
PHYSICAL REVIEW E MARCH 1999VOLUME 59, NUMBER 3
Effect of configuration interaction on shift widths and intensity redistribution
of transition arrays
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Opacity calculations are generally restricted to single configurations approximation with no configuration
interaction~CI!. The theory for the inclusion of the CI effect on intensity distribution on transition arrays has
recently been developed and added to the supertransition array model. However, in an experiment performed
recently at NRL, presented in this work, it became apparent that the global shift and width of transition arrays,
due to the CI effect, are significant and must be included in the calculations. This feature was also noticed in
an LLNL experiment published recently on iron plasma. In these cases the dominant arrays originate from
Dn50 transitions where this effect is particularly significant. In this work we extend the theory, bypassing the
impractical need for matrix diagonalizations, and derive analytic expressions for the CI-corrected array mo-
ments including CI shifts, widths, and the adjusted intensity distribution. Examples are presented comparing
the theoretical results with detailed calculations and with the experiments.@S1063-651X~99!04303-2#

PACS number~s!: 52.25.Nr, 31.15.Bs, 52.25.Vy, 32.90.1a
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I. INTRODUCTION

The supertransition array~STA! @1–7# and SCROLL@8,
9# models for the interpretation of local thermodynam
equilibrium ~LTE! and non-LTE plasma spectra, respe
tively, are both based on a relativisticj -j scheme with no
configuration interaction~CI!. These models constructs th
entire spectrum by a set of Gaussians each describing a
pertransition array and reveals the spectral details by s
ting STAs in steps until convergence. The result is the
tailed configuration accounting~DCA! spectrum where the
fundamental array is a unresolved transition array@10#
~UTA! between a pair of ordinary relativistic configuration

The effect of CI on unresolved transition arrays was fi
investigated by Baucheet al. @10# indicating small second
order energy shifts, and a possibly large changes in the
tensity distribution. In a previous work@4#, the dominant
effect on supertransition arrays~STAs!, i.e., the redistribu-
tion of the intensities of STAs, was added to the mod
indirectly by-passing the impractical need for matrix diag
nalizations. However, the CI energy level shifts, manifes
as a global shift and in an increase of the variance of ST
were neglected. These effects become important when
electrostatic interaction is strong enough, in particular
Dn50 transitions. In this case CI mixing is large due to t
overlap of the two active orbitalsja5nal a j a and jb
5nbl b j b , giving rise to a large Slater integralG1( ja ,jb).
The effect of CI shifts and widths is striking in two rece
experiments whereDn50 transitions are the most dominan
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The first experiment was performed at Lawrence Liverm
National Laboratory~LLNL ! using iron target at low tem-
perature and density@11#. The second experiment, present
in this work, was performed at the Naval Research Labo
tory ~NRL! on tungsten-doped plastic targets. The main p
pose of this work, however, is to extend the CI theory@4#
and derive analytic expressions for the CI-corrected U
and STA moments, including CI shifts, widths and adjus
intensity distribution. As in our previous work@4#, we ac-
count for the CI dominant contribution, i.e., CI amongnl j
configurations belonging to the same parentnl configuration.

Coupled equations for the CI shifted average energies
intensities of STAs and their solutions are derived. In ad
tion analytic expressions for the CI-corrected variances
STAs are obtained. Examples are presented comparing
theoretical results with detailed calculations and with the
periments.

In the next section we define the relevant quantities.
Sec. III we present the analytic expressions for the
corrected widths, shifts, and intensities of UTAs and STA
The detailed derivation of these expressions is given in
appendixes. In Sec. IV we test the model assumptions
demonstrate the importance of these order effects with a
theoretical examples. Section V focuses on comparison w
the experiments. In particular we present and discuss here
NRL tungsten experiment. Summary and discussion
given in Sec. VI.

II. DEFINITIONS AND NOTATIONS

A. The nlj and nl UTAs

In the development that follows it will be necessary
compare quantities related to ‘‘relativistic’’nl j configura-
tions, constructed fromj s[nsl sj s orbitals, with the corre-
sponding ‘‘nonrelativistic’’ nl configurations, constructed

.O.

n,
3512 ©1999 The American Physical Society
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PRE 59 3513EFFECT OF CONFIGURATION INTERACTION ON . . .
from l s[nsl s orbitals, where the indexs distinguishes dif-
ferent shells. For simplicity we use the short notations
[l s[nsl s ands6[ j s[nsl sj s for j s5 l s6

1
2 , respectively.

We denotenl andnl j configurations byA5)sl s
qs , and

c5) js
j
s

qjs , respectively, where theq8s are the correspondin

shell occupation numbers. Anl UTA -Aab is a transition
array between two nonrelativistic configurations,A→A8

5)sl s

qs8 connected by the orbital transitiona→b, i.e., qs8

5qs2dsa1dsb . Similarly, a nl j UTA ~termed SOSA
@10b#! is a transition array between two relativisticnl j con-
figurationsc→c8 connected by the orbital transitionja→ jb
and is denoted bycj a j b.

The nth moment of anl UTA is defined by@10#

m~n![ (
i PA, i 8PA8

S̄ii 8« i i 8
n , ~1!

where « i i 8 is the transition energy andS̄ii 85udii 8u
2 is the

corresponding normalized intensity, given in terms of t
transition matrix elementsdii 8 ~normalized!. The statesi and
i 8 diagonalize the Hamiltonian withinA and A8, respec-
tively, i.e., « i i 85Hi 8 i 82Hii .

It was shown@10# thatm (n) is a matrix trace and is invari
ant in any coupling scheme. For example,

m~1!5 (
kPA

~dAA8HA8A8dA8A!kk2 (
k8PA8

~dA8AHAAdAA8!k8k8

[ (
kPA, k8 l 8PA8

dkk8Hk8 l 8dl 8k2 (
k8PA8, k,l PA

dk8kHkldlk8

~2!

reduces to Eq.~1! when using the diagonalized states of t
Hamiltonian withinA andA8 separately.

In the j -j schemek,k8 are j -j diagonalized states of th
configurationscPA and c8PA8, respectively, but not ofA
andA8. In this case nondiagonal matrix elements connect
states of everycPA ~i.e., CI! and separately for everyc8
PA8 must be included in Eq.~2!.

Ignoring CI the transition energies areEkk85Hk8k82Hkk
and

mno CI
~n! [ (

cPA, c8PA8
(

kPc, k8Pc8
w̄kk8~Ekk8!

n, ~3!

wherew̄kk8 is the normalized intensity without CI. Hereafte
we use the notations« and E for transition energies~and S
andw for intensities! with and without CI, respectively.

