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Parametric coupling of a light wave and surface plasma waves
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A three-wave decay interaction in whichpgpolarized light wave transmitted from vacuum into a plasma
decays into two surface waves of transverse magnetic niaaidace polaritonis investigated. Nonlinear
boundary conditions for the surface waves are formulated in terms of the surface charge and the body current,
taking a full account of the rippling of the free boundary. The mode-coupling equations are derived and solved
in the parametric approximation to obtain the threshold and the growth rate. We assess the relative strength of
the kinematic and the dynamic nonlinearities in the parametric intera¢®8d063-651X99)13202-1

PACS numbd(s): 52.35.Mw, 52.40.Db

[. INTRODUCTION whose phase velocity is constant and is dealt with in detail in
Sec. Il. The decay of the light wave of frequeney and
During the past few decades, extensive investigationsvave numberk, into two TM mode surface waves of fre-
have been made on nonlinear wave interactions and paramejuenciesw, and wz and wave numberk, and k; requires
ric instabilities in infinite plasmagkl—3|. However, such in- the resonance matching conditions
vestigations for bounded plasmas are rather few. It is well

known that surface waves can propagate along the interface w1=wyt w3,
of a plasma and vacuusor dielectrig [4,5]. Surface waves 2
can be used for plasma diagnostjé3 and for sustaining a ki=Ky+Ks.

plasma which can be used in plasma procesgihgFurther-

more, surface waves are relevant to laser fugBjnand to  We show later that the resonance conditi¢®scan be met
astrophysical problems in the magnetosphere and in the solaasily and there would be numerous events of the resonance
corona[9]. interactions.

In view of the various applications and occurrences of |n this work, we assume that the three waves propagate in
surface waves, it would be interesting to consider wave-wavene z direction and that the unperturbed interface is the plane
interactions involving surface waves. Atanassaal. [10]  x=0, separating the plasma¥ 0) and vacuumx<0). We
considered a nonlinear interaction of three high-frequencywlso assume that the plasma is a linear medium with respect
electrostatic surface waves which produce a low-frequencyo the high-frequency light wave, but nonlinear with respect
density perturbation. Aliev and Brodif8] investigated the to the low-frequency TM mode surface wave. In order to
excitation of a surface wave and a volume plasma wave in amvestigate the nonlinear surface wave, all the nonlinearities
inhomogeneous plasma bypgpolarized pump wave. Brodin which could be responsible for the resonant interaction are
and Lundberd11] considered the same problem including retained in this work. Especially, nonlinear boundary condi-
thermal effects. Lindgreret al. [12] developed a general tions are used for the TM mode surface wave and special
theory of three-wave interactions in plasmas with sharpttention was paid to the rippling effect of the deformable
boundaries by using the diffuse charge distribution model. free boundary. When the boundary is fixed and unmoving,

In this work, we investigate the parametric decay of athe important nonlinearity is dynamic nonlinearity-¥v
light wave into two transverse magnetitM) mode surface and vx B force). If the boundary is deformable, the kine-
waves in a plasma bounded by vacuum. We include the dematic nonlinearity plays a role. We assessed the relative im-
formability of the boundary and assess the rippling effects oportance of these two nonlinearities on the parametric decay
the boundary on the parametric interactions. A TM modeinstability.
surface wave is a low-frequency electron surface wave with The present analysis of decay instability of the TM mode
both the longitudinal and transverse components with respeglurface waves may be of importance for many applications
to the propagation vector. The dispersion relation reads  since laboratory plasmas are bounded. Furthermore, the

) model used in this work may have direct relevance to the

o 22,9 1 AT A heating of laser-produced plasma, ionospheric plasma of the

W™ =CKF 2 2 wpT4CTK, @ boundary layer, and the solar corona since the excited sur-

face waves should be damped by the particles, leading to

where w and k denote, respectively, the frequency and thesurface heating.

wave numberg is the speed of light in vacuum, andl, is The paper is organized as follows. In Sec. Il, the high-
the electron plasma frequency=(/4wNe?/m). The light frequency light wave which is transmitted to plasma from
wave in the plasma that we consider is a dispersionless wawsacuum is described and its dispersion relation is derived. In
Sec. lll, nonlinear equations for the low-frequency TM mode

surface wave are formulated and homogeneous solutions are

*Electronic address: hjlee@phya.hanyang.ac.kr obtained. In Sec. IV, nonlinear boundary conditions are set
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up allowing for the rippling effect of the moving boundary. the following magnetic field and electron velocity compo-
In Sec. V, perturbation analysis is carried out for the nonlin-nents oscillating with the frequeney; in the plasma:

ear equation and the mode-coupling equation is derived. In

Sec. VI, the coupling equation is solved in the parametric
approximation to find the thresholds and growth rates. A

discussion is furnished in Sec. VII.

