and ~5!, the set of equations to be solved are

¹3@H2~a/m0!¹3E#50, ¹•~m̄B!50, ~17!

¹3@E2~b/e0!¹3H#50, ¹•~ ēE!50. ~18!

These are satisfied by the one-dimensional, exponentia
lution, in which both the electric and magnetic field partic
pate,

E5E0x̂1 ~1/Ae0! @E1e~z2L !/l1E2e2z/l# x̂, ~19!

H5H0ŷ1Aa/bm0@E1e~z2L !/l2E2e2z/l# ŷ, ~20!

where

l5cAab. ~21!

Being essentially the relaxation time of magnetization a
polarization, cf. Eq.~12!, the coefficientsa and b vary
greatly, from b'10215 s for transparent dielectrics, toa
'1025 s for ferrofluids; while water, with a permanent m
lecular dipole moment, is in the middle range,b.1029 s. So
a water-based ferrofluid should have a colossall.33103

cm. Clearly, if we can identify situations in which the am
plitudes of the exponential decayE6Þ0, linear response
theory is proven wrong — for weak fields and linear cons
tutive relations.

The above calculation assumes a dielectric medium w
zero conductivity. This is of course an idealized concept
the conductivitys is never truly zero. In fact, strictly speak
ing, any system becomes conducting in the limitv→0, for
which case the above calculation needs to be generali
yielding the decay length

l25abc2/~11sb/e0!. ~22!

It remains unchanged from Eq.~21! if sb/e0!1, i.e., if the
relaxation timetP of the polarization is much smaller tha
the charge relaxation timee0 /s.

IV. BOUNDARY CONDITIONS

The boundary conditions of the linear response theory

DEt
M50, DHt

M50 ~23!

for the components tangential to the interface, and

DDn50, DBn50 ~24!

for the normal ones. They are obtained by integrating
Maxwell equations over an infinitesimally narrow slab acro
the boundary.~Notations, here and especially below:n̂ is the
interface normal;nA[Aleft2Aright ; and An and At are the
normal and perpendicular components ofA,An[A–n̂, with
n̂ pointing to the right, say alongẑ.)

Because the associated differential equations~17! and
~18! are an order higher in spatial derivative, the hydrod
o-
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namic Maxwell theory possesses more boundary conditio
~This comes in handy, of course, since the amplitudesE6

need definite values for any solution to be uniquely det
mined.! As in the case of the linear response, these bound
conditions are derived from the equations of motion the
selves.~Therefore, they should not be considered as indep
dent and additional information, which is the usual point
view in mathematics.!

There is a useful formalism for doing this, developed f
hydrodynamic theories of systems with spontaneously b
ken symmetries@5#. It yields boundary conditions that ar
rather general, valid where the hydrodynamic theory is. B
depend on the same input: conservation laws, broken s
metries, and irreversible thermodynamics. The microsco
information about the boundary is parametrized in surfa
Onsager coefficients, the magnitude of which is unkno
within the given frame. As any transport coefficient, th
need to be determined either experimentally, for a given p
of substances forming the interface, or in a microscopic c
culation employing a specific model. There are two types
boundary conditions: The first states the continuity of t
normal component of the fluxes, of those variables that
defined and independent on both sides of the interface, a
Eqs. ~23! and ~24!. The second type are Onsager relatio
given by the surface entropy productionRs , the expression
for which is extracted from the continuity of the total ener
flux ~which contains both the material and field contributio
@4#!.

We study two types of interfaces, vacuum-ferroflu
~VFI! and conductor-ferrofluid~CFI!. Both ‘‘vacuum’’ and
‘‘conductor’’ stand for an electromagnetically inert mediu
that is only weakly dissipative, witha andb so small thatl
is microscopic, andED, andHD are negligible for the given
frequency. It behaves like a vacuum if nonconducting, a
possesses bothE and H as independent variables. If it i
conducting,s/e0@v, only the magnetic field is retained a
an independent variable, with the electric one given byE
5¹3H/s. ~Since the conditions/e0@v can always be sat
isfied by lowering the frequency, the ‘‘conductor’’ may b
taken as the low frequency limit.! Finally, ‘‘ferrofluid’’
stands for any system~i! that is nonconducting~for the given
frequency!, ~ii ! is strongly polarizable and magnetizable, a
~iii ! in which bothED andHD are important. The boundar
conditions for the VFI are

nHt
M50, nEt

M50, ~25!

z1Ht
D57Ae0 /m0 Et

D3n̂. ~26!