B. J-transition arrays „JTAs…

Consider thenl UTA - A→A8[Aab. Eachnl shell in
bothA andA8 containingq electrons is in fact a union of al
nl j subshells written as

nlq5ø $q21q15q%~nl
2

q2 nl
1

q1!. ~4!

Of course, the subshells become degenerate in the non
tivistic limit. Ignoring CI, the nl UTA Aab can be con-
e

g

la-

structed from all the includednl j UTAs. Depending on the
number of partitions$q21q15q% for all nlPA, the num-
ber of nl j UTAs c→c8, contained inA→A8 may be very
large. However, the mean energies of thesenl j UTAs natu-
rally cluster into three distinct arrays characterized by
three suborbital transitionsja→ jb

a2→b2 , a1→b1 , and H a1→b2 for l b, la,

a2→b1 for l a, l b .
~5!

The fourth possibility is eliminated by selection rules. F
an active orbital withl 50 the selection rules yield of cours
only two arrays. Each of these arrays, calledJ-transition ar-
rays ~JTAs!, is denoted byAj a j b[øcPAcj a j b and includes
manynl j UTAs with nearly the same mean energy.

When CI among allcPA and c8PA8 is gradually
switched on, each transition line can still be attributed to o
of the three JTAs and the JTA three-array structure rema
Only the JTA moments are changed. When the electrost
interaction is very strong compared to the spin-orbit inter
tion, the three JTAs completely intermix, forming a sing
structure. However, as we shall see, a significant effect
the spectral shift and width of the entireA→A8 array may
still be observed. The same features hold for extended J
defined for STAs below. In this work we evaluate CI effe
on the moments of JTAs~for UTAs! and ofextendedJTAs
~for STAs!.

C. J-transition arrays of STAs

For convenience we give here briefly the definitions of t
required concepts of the STA model.

1. Supershells and superconfigurations

A supershell is a union of adjacent ordinary shells.
superconfiguration is defined on a given supershell struc
by assigning an occupation number to each supershell. T
occupation numbers are distributed among the ordin
shells of the corresponding supershell in all possible wa
giving rise to many ordinary configurations.

2. Supertransition arrays

A supertransition array is the bulk of all the transitio
lines, between two superconfigurations connected by a si
electron jump. These definitions apply to bothnl j shells and
nl shells. We denote a generalnl j superconfiguration byJ
and anl j STA by eitherJ→J8 whereJ and J8 are the
initial and final nl j superconfigurations, or byJ j a j b where
ja→ jb is the specific electron jump. In this caseJ8 contains
all the nl j configurationc8 obtained from allcPJ by this
electron jump. Anl j STA is thus a collection ofnl j UTAs:
J j a j b[øcPJcj a j b. Its moments are routinely calculated
both the STA and SCROLL models using partition functi
algebra@1,7#. Similarly a nl STA denoted byVab is the
transition array between twonl superconfigurationsV
→V8 connected by thenl orbital jumpa→b.

3. ExtendedJTAs

As for Aab above, anl STA Vab ~or V→V8) consists of
three ‘‘extended’’ JTAsV j a j b for the threenl j -orbital tran-
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sitions of Eq.~5!. V represents anl superconfiguration con
structed fromnl supershells. When CI is ignored anl super-
shell can be viewed as anl j supershell where, for eachnl,
bothnl2 andnl1 are included. The distribution of the occu
pation numberQ, of a nl supershell, among all its inne
shells, in all possible ways, automatically includes all t
partitions of Eq.~4! for each of the includednl shells. The
‘‘extended’’ JTAsV j a j b can therefore be viewed as a spec
cases of anl j STA. The only difference betweenV j a j b and
ordinarynl j STA J j a j b is that inV j a j b both nl2nl1 must
be included in the samenl j supershell. The JTAAj a j b

[øcPAcj a j b defined above is actually an example of su
nl j STA, where eachnl shell is considered as anl j super-
shell (nl2nl1). In the next section we will first discuss i
detail JTAs of thenl UTA A→A8. The results for extended
JTAs will follow.

III. THE CI CORRECTION TO THE JTA SPECTRUM

A. UTA moments

1. The variance of the nl UTA Aab

The variance ofAab is defined by

@D2~Aab!#CI5 (
i PA, i 8PA8

S̄ii 8« i i 8
2

2~«A
ab!2, ~6!

where

S̄ii 8[Sii 8 /SA
ab , SA

ab5 (
i PA, i 8PA8

Sii 8 , ~7!

and

«A
ab5 (

i PA, i 8PA8
S̄ii 8« i i 8 . ~8!

The index CI in Eq.~6! indicates that when working inj -j
basis, CI among allcPA andc8PA8 is included.

It is shown in Appendix A that assuming a single set
radial orbitals~generated from the same potential! for all the
states of

FA5S )
s¹a,b

l s
qsD l a

qal b
qb→A85S )

s¹a,b
l s

qsD l a
qa21

l b
qb11G ,

~9!

the results of Baucheet al. @10a# can be written as

@D2~Aab!#CI5DSO
2 ~Aab!1DES

2 ~Aab!, ~10!

where

DSO
2 ~Aab!5

1

4
$ l a~ l a11!za

21 l b~ l b11!zb
22@ l a~ l a11!

1 l b~ l b11!22#zazb% ~11!

is the spin orbit contribution, and the electrostatic contrib
tion is
l

f

-

DES
2 ~Aab!5(

s
~qs2dsa!~gs2qs2dsb!s2~s!, ~12!

s2~s!5
D2~l sl a→l sl b!

~gs212dsa2dsb!
, ~13!

wheregs54l s12 andD2(l sl a→l sl b) are combinations
of radial Slater integrals given explicitly in Ref.@10a#.

2. The variance of nlj UTA

For thenl j UTA cj a j b the variance is defined by

D2~cj a j b!5 (
kPc, k8Pc8

w̄kk8Ekk8
2

2~Ec
j a j b!2, ~14!

w̄k,k8[
wk,k8

wc
j a j b

, ~15!

wc
j a j b5 (

kPc, k8Pc8
wkk8 , ~16!

Ec
j a j b5 (

kPc, k8Pc8
w̄kk8Ekk8 , ~17!

and the corresponding results of Baucheet al. @10b# for

Fc5S)
s

j s
qsD ja

qajb
qb→c85S)

s
j s
qsD ja

qa21jb
qb11G ~18!

can be written as

D2~cj a j b!5(
s

~qjs
2d jsja

!~gj s
2qjs

2d jsjb
!s2~ j s! ~19!

wheregj s
52 j s11 and

s2~ j s!5
D2~ j sja→ j sjb!

~gj s
212d jsja

2d jsjb
!
. ~20!