II. HIGH-FREQUENCY LIGHT WAVE

We envisage that the pump wave of frequengy, polar-
ized parallel to the plane of incidence-g plane, is incident
upon the interfacex=0 between the plasmaxt0) and
vacuum «<<0) from the vacuum side with an angle of inci-
denced,. The electric field of the pump wave can be written
as

E0= EO(S\( sin 0p— zcosao)ei(wllc)(x cosfy+zsin Ho)fiwlt.

©)

Then the reflected and transmitted waves appear, which take

the forms

E6= E(’,(>‘<sin 6o+ ZCOSGO)Gi(‘”llc)(_x cosfp+zsin 00)—iw1t,

(4)

E=(RE 1+ 2E,,) e “r¥elkaz-ient, (5)
The transmitted wavg, is represented by E@5) only when
sin 60> €1, (6)

wherez ;= 1— w3/} is the dielectric constant of the plasma

w187

By(w1)= Tk, e’ o, (12
_ie i01—aix
vwy)= m_lelze S (13
—1 )
vy(w1)= Moy Eqe'f1m o1, (14)
where
91: klz_ O)lt, (15)

and we used the linear electron equation of motion,

ov

mﬁ——eE.

Ill. LOW-FREQUENCY EQUATIONS

To describe the nonlinear low-frequency surface wave,

we use the following set of fluid and Maxwell equations:

in response to the pump wave. Just in the case in which

sin fp=(1—ww})™?, the internal reflection occurs, and we
havea;=0 andE;,=0 [13]. The condition(6) restricts the
pump frequency to the window defined (8]

w
cosby’

@)

(J)p< (1)1<

on
E+V-[(n+N)v]=0, (16
r7+ +v-Vv= © E+1 xXB 1
StV v+v-Vv= = EV , (17)
V.-E=—4mwen, (18
VXE 1B 19
vxpo 2 AT 4 20
~ T o (N+n)v (20)

Using the continuity of the tangential components of the
electric and magnetic fields and the normal components ah the above, linear terms represent the low-frequensydr

the electric displacement, one finds

[
k1=?18in00, (8)
w
Ct’lz?l Si 60_81, (9)
cky 2E,
Elx_(l)lgl ia’ltanﬁo' (10)
kigq
ia'l

Elz:_k_l 1x - (13)

Equation(8) is the dispersion relation of the high-frequency

light wave propagating in the plasma transmitted from the

vacuum with the angle of incidencé,. Equation(11) is
obtained fromV - E=0. The transmitted fiel&, gives rise to

w3) surface wave quantities, and the quadratic terms are
beatings of the high-frequency waves with another low-
frequency wave to excite the low-frequency wave under con-
sideration. In Eq(17), v represents the collision frequency.
We can discard the nonlinear currem¢ in Egs. (16) and
(20) because the density perturbatior=0 for the high-
frequency light wave as well as for the low-frequency sur-
face wave as shown latgsee Eq(600)]. It should be noted
that our low-frequency variables are the TM mode set
(Ex,E;,vx,v,,By), and the rest can be set to zero. The am-
plitude of the surface wave varies in tledirection while
propagating in the direction, and they coordinate can be
assumed to be ignorabl@/@y=0). EliminatingB between
Egs.(19) and(20), one obtains

18 wpala &, c
2 Zalatt || 2
a/la -1 5%Qy
=—| — 4 2 —
at(at V) (A Q™ Gxaz ) @)
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—iEf4- TSN - 22
axaz < ala ) Qe 22
where
_dmen Vv+ ° XB 23
Q=—z |V Vvt —vXBJ, (233
1# whola |\t &