Those for the CFI are

nEt
M50, ~27!

Ae0 /m0 EM5z2nH3n̂, ~28!

Ae0 /m0 E57z3HD3n̂; ~29!

in addition tonDn50 andnBn50.
Equations~25! and~27! belong to the first type of bound

ary conditions, and state the continuity of fluxes.@nHt
M

50 is not a generally valid boundary condition at the CFI,
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the corresponding variableD is not an independent one o
the conductor side. So instead we havenHt

M;EM, ED, cf.
Eq. ~30!.#

The rest are Onsager relations, with three dimension
coefficientsz1 ,z2 ,z3.0, and all quantities referring to th
ferrofluid. The upper sign holds if the ferrofluid is on th
right, the lower one does if it is on the left. Equation~26! is
derived by starting from the expression for the total ene
flux @4#,

Q5Tf1EM3HM2ED3HD1•••, ~30!

with f the entropy flux andT the temperature. Inserting~i!
nHt

M ,nEt
M50, and ~ii ! ED, HD50 on the vacuum side

we obtain

nQn5Tn f n1 f nnT7@HD
–„ED3n̂…#1•••, ~31!

wherenQn50 because of energy conservation. Identifyi
2Tn f n as the positive, singular entropy production of t
surfaceRs , the two termsHt

D and 7„Et
D3n̂… are shown to

be a thermodynamic force-flux pair which,~similar to f n and
nT giving rise to the Kapitza resistance,! are proportional to
each other. Isotropy of the interface then only allows
scalar Onsager coefficientz1 . The factorAe0 /m0 was in-
cluded to renderz1 dimensionless.

The two Onsager relations, Eqs.~28! and~29!, are derived
in a similar manner, the only difference being the lack
nHt

M50. The entropy productionRs[2Tn f n , therefore,
contains two terms instead of one,

2Tn f n5 f nnT1@EM3nH7E3HD#•n̂1••• ~32!

yielding two Onsager relations, Eqs.~28! and~29!. Note that
nH50 is retrieved from Eq.~28! if EM, a nonequilibrium
quantity in conductors, vanishes.~For the sake of simple
display, no cross coefficients have been included.!

V. FIRST EXPERIMENT, DIELECTRIC BOUNDARIES

A. Linear response prediction

Consider aẑ axis with three regions:z,0 is region 1, 0
,z,L is region 2, andz.L is region 3. Only region 2~with
a width say ofL51 cm! contains ferrofluid; regions 1 and
consist of a dielectric substance with negligible field dissi
tion for the given frequencies:HD,ED50. ~It is the
‘‘vacuum’’ in the above sense.! Applying tangential fields
' ẑ, with a finite frequencyv,

E3x̂5E1x̂5Eexx̂, H3ŷ5H1ŷ5Hexŷ, ~33!

we have in region 2, because of Eq.~23!,

EM5Eexx̂, Hx
M5Hexŷ. ~34!

All fields are uniform. The fieldD andB are, to linear order
in the frequency,

D/ ē5~11 ivbē/e0!Eexx̂, ~35!

B/m̄5~11 ivam̄/m0!Hexŷ. ~36!
ss

y

e

f

-

They can be measured in a small air gap~with its long di-
mension alongẑ) inside the ferrofluid — because the norm
component ofD andB are continuous, cf. Eq.~24!.

B. Hydrodynamic prediction

The hydrodynamic Maxwell equations contain solutio
~termed thesq modes@4#! that the linear response theor
does not possess. For the given geometry, they assum
form given in Eqs.~19! and ~20!.

It is useful to first understand a technical point: Althou
this solution remains valid for finite frequencies, as long
Lv/c!1, we may not treatE0 and H0 as strictly uniform
when calculatingED andHD via Eq. ~11! and Eqs.~19! and
~20!. This is becauseE0 andH0 contain terms;expiv(x/c
6t), and the spatial derivative in Eq.~11! leads to terms;v,

ie terms;Ḋ,Ḃ, which are relevant in the present context. T
include these terms, we rewriteHD52(a/m0)¹3E

5(a/m0)(Ḃ1¹3ED), or

HD5~a/m0!Ḃ1l2¹3¹3H. ~37!

Similarly,

ED5~b/e0!Ḋ1l2¹3¹3E. ~38!

Now, when calculating the terms;l2, we may indeed take
E0 and H0 as spatially constant, as the terms;v2 are of
higher than the considered order. The results are

ED5
b

e0
Ḋ x̂2

1

Ae0

@E1e~z2L !/l1E2e2z/l# x̂, ~39!