D2( j sja→ j sjb) are combination of relativistic radial Slate
integrals@10~b!, 5#.

B. The CI effect on JTA widths

1. Expressing an average in terms of partial averages

We will use the following averaging rule. LetB be a set
of elementsxi and let b be a subset ofB. The weighted
averages and variances ofB andb, with the weightf i for xi ,
are

XB[
1

f B
(
i PB

f ixi , f B[(
i PB

f i , ~21!

Xb[
1

f b
(
i Pb

f ixi , f b[(
i Pb

f i , ~22!

DB
2[

1

f B
(
i PB

f i~xi2XB!2, ~23!
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Db
2[

1

f b
(
i Pb

f i~xi2Xb!2. ~24!

It is straightforward to show@5# that if the subsetsb,B do
not overlap and coverB, then

DB
25D1B

2 1D2B
2 , ~25!

whereD1B
2 is the contribution of the centers of the vario

subsetsb to the variance ofB, i.e.,

D1B
2 5DB

2[
1

f B
(
bPB

f b~Xb2XB!2 ~26!

andD2B
2 is the contribution of the variancesDb

2 to the vari-
ance ofB:

D2B
2 [

1

f B
(
bPB

f bDb
2 . ~27!

2. TheJTA moments with noCI

Ignoring CI and assuming that the states of allcPA and
c8PA8 are obtained from a single set of radial orbitals w
can write the moments ofAab in terms of those of the vari
ous JTAsAj a j b and subarrayscj a j b.

Intensity:

wA
ab5(

ja jb
wA

j a j b , ~28!

wA
j a j b5 (

cPA
wc

j a j b . ~29!

Average energy:

EA
ab5(

ja jb
w̄A

j a j b EA
j a j b , ~30!

where

w̄A
j a j b[

wA
j a j b

wA
ab

, ~31!

EA
j a j b5 (

cPA
w̄c

j a j bEc
j a j b , ~32!

and

w̄c
j a j b5

wc
j a j b

wA
j a j b

. ~33!

Variance: using the averaging rule of Eq.~25! on the three
JTAs Aj a j b,Aab as subsets ofAab we obtain

@D2~Aab!#no CI5@D1
2~Aab!#no CI1@D2

2~Aab!#no CI,
~34!

where
@D1
2~Aab!#no CI5(

ja jb
w̄A

j a j b~EA
j a j b!22~EA

ab!2 ~35!

is the contribution of the JTA centers and

@D2
2~Aab!#no CI5(

ja jb
w̄A

j a j bD2~Aj a j b! ~36!

is the average of the JTA variances. Using the averaging
of Eq. ~25!, now for the subsetscj a j b,Aj a j b, the JTA vari-
ance has again two contributions arising from thenl j UTA
centers and variances:

D2~Aj a j b!5D1
2~Aj a j b!1D2

2~Aj a j b!, ~37!

D1
2~Aj a j b!5 (

cPA
w̄c

j a j b~Ec
j a j b!22~EA

j a j b!2, ~38!

D2
2~Aj a j b![ (

cPA
w̄c

j a j bD2~cj a j b!. ~39!

3. The correspondence betweenJTA and nl UTAs variances

It is shown in Appendix B that the JTA varianc
D2(Aj a j b) can be expressed in terms of the occupation nu
bers of the parentnl configurationA as

D2~Aj a j b!5(
s

~qs2dsa!~gs2qs2dsb!Ps
j a j b , ~40!

wherePs
j a j b is comprised of two contributions

Ps
j a j b5P1,s

j a j b1P2,s
j a j b ~41!

originating from the respective terms of Eq.~37!. The ex-
plicit expressions forP1,s

j a j b ,P2,s
j a j b , andPs

j a j b of Eq. ~41! are

given in Appendix B in terms of the quantitiesw̄A
j a j b of Eq.

~B11!, Do
j a j b , D j s

j a j b of Eq. ~B12!, and s( j s) of Eq. ~20!.

These are ‘‘orbital quantities’’ that are common to all thenl j
UTAs cj a j bPAab ~and in fact, for STAs, to allcj a j b

PVab). They originate from the radial parts of the matr
elements of the Hamiltonian and of the radiative transit
operator and thus depend on the potential used. Since in
models we use a single potential for entire arrays they
simply constant numbers, even when we proceed to ST
These orbital quantities do not depend on occupation n
bers and play no role in the derivation that follows. Sin
their explicit expressions, are rather complex and lengt
and were already published in detail@10,4#, we will not re-
peat them here.

From Eqs.~40! and ~36! we finally obtain

@D2
2~Aab!#no CI[(

ja jb
w̄A

j a j bD2~Aj a j b!

5(
s

~qs2dsa!~gs2qs2dsb!P̄s
ab ~42!

where
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P̄s
ab[(

ja jb
w̄A

j a j b Ps
j a j b . ~43!

The striking point of Eq.~42! that ignores CI, is that it has
the same occupation number dependence, of thenl parent
configuration, as inDES

2 (Aab) of Eq. ~12! that inherently
includes CI. Therefore, in order to account for the CI effe
on JTA widths, to fitDES

2 (Aab), we make the substitution

Ps
j a j b→s2~s!, ~44!

i.e., in Eq.~40! we replacePs
j a j b by s2(s).

As we shall see we can improve our results by the
placement

Ps
j a j b→xj a j b

s2~s!, ~45!

wherexj a j b
are arbitrary weights obeying

(
ja jb

w̄A
j a j bxj a j b

51. ~46!

It is immediately seen that this replacement is equivalen
the replacement

P̄s
ab→s2~s! ~47!

in Eq. ~42! leading to

@D2
2~Aab!#no CI

modified5DES
2 ~Aab!, ~48!

where @D2
2(Aab)#no CI

modified is the expression obtained from
@D2

2(Aab)#no CI after the replacement of Eq.~45! in Eq. ~40!.
Equation ~48! is important from the practical point o

view since by making the constants replacements at the
stage of the calculation we can proceed with thej -j calcula-
tion ignoring CI and the result will now reconstruct the C
corrected variance. As we shall see, this is particularly
portant for STAs where the partition function algebra@7#
yields the same working formulas for the STA moments,
terms of the new set of constants. The explicit substitut
that imposes the replacement~42! is shown in Appendix C.

In order to account for the entire CI effect, included in E
~10!, it is required to modify@D1

2(Aab)#no CI of Eq. ~34! as
well such that

@D1
2~Aab!#no CI

modified5DSO
2 ~Aab!. ~49!

This leads to

@D2~Aab!#no CI
modified[@D1

2~Aab!#no CI
modified1@D2

2~Aab!#no CI
modified

~50!

5@D2~Aab!#CI . ~51!