1/2
+ ===+ :
@ alat” &?] (23D

a2
Some remarks are in order regarding the inverse operat
(a/at+v)~* and the operatora or A~* used in the follow-
ing. These operators act on the two-scale functions such
f(z,,t;)e'%0~ 1l wherez, andt, are fast space and time
variables, and; andt; are slow variables. The derivatives
dlat and d/9z are derivative-expanded in the fashiéfvt
=dldtg+e(dldty) and dl9z=dl 9zo+ e(dl dz,), wheree is
the expansion parameter. Takimgas a quantity of orde,
we can expand as
-1 -2
) el

-1
5+
which obviously satisfies the relation d/gt+ v)(d/at

+v) " 1=1. Sincedl/dty=—iw and d/ 9z,=ik, these opera-

d
—+
ot

d
ato

a
ato

—+
aty,

. (29
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) 9°E,
ARt IXdz =0, (30)
whereA is an operator defined by
4%5%?W7ﬁ- 3

We first discuss the vacuum solutions. Thdependence of

the functionE, in Eq. (29) is usually sought in the form of a
ower series, as is often done in the water wave or Rayleigh-
aylor instability problem$14,15. In fact, the derivation of

the power series solution is facilitated by regarding the op-

Ftatorsg/ ot and 9l9z as algebraic quantities. Then EQ9)

is solved by

E,(x,2,t) =M IDW(Z,t), (32
where the exponential function should read as a power series
and the operatoA acts on the unknown functio® which is
determined from the appropriate boundary conditions. Equa-
tion (30) yields

oW
Ey(X,z,t)=—eA"1—.

7 (33

tors and their inverses are in fact algebraic quantities, and the

meaning of the inverse operator in E&4) is not ambigu-
ous. An operator involving inverge-1) or (3) power will be

The perturbation expansion of the operatgparallels that of
A: settingw,=v=0 in Egs.(25 and(28) gives the corre-

derivative-expanded by binomial theorem as was done in thgponding formulas forA with the replacement ofr—X,

above and the meaning &f or A~! is not also ambiguous.
Therefore, we can expand the operatoin Eq. (23b) as

)+8V

da d Jda J
Jw ¢9t1 (9k (921

dA

A=Ag+eA = a+i —
oTEMAMT U & (')'VO

(25
where
dA —iwg -
50_262(0&’ (26)
evaluating the derivative at=d/dt;=d/dz;=0, and
2 2\12
2, Y @
a(k,a))= k +—CQ—> . (27)
Likewise we have
ATt =(A" ot e(ATh),
iy da~t 9 dat g . iw?
T T Ty at, ok az) " fV2Rwad
(28)

where

w2

K2— —

c (34

r=fe-2)”

Turning to the plasma equatioidl) and(22), we note that
the solutionE, as well ask, consists of two parts, the ho-
mogeneous and the particular solutions:
E,=E,4+E,s. (35
The homogeneous solutioB,,; solves Eq.(21) with the
right-hand side set to zero and thus can be written as
EZH: e—XA(&/ﬂt,ﬁ/ﬁZ)F(Z,t)' (36)
whereF(z,t) is an unknown function yet to be determined

by the boundary conditions. The homogeneous solution of
E, is determined from Eq22):

E H= e*XAA*l(g_F
X .

0z (37

The particular solution&,s and E, g of Egs. (21) and (22)

In the vacuum, the low-frequency electric field is determinedare determined with the right-hand sides constructed by an

by

———A?

pV: (29

vl

iterative procedure, i.e., by using the lower-order solutions
for the quadratic terms. In our perturbation scheme, the
lowest-order solutions are extracted from the homogeneous
solutions.
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IV. BOUNDARY CONDITIONS integral of Eq.(44') can give rise to higher-order surface
currents[18,19, but we neglect those terms in this work for
The solutions of the equations formulated in the precedingimplicity.
section for the plasma and the vacuum regions should be Usingu=f-v in Eq. (44) yields
matched on the interface

do d€l ot
S(x,z,t)=x—&(z,1)=0, (38 —=e(n+N) ——————. (45
ot 9€\?
through appropriate boundary conditions. Firsthe normal 1+ —
velocity of the moving boundar$(x,z,t), is expressed by 9z