HD5
a

m0
Ḃŷ2A a

bm0
@E1e~z2L !/l2E2e2z/l# ŷ. ~40!

Together with Eqs.~19! and ~20!, the Maxwell fields are
given as

HM5@H01~a/m0!Ḃ# ŷ5Hexŷ, ~41!

EM5@E01~b/e0!Ḋ# x̂5Eexx̂. ~42!

We now calculateE6 by inserting Eqs.~39! and~40! into Eq.
~26!:

~z1a/Am0!Ḃ2~b/Ae0!Ḋ5A2E12A1E2 , ~43!

~z1a/Am0!Ḃ1~b/Ae0!Ḋ5A1E12A2E2 , ~44!

where

A1[~z1Aa/b11!, A2[~z1Aa/b21!e2L/l. ~45!

The resolved amplitudes are

E15
bḊ/Ae0

~A12A2!
1

z1aḂ/Am0

~A11A2!
, ~46!
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E25
bḊ/Ae0

~A12A2!
2

z1aḂ/Am0

~A11A2!
, ~47!

Combining the results of Eqs.~41! and~42! for E0 andH0
with that of Eqs.~46! and ~47! for E6 , we finally find the
expression for the field@Eqs.~19! and ~20!#.

If E6 were zero, the fields in region 2 would be

E5E0x̂5@Eex2~b/e0!Ḋ# x̂, ~48!

H5H0ŷ5@Hex2~a/m0!Ḃ# ŷ. ~49!

~Note the discontinuity;Ḋ,Ḃ, in the fieldsE and H —
though this is not usually apparent, as we only deal withEM

and HM in the linear response theory. Note also that th
two terms were erroneously omitted in Ref.@3#.! Taking the
respective second term as a small perturbation, cf. Eqs.~14!,
we may approximate

Ḋ5 ēĖ'ēĖex, ~50!

Ḃ5m̄Ḣ'm̄Ḣex ~51!

to obtain

D/ ē[E5~11 ivbē/e0!Eexx̂, ~52!

B/m̄[H5~11 ivam̄/m0!Hexŷ, ~53!

which agree with the linear response results@Eq. ~35! and
~36!#. The point is, of course, irrespective of the value ofz1 ,
thesq amplitudesE6 are always finite. And the results from
the linear response theory are not valid.

If l!L, we may setA250 and take the field contribu
tion ;E1 to be well separated from that;E2 . Close toz
50, only the term;E2 contributes,

E5FEex2
b

e0
Ḋ1

e2z/l

A1Ae0
S b

Ae0

Ḋ2
z1a

Am0

ḂD G x̂, ~54!

partly eliminating the discontinuities in the field of the line
response theory: Ifz50, the electric field is continuous, an
if z15`, the magnetic field is. So a more gradual change
the bulk values of Eqs.~48! and ~49! is achieved as a resu
of the sq modes.

For l@L and (z1Aa/b21)L/l!1, ~i.e., assuming tha
z1 is not large enough to compensate for the smallnes
L/l'1 cm/30 m5331024,) the especially simple and
time-independent results emerge,

E5Eexx̂, H5Hexŷ, ~55!

valid to O(L/l)0. Finally, it is useful to remind ourselve
that anE field normal to the interface does not couple to t
sq mode, and will not result in finite amplitudesE6 .

VI. SECOND EXPERIMENT, CONDUCTING BOUNDARIES

As we shall see, subject to a plausible assumption,
difference between linear response and hydrodynamic th
e

o

of

e
ry

is, with conducting walls, much more pronounced.

A. Linear response prediction

We retain the geometry of Sec. V, and again considerẑ
axis with the three regions. Region 2 still contains ferroflu
regions 1 and 3 now consists of a conducting substan
where HD,ED50 still holds. Applying tangential fields
along x̂, and ŷ, of vanishing frequencyv→0 ~though high
enough to ensure that the ferrofluid remains dielectric!, we
keep

E3x̂5E1x̂5Eexx̂, ~56!

while the magnetic field acquires a constant gradient,

H15@HL2sEexz# ŷ, ~57!

H35@HR2sEex~z2L !# ŷ. ~58!

~With Eex5¹3H1,3/s, the electric field is clearly depen
dent.! The boundary conditions@Eqs.~23!# render the fields
within region 2 constant and the same as outside:

E25Eex, H25HL5HR. ~59!