Indeed, we have found that

@D1
2~Aab!#no CI'@D1

2~Aab!#CI'DSO
2 ~Aab![D1

2 , ~52!

i.e., the electrostatic interaction~with and without CI! affects
the centers ofj -j UTAs but not their contribution to the
variance that is dominated by the spin orbit splitting. Th
t

-

o

st

-

n

.

approximation was validated by comparison with detai
calculations and will be used as well later in the determi
tion of JTA shifts and intensity redistribution.

Although the substitutions~45! and ~49! are approxima-
tions that reproduce the exact CI effect on the total varian
they do not guarantee the accuracy of the individual J
variances. As shown later inaccuracies in these internal
tails become noticeable only when approaching thej -j limit
where the CI effect becomes negligible. In this case we n
to apply interpolation that imposes the proper limit. Th
point will be discussed further later in the results section

For the weightsxj a j b
in Eq. ~45! we have found that as

suming equal weights, i.e.,xj a j b
51 is quite satisfactory. A

little improvement is achieved using the approximation th
the ratios among the JTAs variances are not affected by
i.e.,

xj a j b
5

w̄A
j a j b@D2~Aj a j b!#no CI

(
ja8 jb8

w̄
A

j a8 j b8 @D2~Aj a8 j b8 !#no CI

. ~53!

C. The CI correction to the JTA energy shifts and intensities

In addition to the broadening of JTAs, the CI affects JT
by global shifts and intensity redistribution. These effects
coupled, yielding a total shiftdEA

ab to the average transition
energy ofAab

«A
ab5EA

ab1dEA
ab . ~54!

This shift is connected to the CI corrected JTA intensit
S̄A

j a j b ~normalized! and shiftsdEA
j a j b defined by

«A
j a j b[EA

j a j b1dEA
j a j b , ~55!

whereEA
j a j b is the JTA average energy, of Eqs.~32! and Eq.

~B13!, in the absence of CI. The expression for the total s
dEA

ab was obtained analytically@4# as well, i.e.,

dEA
ab5H qa211dql a

,0

4l a11
2

qb

4l b11
J Gab, ~56!

whereGab is an ‘‘orbital quantity’’ given explicitly in Ref.
@4# as a combination of the relativistic Slater integra
Fk( jajb),G1( jajb).

The equation

dEA
ab5(

ja jb
~S̄A

j a j b«A
j a j b2w̄A

j a j bEA
j a j b! ~57!

by itself is still insufficient to solve fordEA
j a j b andS̄A

j a j b . An
additional relation can be obtained from the contribution
the JTA global shifts to the total variance:

@D1
2~Aab!#CI[(

ja jb
S̄A

j a j b~«A
j a j b!22~«A

ab!2. ~58!

For this purpose we use the approximation of Eq.~52! and
substitute in Eq.~58!
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@D1
2~Aab!#CI→D1

2[@D1
2~Aab!#no CI ~59!

calculated directly from Eq.~38!. This choice accounts fo
the relativistic wave functions that are used in our model
not in the derivation of Eq.~11!.

The two coupled equations for the CI corrected JTA

tensitiesS̄A
j a j b and the shiftsdEA

j a j b are now

(
ja jb

S̄A
j a j b~EA

j a j b1dEA
j a j b!5«A

ab , ~60!

D1
25(

ja jb
S̄A

j a j b~EA
j a j b1dEA

j a j b!22~«A
ab!2. ~61!

Taking only the two significant JTAs@4# 22 and11 @for
s orbitals (l 50) there are only two arrays anyway# indexed
by 1 and 2, respectively, and assumingdE152dE2[dE

and S̄11S̄251, we can write Eqs.~60! and ~61! as

S̄1~E112dE2E2!1E22dE5«A
ab , ~62!

D1
25S̄1~E11dE!21~12S̄1!~E22dE!22~«A

ab!2.
~63!

The solution of these two equations is

S̄15
«A

ab2E21dE

E112dE2E2
~64!

and

dE52
1

2
~E12E2!6

1

2
Q,

Q5A~E11E2!214D1
214«A

ab@«A
ab2~E11E2!#. ~65!

The denominator in Eq.~64! never vanishes sinceE22E1
52dE means that the two arrays centers coincide and lea
a zero variance.

It is easily seen that the two sets of solutions

«1[E11dE5
1

2
~E11E2!6

1

2
Q,

«2[E22dE5
1

2
~E11E2!7

1

2
Q, ~66!

coincide. We therefore take the upper sign and obtain

S̄15
«A

ab2«2

E112dE2E2
5

«A
ab2«2

«12«2
5

«A
ab2«2

Q
. ~67!

Thus in addition to the replacements of Eq.~C3! we obtain
the total CI effect on the spectrum by shifting JTAs a
changing their intensities according to Eqs.~65! and ~67!.

IV. THE CI CORRECTION TO EXTENDED JTA
SPECTRUM

The above derivation is identical for a STAVab[V
→V8 between twonl superconfigurations assuming th
t

-

to

same set of radial orbitals for the entire array. The sa
equations and solutions hold with the corresponding S
quantities.

The STA extensions of@D2
2(Aab)#no CI of Eq. ~40! takes

here the form

@D2
2~Vab!#no CI5(

s
^~qs2dsa!~gs2qs2dsb!&V P̄s

ab ,

~68!

where the superconfiguration averages^&V are calculated in a
straight forward manner by the partition function algeb
@1,7# in the STA code. In order to account for the CI effe
on the variances of extended JTAs we make the same
stitution as in Eq.~45! defining@D2

2(Vab)#no CI
modified. For STAs

we takexj a j b
51. As will be shown in the results section th

approximation is satisfactory. The specific modifications t
impose this substitution in the STA code needs further cl
fication and is described in Appendix C.

It is important to note that the working formulas for STA
@1# involve the same constant orbital quantities as for UTA
Thus with the replacements given above of the orbital qu
tities we can proceed with the same relativistic STA code.
we have shown the results will now include automatica
the CI effect on STAs variances.

The results for the CI shifts and intensities are the sam
in Eqs.~65!–~67!, i.e.,

dE52
1

2
~E12E2!6

1

2
Q,

Q5A~E11E2!214D1
214«V

ab@«V
ab2~E11E2!#, ~69!

and

S̄15
«V

ab2«2

E112dE2E2
5

«V
ab2«2

«12«2
5

«V
ab2«2

Q
, ~70!

where here

E15EV
11 , E25EV

22, ~71!

EV
j a j b5D0

j a j b1(
s

^~qs2dsa!&VD̄s
j a j b , ~72!

«15E11dE, «25E22dE, ~73!