They component of Eq(42) reads

d€l ot 39
U= ——, 39
98\ 2 _rea= ¥ 1€
N [E]=—_[EJ+ 2 —[B,l. (46)
Jz
Equations(43) and (45) yield
and the unit vector normal to the surfae 0 denoted byh quations(43) and (45) yie
is 23
. [Ex]-4meNe=[E,]——. 47
K—20&l 9z Z
A= —. (40 " 3
9€\ 2 In writing Eq. (47), we neglected terms dd(&*). The sur-
1+ — face elevation¢ has all three components of high and low
9z frequencies. Equation@6) and (47) are general jump con-

ditions valid for both high- and low-frequency waves. The

last term of Eq.(46) can be omitted sincgB,]=0 in the

dé ¢ Y- linear approximation for both the light wave and the surface

(41 wave. If Eq.(46) is used in Eq(47) for [E,], the last term of
Eq. (47) turns out to be ok order, and can be neglected.

as expected. The boundary conditions on the moving inter] Nus we have
face have been obtained in Kruskal and Schwarzs¢hibd

The kinematic relatiom=1-v|; gives the equation

== + R
vde=gr = gt Fagg

d
and we have [E,]=— &_i[EX]' (46')
u
[AxE]=Z[B], (42 [E J=4meNé. (47)
[A-E]=4ma (43) The linear equatioid7’) is nothing but the continuity of the

normal component of the electric displacement vedor
where the bracketB]=B(plasma)B(vacuum) is evaluated =&4E (g4 is the dielectric constanf20]. Equation(46') is
atx= ¢. Other bracketed quantities also have a similar meanthe nonlinear version for the jump of the tangential compo-
ing. In Eq. (43), the surface charge density is given by  nent of the electric field.

Sedov[17], Using Egs.(32) and(36), Eq. (46) is rewritten as
do 29
— Hh I+ V=0, (44) F—W=§AF+AW)—4meNs - —E,£)=Ns(¢),
(48)
whereJ; is the surface current density flowing on the inter- )
face and will be assumed to be zero. It would be instructivéVhere we expanded the exponential operators.
to derive Eq.(44) alternatively. By definition, we have It seems more advantageous to have the homogeneous
solutions explicitly appear in Eq47'). Differentiating Eq.
f,s (47") with respect ta gives
o=—e| ndx
-0
J JF oW
_ = [ e PATL—+E )+ e‘fAAl—]
where the surface charge layer is denoted by the range at Jz Jz
(= 46,9), and the limité—0 is implied by assuming that the o¢
interfacex=0 is fixed for simplicity. Using Eq(16) gives —4e N{vx(f)—vz(f) _] (49
az|’
Jdo o1 4 J
E:ef ¢ (NN ]+ = [(n+N)v,] dx. where we used Eq41).
- Inverting Eq.(17) yields
(44') '
-1
The first integral ise[ (n+N)v,]o+=Jyx. Equation(44) is a van(£,2,0)=— EengAfl i+ v ‘9_': (50)
generalization of Eq(44’). Here we note that the second XHAS» S m ot 9z’
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2

I Qi)
- E.s(X,z,t)+ 4—Qx(x,z,t)

meN ’ (5D

x=§

a+
EV

UXS(&!th): _|:

where the subscriptd and S correspond, respectively, to the homogeneous and particular solutions. DifferentiatidpEq.

with respect ta again and using Eq$49) and (50), one obtains
2 “LoF

0z

d(d
+ wge_ Ap-1_ ( —+ V)

at? ot

[ e—§AA—lﬁ_F + eéAA—1M
0z 0z

€\ & £ . 206 a9 . “1oF
va€) 77|~ Bl topgre vl o

J J
—47T€NEUX5(§)—4TTGNE

=Na($). (52

Equations(48) and (52) are the two equations which we and (w3,ks). In Fig. 1, the angle of incidencé,, which
analyze in the multiple scale perturbation scheme in the nexgives the slope of the straight lirg is taken to be 30° as a
section. The right-hand sides of Eq48) and (52) contain  typical value.

the quadratic terms which are responsible for the parametric We expand the various quantities in E¢83) and(52) in
interactions. The lowest-order solutions of E@) and(52) the perturbation series as

are the linear solutions which will be used to construct the

right-hand sides by an iterative procedure. F(zt)=eF M (zo,tg,2,t) +&?F P+ (53

The quantitiedV, & vy, By, Ex4, andE,, are expanded in
V. PERTURBATION ANALYSIS the fashion of Eq(53). However, the particular solutiofis, g

In this section we carry out a perturbation analysis of Eqsf”‘nd E,sare expanded as