B. Hydrodynamic prediction

The linear response solution holds in regions 1 and 3;
in region 2, the fields are predicted to behave differently. T
boundary conditions@Eqs.~27! and ~28!# yield

E05Eexx̂, ~60!

H05 1
2 ~HL2HR!. ~61!

More precisely, the symmetry of Eq.~61! only expresses the
fact that essentially the same boundary condition is valid
each sides of region 2. The actual value ofHL2HR depends
on z2 , i.e., HR is not independent ofHL.

The third boundary condition@Eq. ~29!# determines thesq
amplitudesE6 . Applying it twice, for both boundaries, an
employing formulas~39!–~42!, we first find

E5E25E1 , ~62!

leading to anE field symmetric atz5L/2, and an associated
antisymmetric H field:

E5E01A1/e0E~e2z/l1e~z2L !/l!x̂, ~63!

H5H02Aa/~bm0!E~e2z/l2e~z2L !/l!ŷ. ~64!

Furthermore, the amplitude is given as

E5E0~Â22Â1!Ae0, ~65!

where

Â1[~z3Aa/b11!, ~66!

Â2[~z3Aa/b21!e2L/l,
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cf. Figs. 1 and 2.
As discussed, the value of the surface Onsager coeffic

z3 is unfortunately~as yet! unknown. However, since it ha
been chosen as a dimensionless quantity, it does not
any cause to stray far from unity — unless there is a hid
symmetry reason forcing it to vanish or diverge consisten
for any CFI. If it is indeed infinite, then Eq.~29! forcesHD

to vanish. With Eq.~64!, this impliesE;HD50, and there is
no difference from the linear response results for the exp
mental circumstances under consideration.~This is a crucial
difference from the results of Sec. V, where the discrepa
persists irrespective of the value ofz1 .)

If, on the other hand,z3 remains finite, more precisely i

z3L/l!1, ~67!

the above results may be expanded to become

E

Eex
5

z3L

2l
Aa

b
, ~68!

H02H

Eex
5

z2L/2

l
Aae0

bm0
,

The E field vanishes in the limitL/l→0 because the con
stant term;(L/l)0 in E6 exactly cancelsE0 in Eq. ~19!.
With L51 cm andl530 m, the quotientL/l is indeed
small in the envisioned experiment, so we may conclude
E!Eex ~see Figs. 3 and 4!.

FIG. 1. The electric field forL@l.

FIG. 2. The magnetic field forL@l.
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VII. SUMMARY

Studying macroscopic electrodynamics for low freque
cies and small fields, such that linear constitutive relatio
and terms linear in the frequency suffice, discrepancies w
found between linear response and the hydrodynamic the
Careful deliberation shows that the routine neglect, in
linear response theory, of cross constitutive terms and sp
dispersions to be the reason for this. In particular, a stat
ary, dissipative field configuration, in which both the elect
and the magnetic field participate, is shown to be erroneou
ruled out by this omission. In ferrofluids, this field config
ration should be a dominating effect. Two experiments, w
boundaries of different electromagnetic behaviors, are s
gested that should verify these results.

APPENDIX

We start with

Ḋ5c¹3HM, Ḃ52c¹3EM, ~A1!

and the relaxation equation for the magnetization,

Ṁ52~M2Meq!/tM , ~A2!

where

M5B2HM. ~A3!

Electric dissipation, from the dynamics of a polarization,
neglected,

FIG. 3. The electric field forL!l.

FIG. 4. The magnetic field forL!l.
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EM5E5D. ~A4!

The equilibrium value of the magnetization is

Meq5xMH5~xM /m̄ !B, xM5m̄21. ~A5!

Taking d to denote the deviation from the respective sta
value, we rewrite Eq.~A2! as

2 ivtMdM52dM1~xM /m̄ !dB, ~A6!

or

dM'~11 ivtM !~xM /m̄ !dB. ~A7!

Inserting this into

Ḋ5c¹3~dB2dM !, ~A8!

we have
-
.

c

Ḋ5c¹3dH2~tMxM /m̄ !Ḃ, ~A9!

or

Ḋ5c¹3dH2~tMxM /m̄ !c¹3E. ~A10!

Identifying the second term as2ac¹3E, we obtain

a5tMxM /m̄5tM~m̄21!/m̄. ~A11!

Finally, we switch from the Heaviside-Lorentz units to th
MKSA units by multiplying both the denominator and nu
merator with m0 , while noticing thatm̄ in the MKSA is
m̄m0 ,

a5tMxM /m̄5tM~m̄2m0!/m̄. ~A12!

The formula forb may be obtained analogously.
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