D1
25@D1

2~Aab!#no CI5(
ja jb

w̄V
j a j b~EV

j a j b!22~EV
ab!2,

~74!

EV
ab5(

t
w̄V

j a j bEV
j a j b , ~75!

w̄V
j a j b5w̄A

j a j b5
1

2
gj a

gj bH j a j b k

l a l b
1
2
J 2

, ~76!

and

«V
ab5EV

ab1dEV
ab , ~77!
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dEV
ab5H ^qa211dql a

,0&V

4l a11
2

^qb&V

4l b11
J Gab. ~78!

The total CI effect is completed by shifting extended JT
and changing their intensities using Eqs.~69! and ~70!.

V. RESULTS

A. Testing the model assumptions by detailed calculations

The strength of the CI effect is dictated by the shiftdEA
ab

of the average energy ofAab given in Eq.~56!. Clearly, the
effect increases as the occupation number of the active s
a increases and that ofb decreases. Further, sinceGab

grows with increasing overlap between the active orbitala
and b, the CI effect is stronger forDn50 transitions and
also for Dn51 transitions wherel a, l b for na<nb . Thus
we have chosen examples for the following active orbita
4d→4 f , 3p→3d, and 3d→4 f .

In order to test the model assumptions we have perform
the following set of calculations on a series of specificAab

arrays.~a! Detailed relativistic intermediate coupling lev
calculations~including CI!, using theHULLAC code@12#. ~b!
Calculation of thenl UTAs Aab spectra using the spectra
moments calculated from the lines by detailed summa
this line coincides with the one calculated from the analyti
nl UTA moments@10# @Eqs. ~10!–~12!#. ~Bauche formulas
are nonrelativistic except for the inclusion of the spin-or
interaction, in order to make a fair comparison with the re
tivistic calculations we use in these formulas appropriate
erages of relativistic Slater integrals for the nonrelativis
Slater integrals@4#, and instead of using the spin-orbit co
tribution we take the full relativistic contributions to th
JTAs’ centers.! ~c! Calculation of the JTAsAj a j b spectra
withoutCI, using the analytic JTA moments.~d! Calculation
of the JTA spectra including CI using the present theo
Here we present two calculations d1 and d2.

d1 is the result of the theory as presented, while in d2
array’s widths are interpolated between LS andj -j in order
to obtain the properj -j limit. This point needs further expla
nation. As mentioned above the corresponde
@D1

2(Aab)#no CI→DSO
2 (Aab) and @D2

2(Aab)#no CI→DES
2 (Aab)

ensures that the CI effect on the total variance ofAab is
correct, consistent with Bauche formulas. However,
atomic systems close toj -j , the first contribution dominate
by far the second one, and a minor inaccuracy of this inte
correspondence leads to excessively broad arrays. Ther
we have found it plausible to interpolate between LS andj -j
to give the properj -j limit ~where CI effects vanish!. The
interpolated result dictated by the parameterd
5@D1

2(Aab)#no CI/$@D1
2(Aab)#no CI1@D2

2(Aab)#no CI% , is pre-
sented in the d2 curves. The various cases are shown in
figures with the corresponding lines:~a! the dotted thin lines,
~b! the solid thin lines,~c! the dashed heavy lines,~d1! the
dashed thin lines,~d2! the solid heavy lines.

Since we are dealing, in these examples, with atomic s
tems~not plasma! we present the results for the pure atom
dimensionless oscillator strength, that up to a constant
scribes the absorption spectrum. The first case presente
Fig. 1 is the spectrum ofAab with a54d→b54 f and A
54d94f of tungsten. This array participates in the spectr
ell
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of the NRL experiment discussed below. The reconstruct
of the detailed line calculations by the present theory is
vious here. The CI shifts are very large as expected forDn
50 transition array and since the 4d shell is almost full and
the 4f shell is almost empty. As we can see in this case
nonrelativistic result~b! is a good approximation. This cal
culation demonstrates the importance of CI shifts and wid
for theseDn50 transitions, that are far away fromj -j cou-
pling, even though they originate from a heavy atom th
requires relativistic treatment and has many other transi
arrays closer toj -j . In this paper we have presented a theo
that can account for both limits, while providing a systema
description of intermediate cases.

A systematic shift from LS toj -j scheme, demonstratin
the gradual decrease of CI as a function ofZ is presented in
Fig. 2. Here the 3p→3d transition array ofA53p43d2 is
presented for Fe, Mo, Ag, Ba, and W. For all these cases
agreement of the corrected CI results to the detailed
calculations is very good. For iron and molybdenum we s
that the CI-corrected spectrum actually coincide with thenl
UTA result. Thej -j result is not a good approximation her
In silver we already see a significant departure from LS bu
is still far away fromj -j . The barium spectrum is close toj -j
but there is still a change in intensities. In tungsten the sp
trum has almost completej -j features. Figure 3 makes
similar investigation for Dn51 transition arraysAab

53d94 f→3d84 f 2 for Mo, Ba, Ga, and W. In this case th
effect is strong mainly due to the condition on occupati
numbers (3d shell is almost full and the 4f shell is almost
empty!. In molybdenum and barium we see a single struct
with a dominant shift effect, whereas for gadolinium a
gold the j -j split becomes apparent but even for gold the
effect is noticeable through intensity redistribution.

B. Comparison with experiments

In Figs. 4, 5 we present the two experimental results
comparison with the CI corrected STA calculations. The

FIG. 1. The spectrum ofAab54d84 f 24d74 f 2 of tungsten.~a!
Dotted thin line: detailed relativistic intermediate coupling lev
calculations~including CI!; ~b! solid thin line: calculation of thenl
UTAs Aab spectra using the spectral moments;~c! dashed heavy
lines: calculation of the JTAsAj a j b spectra without CI, using the
analytic JTA moments;~d1! dashed thin line: the result of th
present theory–calculation of the JTA spectra including CI;~d2!
solid heavy lines: interpolated calculation between LS andj -j .
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two experiments were the central motivation for the pres
work since they could not be simulated properly by the S
code without CI.

1. TheNRL tungsten experiment

In Fig. 4 we see the result of an experiment perform
recently at NRL and presented here. The NIKE KrF la
was shot at a CH target doped with 7% W~by atom!. The
intensity was 2.531012 W/cm2. The spectrum was obtaine
with a grazing incident spectrometer, equipped w
1200 l/mm grating. The time integrated spectrum was
corded on Kodak 101 film. Some space resolution was
tained through the use of a slit perpendicular to the plas
Hydrodynamic simulations@13# show that the tungsten radia
tion in the relevant spectral range is emitted during a re
tively short time by a well localized region of the plasma.