(48) and(52) to derive coupled mode equations for the non-
linear wave interactions among the three waves satisfying
the resonance conditior®). In Fig. 1, we plotted the dis-  51hough we do not need the-order terms. The operators
persion curves given by E@8) of the high-frequency light ;.o already expanded in Sec. IIl.

wave(L) and Eq.(1) of the low-frequency TM mode surface gy means of the above perturbation scheme, we can break

waves(S). It is shown that the resonance conditig@s can down Egs.(48) and (52) order by order. In the: order, we
be easily met by constructing a parallelogram. The tips of thg,5 e the relations

arrow falling on curvelL give the values ofv; andk; while

o= oPE R+ oL+ 5

the tips of the arrows on cun@give the values of @, ,k5) LoFY=0 (55)
4 with
.C—aerzA*1 +(92A*1 i 56
o=\ gzt ( )oa—z0 IS( )067_20 (56)
3
and
wlog FO=wWD, (57)
2 Equation(55) admits the solution in the form
F(z)=F(z,tye”’ (58)
1 with 8=kz,— wty and the linear dispersion relati¢p0,21],
1 1/ o
D(k,w)=—-+—|1-—|=0, (59
N« w
0 wherea and\ have been introduced in EgR7) and (34).
Equation(59) can be solved to give Eql). Corresponding
cklop to F(Y), we have the following linear solutions in the plasma:
FIG. 1. Dispersi f light wavé) and surf _ ek
ispersion curves of light wav&) and surface wave v;l)_ e XEgl?, (609

(9 and a resonant triad. Mo«
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ie o WP =fF@ N2 62
vi'=——e *Fe”, (60b) 8 (62
z Mw
n=0, (600 where
B(l):—i—( ——)eX“Fe"’, 60 . ot —
y 0\ ‘T a (60d £a= at§+°" (A gt Ao o 1 +2 555,
iek - g 9 d d
1= 0 X(Agt+ At e ATl —+A1—)
¢ S meta Fe (609 (Ao ) 9z, &to(( )1620 0 9z,)°

Likewise thee-order vacuum solutions of the surface wave (63

are

J J g(l)
Nf)=4weN(9t v &(£=0)— 47-reN&t [ W(£=0) ]

EV=eFe'’, (60f)
2 1 -1 1
ik —iE<2>(5 0)+ w? il A It (64)
E(l)_—)\ x)\Felﬂ (609 ato Pl aty | dtg azy |’
By =— L0 o gio (60h) NE"(6)= EH(AF ™+ W)
CA '
(1)

<9§
. _ L
It may be seen thaB{" and E{") are continuous across 4meNg E;S(¢=0). (69

=0 in the linear approximation. When we evaludNg(¢)
and Ng(¢) in Egs. (48 and (52), we need the quantities at
the boundaryx=¢. The exponential factoe™ ¢4=1—éa
+(&%/2)a+--- generates all the higher-order terms. Since
we need only the quadratic terms, it is sufficient in this work [ D aF(l) 9D gFD
to evaluate the boundary valuesxat 0 in Eqgs.(60). —
Next we move on to the?-order equations. Equations do ok 0z
(48) and(52) yield in thee? order, takingr as a quantity of
€ order, upon using the dispersion relatidh9). If Eq. (61) reads as
L e SED the w,-frequency equation, theﬁlF(l_) term and the
LoF P+ L,FV=vwdAg ( ) + w2 w,-frequency term on the right-hand side generated by the
dtg (224 P> dzg beats satisfying the resonance matching conditi@hsause
2 P the secularity when one attempts to solve E&{) for F(?).
+—5Ag 1 N(BZ)(§)+ N<AZ>(§), (61)  All these secularity-causing terms should be removed by re-
aty - d quiring that

The £,F™) term in Eq.(61) can be shown to reduce to

(66)

2

2
a2 "
0

W3 (0| R
2c2wad “P0 atg 9z

Jw (?tl F?k (721

(1)
_ 2 JF
p 9z,

Ko Z(Ei_@i)lﬂl |

ik
N (0) = - 0*NE (), (67

where w stands for eithew, or ws, the low frequencies. ek,
Equation(67) is the desired mode-coupling equation, and it gt (wl)—
remains for us to evaluate the coupling terms on the right-

hand side. In writing Eq(67), we tacitly assumed that the Omitting the details, we only present essential intermediate
amplitude of the light wave is of order(weak pump. When  steps in the following. From Ed23a we have

one evaluates the coupling terms, one needs the elevation of

the perturbed interface oscillating with frequenay, which Qu(w,) =1 plE 1 F* (wg)elf2~(artag)x (69)

is obtained from the linear equationé™(w;)/ot=v{"