FIG. 2. The spectrum ofAab53p43d2→3p33d3 transition ar-
ray for Z526,42,47,56, and 74. The line identifications are as
Fig. 1.
t

d
r

-
b-
a.

-

is therefore sensible to assume one temperatureT
580 eV) and one density (ne5331020 cm23) for the cal-
culations. Figure 4 presents the experimental results c
pared with the STA calculations. The experimental intens
is only relative and thus the peak intensity was set equa
the calculations. The dominant transitions here belong to
4d→4 f arrays producing a strong effect of CI shifts an
widths that simulates the experimental result correctly.

2. TheLLNL Fe experiment

Figure 5 presents the results of the Fe experiment p
formed recently at LLNL@11# to simulate astrophysical plas
mas. The plasma conditionsTe520 eV and r
51024 gm/cc give rise to dominantDn50, 3p→3d arrays.
It is clear that both CI shifts and width effects must be
cluded to reproduce the experimental features. The li
resolution is not seen in the STA results that assumes u
solved UTAs and agrees with the OPAL UTA result@11#.

FIG. 3. The spectrum of the transition array ofAab53d94 f
→3d84 f 2 for Z542,56,31, and 79. The line identifications are as
Fig. 1.
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VI. SUMMARY AND DISCUSSION

We have extended the STA model to include the entire
effects among allnl j configurations belonging to the sam
parent nl configuration. Analytic expressions for the C
shifts, widths and intensity redistribution of bothnl j UTAs
and STAs are derived. These expressions extend our p
ous theoretical results@4# that dealt only with CI redistribu-
tion of the STA intensities. The extended model mov
smoothly between LS andj -j conditions, accounting cor
rectly for intermediate coupling as demonstrated in Figs
and 3. The derivation was based on the assumption tha
configuration independent spin orbit variances contribute
most solely to the spread of the JTA centers and that
contribution of the electrostatic interaction to this spread
negligible. These assumptions were tested and validate
detailed calculations. We have presented examples com
ing the theoretical results with detailed calculations and w
experiments showing the importance of the CI shifts a
widths for various plasma conditions. In particular we ha
presented and discussed the results of a recent experi

FIG. 4. The result of the NRL experiment compared with t
STA calculations. The tungsten plasma conditions areT
580 eV, ne5331020 cm23.

FIG. 5. The iron spectrum atTe520 eV andr51024 gm/cc;
comparison among the LLNL experiment, the STA and the UT
OPAL calculations.
I

vi-
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performed at NRL on a tungsten plasma dominated by s
Dn50 arrays. It is important to note that for an atom und
specific conditions some of the transition arrays will
closer to the LS scheme while others will be closer toj -j
scheme others maybe in intermediate coupling scheme. T
there is a need for the above theory that accounts for all th
possibilities automatically using a single general model. T
remarkable achievement of the present approach is its
cess to account fully for a complex effect that usually
quires matrix diagonalizations that in our case are impra
cal due to the enormous amount ofnl configurations
involved.
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APPENDIX A: UTA WIDTH

The variance of anl UTA Aab[A→A8,

A5)
s

l s
qsl a

qal b
qb→A85)

s
l s
qsl a

qa21l b
qb11 , ~A1!

has the following two contributions@10#:

D2~Aab!5D2~ l a
qal b

qb→ l a
qa21l b

qb11
!

1 (
sÞa,b

D2~ l s
qsl a→ l s

qsl b!. ~A2!

Assuming that the states of bothA andA8 are calculated with
the same potential the results are

D2~ l a
qal b

qb→ l a
qa21l b

qb11
!

[ (
s5a,b

~qs2dsa!~gs2qs2dsb!s2
2~ l sl a→ l sl b!, ~A3!

D2~ l s
qsl a→ l s

qsl b![qs~gs2qs!s1
2~ l sl a→ l sl b! ~sÞa,b!.

~A4!

Collecting terms yields

D2~Aab!5(
s

~qs2dsa!~gs2qs2dsb!s2~s!, ~A5!

where

s2~s!5
D2~ l sl a→ l sl b!

~gs212dsa2dsb!
~A6!

and D2( l sl a→ l sl b) is specified@10a# for the two different
casess5a,b andsÞa,b. Similarly for nl j UTAs the vari-
ance is as in Eqs.~A5!,~A6! with the replacementa[ la
→ ja for a5s,a,b.

-
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APPENDIX B: THE JTA MOMENTS WITHOUT CI

1. Intensity

The configuration average multipolek transition prob-
ability for orbital jump ja→ jb is given by@4#

wc
j a j b5gcqja

~gjb
2qjb

!H j a j b k

l a l b
1
2
J 2

Pab
2 , ~B1!

where

gc5 )
jsPc

S gj s

qjs
D ~B2!

andPab is the transition radial integral~multiplied by a fac-
tor! that is independent of the configurationc and is approxi-
mated here as an average over allj aPa and j bPb. For
convenience,when confusion can not arise, we use no
~instead of bold! j for the setnl j .

The normalized JTA intensity is

w̄A
j a j b5

wA
j a j b

wA
ab

, ~B3!

where

wA
j a j b5 (

cPA
wc

j a j b , wA
ab5 (

j a j b
wA

j a j b . ~B4!

Using the identities for any orbitals[nsl s

(
cPA

gj s
2d j sj a

2d j sj b
2d j sj c

•••5gs2dsa2dsb2dsc•••,

~B5!

(
cPA

qj s
2d j sj a

2d j sj b
2d j sj c

•••5qs2dsa2dsb2dsc•••,

~B6!

and the binomial relations

(
a1b5c

S x

aD S y

bD 5S x1y

c D , ~B7!

aS x

aD 5xS x21

a21D , ~B8!

~x2a!S x

aD 5xS x21

a D , ~B9!

we obtain

w̄c
j a j b[

wc
j a j b

(
cPA

wc
j a j b

5

)
j s

S gj s
2d j s , j a

2d j s , j b

qj s
2d j s , j a

D
)

s
S gs2ds,a2ds,b

qs2ds,a
D ~B10!

and @4#
al

w̄A
j a j b5

1

2
gj a

gj bH j a j b k

l a l b
1
2
J 2

. ~B11!

independent of the occupation numbers of the configura
c. The denominator of Eq.~B10! never vanishes since fo
orbital jumpa→b, qa>1 andqb<gb21.

2. Average energy

The configuration average energies are@4#

Ec
j a j b5Do

j a j b1(
j s

~qj s
2d j sj a

!D j s

j a j b, ~B12!

whereDo
j a j b andD j s

j a j b are orbital quantities common for a

cj a j bPAab, specified in Ref.@4#. The JTA average energy i
thus

EA
j a j b5Do

j a j b1 (
cPA

w̄c
j a j b(

j s

~qj s
2d j sj a

!D j s

j a j b.

~B13!

Substituting forw̄c
j a j b of Eq. ~B10! and using Eqs.~B7!–

~B9! we obtain

EA
j a j b2Do

j a j b

5

(
cPA

)
j t

S gj t
2d j t j a

2d j t j b

qj t
2d j t j a

D(
j s

~qj s
2d j sj a

!D j s

j a j b

)
t

S gt2d ta2d tb

qt2d ta
D

5(
s

D̄s
j a j b~qs2dsa!, ~B14!

where

D̄s
j a j b5 (

j sPs
D j s

j a j b
~gj s

2d j sj a
2d j sj b

!

~gs2dsa2dsb!
. ~B15!

3. Variance

The two contributions of Eq.~37! read

D1
2~Aj a j b!5 (

cPA
w̄c

j a j b~Ec
j a j b2EA

j a j b!25D11
2 2D12

2

and

D2
2~Aj a j b!5 (

cPA
w̄c

j a j bD2~cj a j b!, ~B16!

where

D11
2 5 (

cPA
w̄c

j a j b~Ec
8 j a j b!2, ~B17!

D12
2 5~EA

8 j a j b!2, ~B18!
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andEc
8 j a j b5Ec

j a j b2Do
j a j b , EA

8 j a j b5EA
j a j b2Do

j a j b .

a. The expression forD1
2
„Aj a j b

…

The first term is obtained by substitution of the expre

sions~B10! and ~B12!, without Do
j a j b , for w̄c

j a j b andEc
8 j a j b

in Eq. ~B17!. We obtain a double sum overnl j orbitals:

D11
2 5 (

cPA
w̄c

j a j b~Ec
8 j a j b!25 (

j sj s8

X~ j s , j s8!, ~B19!

where the contribution of a specific pairj s , j s8 is

X~ j s , j s8!

5
1

)
d

S gd2dda2ddb

qd2dda
D (

cPA
)
j b

S gj b
2d j bj a

2d j bj b

qj b
2d j bj a

D
3D j s

j a j bD j s8

j a j b~qj s
2d j sj a

!~qj s8
2d j s8 j a

!. ~B20!

For s5s8 and j s5 j s8 we use the binomial identities

S g21

q21D
S g

qD 5
q

g
, ~B21!

S g22

q22D
S g

qD 5
q~q21!

g~g21!
, ~B22!

and get

X~ j s , j s!

5@D j s

j a j b#2F ~gj s
2d j sj a

2d j sj b
!~gj s

2d j sj a
2d j sj b

21!

~gs2dsa2dsb!~gs2dsa2dsb21!

3~qs2dsa!~qs2dsa21!

1
~gj s

2d j sj a
2d j sj b

!

~gs2dsa2dsb!
~qs2dsa!G . ~B23!

The denominator of Eq.~B23! for orbital jump a→b van-
ishes only if a or b are s orbitals. In this casegs2dsa
2dsb2150. However, it is seen from Eq.~12! that active
s( l 50) orbitals give zero contribution to the variance a
are excluded from its calculation.
-

For the same reasons the denominators of the express

below never vanish. Fors5s8 and j sÞ j s85 j̄ s , where

j̄ [nl j 8 with j 85 j 61 for j 5 l 71/2 ~B24!

we use Eq.~B22! and obtain

X~ j s , j̄ s!

5D j s

j a j bD
j̄ s

j a j b
~gj s

2d j sj a
2d j sj b

!~gj̄ s
2d j̄ s

j a2d j̄ s
j b!

~gs2dsa2dsb!~gs2dsa2dsb21!

3~qs2dsa!~qs2dsa21!. ~B25!

and forsÞs8 from Eq. ~B21! we get

X~ j s , j s8!

5D j s

j a j bD j s8

j a j b
~gj s

2d j sj a
2d j sj b

!~gj s8
2d j s8 j a

2d j s8 j b
!

~gs2dsa2dsb!~gs82ds8a2ds8b!

3~qs2dsa!~qs82ds8a!. ~B26!

For the second term of Eq.~B18! we obtain by taking the
square of Eq.~B14!, without Do

j a j b, a double sum over orbit-
als

D12
2 [~Es

8 j a j b!25 (
j sj s8

Y~ j s , j s8!, ~B27!

where again the identity~B21! is used giving for the contri-
bution of the pair (j s , j s8) the expression

Y~ j s , j s8!

5D j s

j a j bD j s8

j a j b
~gj s

2d j sj a
2d j sj b

!

~gs2dsa2dsb!

~gj s8
2d j s8 j a

2d j s8 j b
!

~gs82ds8a2ds8b!

3~qs2dsa!~qs82ds8a!. ~B28!

Since forsÞs8

X~ j s , j s8!5Y~ j s , j s8!, ~B29!

we have

D1
2~Aj a j b!5D11

2 2D12
2 5 (

j sj s8

@X~ j s , j s8!2Y~ j s , j s8!#

5(
s

(
j sPs

$@X~ j s , j s!2Y~ j s , j s!#

1@X~ j s , j̄ s!2Y~ j s , j̄ s!#%, ~B30!

where
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@X~ j s , j s!2Y~ j s , j s!#5@D j s

j a j b#2
~gj s

2d j sj a
2d j sj b

!

~gs2dsa2dsb!
~qs2dsa!

3H ~gj s
2d j sj a

2d j sj b
21!

~gs2dsa2dsb21!
~qs2dsa21!112

~gj s
2d j sj a

2d j sj b
!

~gs2dsa2dsb!
~qs2dsa!J

5@D j s

j a j b#2
~gj s

2d j sj a
2d j sj b

!~gj̄ s
2d j̄ sj a

2d j̄ sj b
!

~gs2dsa2dsb!2~gs2dsa2dsb21!
~qs2dsa!~gs2qs2dsb! ~B31!
and

@X~ j s , j̄ s!2Y~ j s , j̄ s!#

52D j s

j a j bD
j̄ s

j a j b
~gj s

2d j sj a
2d j sj b

!~gj̄ s
2d j̄ sj a

2d j̄ sj b
!

~gs2dsa2dsb!2~gs2dsa2dsb21!

3~qs2dsa!~gs2qs2dsb!. ~B32!

Thus

D1
2~Aj a j b!5(

s
~qs2dsa!~gs2qs2dsb!P1,s

j a j b ,

~B33!

P1,s
j a j b5

~gj s
2d j sj a

2d j sj b
!~gj̄ s

2d j̄ sj a
2d j̄ sj b

!

~gs2dsa2dsb!2~gs2dsa2dsb21!