X (w4) as, with the aid of Eq(14), Q,(wy) = ugE  F* (wg)e P2~ (aatagx (70)

|(klzo wlto) (68)

1
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where wherel ;3 and 5 are obtained fronk’, and 7, , respectively,

X by interchanging the subscripts 2 and 3. Equatigf$ and
ew, (80) will be solved in the parametric approximation in the

B Mawsc?’ (7D pext section.
a; ki VI. PARAMETRIC INSTABILITY
|:(al+a3) k_+_ y (72)

1 a3 In this section we consider the parametric instability, and

K the group velocity terms in Eq%77) and (80) will be ne-

g=k, ﬂ_,_ 8 , (73 glected assuming tha/ ot,> (dw/ k) (d/dz;). At the onset
ki a3 of a parametric instability this inequality is always valid. We

) ) also introduce a small frequency mismatahin the reso-
and 6,=kZo— woly, @i=a(w; k) (i=1,2,3). Equations nance matching conditionsA = w,+ ws—w;. Then Egs.

(21) and(22) can be solved to give (77) and (80) are written as
E (0) ): — Mg E E*(w )ei02—(a1+a’3)x (74) J ~ ., ~ it A
252 (a2-K2) T 3 ’ Rl"'rz Flwg)=inEF" (w3)e™?, (81
E,(w,)=— ilu E T:'*(w )eiﬁzf(aﬁas)x (75) d ~ . ~ .
AT (a-ky) T TR ' ot TTs|Flwg)=i MELF* (wp)e's, (82

From Eq.(64), we obtain where 7z, and 73, the coefficients in Eq477) and(80), are

NG el alk§ K, 6 rgal. One can easily eliminaf&(w,) in the above two equa-
W(wy)=iuc kz+ w, Kwsas o (76)  tions to get
, : PA A
After spending a considerable amount of algebra to calculate — +(IA+T,—T3) ——QA=0, (83)
the whole right-hand side of E@67), we finally obtain aty dty
Jd  dwy 9 = whereA=F* (w3)e'3" and
(atl+ ok, 92, T12|Flw2) L,
iew)7, |Ex IZ(%) 7273
_ p =x X
= E..F , 7 mwl
&Dz((x)z,kz) x ((U3) ( 7) Q= 9D oD (84)
mwlw?,wZKZT w3k k 2773
2 3Waha 3‘90)2 07(1)3
where with D;=D(w; ,k;) (i=2,3).
V(K2+ a2) w2 We consider the threshold and growth rate of the instabil-
r,= 2_27p (78 ity. Setting d/dt;=i(w3— w)+ T3, Eq. (83) gives the fol-
20303 ID(wz,Kz) lowing dispersion relation:
203 dw,
(w—w3)2+(w—w3)(IF2+IF3—A)—F2F3—IF3A+Q=0,
is the effective collision frequency (85
kot ks ws K3 N w5 k§ a;  Ks which is the standard form for the dispersion relation of the
2= Kz a3 03 alkl azw1 ay\ Ky | as parametric instability[22]. After separating this equation

(79 into real and imaginary parts, witlw—wz=x+iy, and
eliminatingx, we get

and we used Ed59). If we assume that the interface is fixed
and unmoving, the coupling coefficient reduces to the last
term in Eq.(79). That is, the first two terms isy, come from
the rippling of the interface. The evolution equation for the
amplitude of thew; frequency takes the form If the value of() is not large enough, E486) can be satis-
fied by a negative value of. For instability />0), it is
seen by inspection tha® should be greater than at least
I',I'; (whenA=0). The threshold value & for instability
is obtained by setting=0 in Eq. (86),

AZ

(y+To)(y+T3) 1+(2y+T2+F3) =Q0. (86

0wy 0 e
4
ot T 9k, gz, L8| F(@d)

; 2
1ewy”n3 ~
PDy(wa kg (@2 (€0

8w3

AZ
mw1w2w3k3 ch=F2T3( 1+ —) . (87)

(F+T3)?
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FIG. 3. Growth ratdright-hand side of Eq(91)] versus light

FIG. 2. The frequencies and wave numbers of the high-,,ye frequency.

frequency light wave meeting the three-wave resonant conditions.