3 (
j sPs

D j s

j a j b~D j s

j a j b2D
j̄ s

j a j b!, ~B34!

and

(
j sPs

D j s

j a j b~D j s

j a j b2D
j̄ s

j a j b!

5Ds1

j a j b~Ds1

j a j b2Ds2

j a j b!1Ds2

j a j b~Ds2

j a j b2Ds1

j a j b!

5~Ds2

j a j b2Ds1

j a j b!25~D j s

j a j b2D
j̄ s

j a j b!2. ~B35!

b. The expression forD2
2
„Aj a j b

…

D2
2~Aj a j b![ (

cPA
w̄c

j a j bD2~cj a j b!

5 (
cPA

w̄c
j a j b(

js
~qj s

2d jsja
!~gj s

2qjs
2d jsjb

!s2~ j s!

[(
js

D2~ j a j b j s!s
2~ j s!, ~B36!

where from Eq.~B10! and
S g22

q21D
S g

qD 5
q~g2q!

g~g21!
~B37!

we get

D2~ j a j b j s!5
1

)
d

S gd2dda2ddb

qd2dda
D

3 (
cPA

)
j t

S gj t
2d j t j a

2d j t j b

qj t
2d j t j a

D
3~qj s

2d j sj a
!~gj s

2qj s
2d j sj b

!

5
~gj s

2d j sj a
2d j sj b

!~gj s
2d j sj a

2d j sj b
21!

~gs2dsa2dsb!~gs2dsa2dsb21!

3~qs2dsa!~gs2qs2dsb!. ~B38!

The result for the variance is

D2
2~Aj a j b![(

js
D2~ j a j b j s!s

2~ j s!

5(
s

~qs2dsa!~gs2qs2dsb!P2,s
j a j b ,

~B39!

where

P2,s
j a j b5 (

j sPs
s2~ j s!

~gj s
2d j sj a

2d j sj b
!~gj s

2d j sj a
2d j sj b

21!

~gs2dsa2dsb!~gs2dsa2dsb21!
.

Combining the results of Eqs.~B33! and~B39! the total JTA
variance takes the form

D2~Aj a j b!5D1
2~Aj a j b!1D2

2~Aj a j b!

5(
s

~qs2dsa!~gs2qs2dsb!Ps
j a j b ,

~B40!

where
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Ps
j a j b5P1,s

j a j b1P2,s
j a j b , ~B41!

Ps
j a j b5

~gj s
2d j sj a

2d j sj b
!

~gs2dsa2dsb!~gs2dsa2dsb21!

3F ~gj̄ s
2d j̄ sj a

2d j̄ sj b
!

~gs2dsa2dsb!
~D j s

2D j̄ s
!2

1~gj s
2d j sj a

2d j sj b
21!s2~ j s!G . ~B42!

APPENDIX C: THE EXPLICIT SUBSTITUTIONS
REQUIRED FOR IMPOSING CI

1. UTAs

Equation~45! introduces the CI effect by the substitutio

Ps
j a j b→xj a j b

s2~s!. ~C1!

This can be achieved easily by imposing

P2s
j a j b→xj a j b

s2~s!, P1s
j a j b→0 ~C2!

which is obtained explicitly by the replacement

s2~ j s!→
1

22d l s,0

~gs2dsa2dsb!~gs2dsa2dsb21!

~gj s
2d j sj a

2d j sj b
!~gj s

2d j sj a
2d j sj b

21!

3s2~s! ~C3!

for both j s5 l s61/2 in Eq. ~19!. The denominator vanishe
only for j s5 j a51/2 or j s5 j b51/2; however, these case
are excluded, since as seen from Eq.~A5! with the replace-
menta[ la→ ja for a5s,a,b, they do not contribute to the
variance. With the substitution~C3! we can collect relativis-
tic UTAs ignoring CI and obtain the CI corrected varianc

This becomes particularly efficient for STAs where t
superposition of many relativistic UTAs is done analytica
through manipulations on occupation numbers using the
tition function algebra. The working formulas for STAs in
volve the constant orbital quantities and we have shown
all that is required to include the effect of CI of the ST
spectrum is achieved by simply replacing these const
with explicitly defined new ones. The specific replacem
for STAs is specified in the next section.

2. STAs

As in Eq. ~37! the extended JTA variance has two cont
butions

@D2~V j a j b!#no CI5@D1
2~V j a j b!#no CI1@D2

2~V j a j b!#no CI,

~C4!

@D1
2~V j a j b!#no CI5 (

APV
(
cPA

Ī cV
j a j b~Ec

j a j b2EV
j a j b!2,

~C5!
r-

at

ts
t

@D2
2~V j a j b!#no CI5 (

APV
(
cPA

Ī cV
j a j bD2~cj a j b!. ~C6!

The normalized intensities

Ī cV
j a j b5

I c
j a j b

(
cPV

I c
j a j b

, Ī AV
j a j b5

I A
j a j b

(
APV

I A
j a j b

~C7!

include the Saha Boltzmann populations, given in terms
the corresponding partition functions@7#

Ī cV
j a j b5

Uc
j a j b

UV
j a j b

, Ī AV
j a j b5

UA
j a j b

UV
j a j b

.

The second contribution in Eq.~C4! can be written as

@D2
2~V j a j b!#no CI5 (

APV
Ī AV

j a j b@D2
2~Aj a j b!#no CI ~C8!

and the substitution~C3! introduces the CI effect that cover
automatically also the contribution

@D11
2 ~V j a j b!#no CI[ (

APV
Ī AV

j a j b@D1
2~Aj a j b!#no CI

that is already included in the working formula of the ST
variance@5#. This term must therefore be subtracted.

From Eqs.~B33!, and~B34! it can be shown that this term
can be written in terms ofj 2 j occupation numbers as

@D1
2~sj a j b!#no CI5(

j s

~D j s
8 !2~qj s

2d j sj a
!~gj s

2qj s
2d j sj b

!,

~C9!

where

~D j s
8 !25@D j s

2 2D j s
D j̄ s

#

3
~gj̄ s

2d j̄ sj a
2d j̄ sj b

!

~gs2dsa2dsb!~gj s
2d j sj a

2d j sj b
21!

.

~C10!

Equation~C9! has exactly the same form as Eq.~19! that
determines the working formulas of the STA momen
Therefore in addition to the substitution of Eq.~C3! we need
also to subtract froms2( j t)the quantity (D j t

8 )2, i.e., in prac-

tice, in the STA code the substitution is

s2~ j s!→
1

22d l s,0

~gs2dsa2dsb!~gs2dsa2dsb21!

~gj s
2d jsja

2d jsjb
!~gj s

2d jsja
2d jsjb

21!

3s2~s!2~D j s
8 !2. ~C11!
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