In the following, we shall seh =0 and take the threshold fact that the surface wave frequency is less thav2.
value asl',I'5, and then the condition of instability is given ThUS®; cannot be greater thaf2w;,. For the resonant tri-

as(Q>T',I"5, which can be written in the form

4¢?| E1x|2> k2koka(k3+ a3) (k3+ a?)

c’m?r?

. (88
M2 m3a5a3 SIT 0

In writing Eq. (88), we used Eq(8). We numerically calcu-
lated the right side quantity for the resonant tridBy. 4).
The maximum growth rate,, above the threshold is ob-
tained whemMA =0 in Eq. (86):

Ym=3{V(I2—T3)?+4Q— (I, +T3)}.

We assume that the value Qfis slightly above the threshold
I, ie., Q=I5+ 80 with 5Q<I'3,T3.
Expanding the square root in E@®9), we have

(89

50
Y= T4 Ty

(90

That is, the growth rate just above the threshold is inversely

proportional to {",+1I'3). Using Eq.(78), we have

v 1 k3+ a3 kK3+a3 | 7t ©1)
2(T,+T3)  o? 3,302 5 59Ds
2 2_(9(”2 393 0y

Equationg88) and(91) give, respectively, the dimensionless

threshold and growth rate for the resonant triads which sat- L ! ! ! ! .

isfy the matching condition§). We first solved the match-
ing condition Eq.(2) numerically and plotted it in Fig. 2,

where the high-frequency wave resonant frequencies and

wave numbers are represented on the dimensiontesk()

ads for which the high-frequency wave belongs to the roots
shown in Fig. 2, we plotted the right-hand sides of E3fl)
(growth rate and Eq.(88) (threshold, respectively, in Figs.

3 and 4. Figure 3 indicates that the higher the light wave
frequency is, the faster the surface wave grows. This illus-
trates the tendency of the short wave components of the sur-
face wave to be more easily excited than the long wave com-
ponents. In the approximation employed to derive €4,

the rippling effect of the boundary does not manifest itself in

12 13
. 0.9 R
0g. 10

100 . -
£
Y
[0]

@ 10 i
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)]
o
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'—

1 f— -

0.9 1.0 1.1 1.2 1.3 1.4 1.5
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FIG. 4. Threshold[right-hand side of Eq(88)] versus light

plane. The restrictions on the dispersion of the high-wave frequency for different wave numbers. Satidtted line rep-

frequency wave[Egs. (6)—(8)] require thatw;>ck; and
wi<wi<wj+c?ki. The upper limit ofw; comes from the

resents the case where the boundary is ffized). The numbers on

the curves represent the valuesodd / w, .
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the growth rate. In Fig. 4, we plotted the threshold both whercoupled mode equations, we presented a method which is
the boundary is rippling(solid curve and fixed (broken capable of dealing with the kinematics of the rippling free

curve. It is interesting to note that the right-hand side of Eg.boundary. The nonlinear boundary conditions are formulated
(88) is negative if the rippling effect of the boundary is ne- in terms of the surface charge and volume currents. The sur-
glected, provided that the light wave frequency is not bigface wave equ_ation, whosg solutions involve a power series
enough. In Fig. 4, we plotted only the positive values of thein the perpendicular coordinate, can be conveniently solved
right-hand side of Eq(88) as dotted lines whose values are in operatorial form, and two-scale analysis can be straight-
obtained fromy [Eq. (79)] retaining only the fixed boundary forwardly carried out. We solved the coupled mode equa-
term. A negative value of threshol) means that, in view tions in the parametric approximation and calculated the
of Eq. (86), no instability occurgeven though the resonance thresholds and growth rates. The dominant nonlinearities re-

conditions are mét If the rippling effect is included, all the SPonsible for the parametric instability are the&B force
resonant triads give rise to instability. and the rippling effect of the free boundary. The nonlinear

current is absent. If the boundary is assumed fixed, not all of
the resonant triads give rise to instability. This feature of
instability may be attributed to the absence of nonlinear cur-

We investigated a decay instability in which a high- rents. However, if the kinematics of rippling are included,
frequency light wave decays into two daughter waves ofarametrically unstable interactions are given rise to by all of
low-frequency TM mode surface wave. In deriving thethe resonant triads.

VIl. SUMMARY
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