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Parametric coupling of a light wave and surface plasma waves

Hee J. Lee* and Sang-Hoon Cho
Department of Physics, Hanyang University, Seoul 133-791, Korea

~Received 17 June 1998!

A three-wave decay interaction in which ap-polarized light wave transmitted from vacuum into a plasma
decays into two surface waves of transverse magnetic mode~surface polariton! is investigated. Nonlinear
boundary conditions for the surface waves are formulated in terms of the surface charge and the body current,
taking a full account of the rippling of the free boundary. The mode-coupling equations are derived and solved
in the parametric approximation to obtain the threshold and the growth rate. We assess the relative strength of
the kinematic and the dynamic nonlinearities in the parametric interaction.@S1063-651X~99!13202-1#

PACS number~s!: 52.35.Mw, 52.40.Db
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I. INTRODUCTION

During the past few decades, extensive investigati
have been made on nonlinear wave interactions and para
ric instabilities in infinite plasmas@1–3#. However, such in-
vestigations for bounded plasmas are rather few. It is w
known that surface waves can propagate along the inter
of a plasma and vacuum~or dielectric! @4,5#. Surface waves
can be used for plasma diagnostics@6# and for sustaining a
plasma which can be used in plasma processing@7#. Further-
more, surface waves are relevant to laser fusion@8# and to
astrophysical problems in the magnetosphere and in the s
corona@9#.

In view of the various applications and occurrences
surface waves, it would be interesting to consider wave-w
interactions involving surface waves. Atanassovet al. @10#
considered a nonlinear interaction of three high-freque
electrostatic surface waves which produce a low-freque
density perturbation. Aliev and Brodin@8# investigated the
excitation of a surface wave and a volume plasma wave in
inhomogeneous plasma by ap-polarized pump wave. Brodin
and Lundberg@11# considered the same problem includin
thermal effects. Lindgrenet al. @12# developed a genera
theory of three-wave interactions in plasmas with sh
boundaries by using the diffuse charge distribution mode

In this work, we investigate the parametric decay o
light wave into two transverse magnetic~TM! mode surface
waves in a plasma bounded by vacuum. We include the
formability of the boundary and assess the rippling effects
the boundary on the parametric interactions. A TM mo
surface wave is a low-frequency electron surface wave w
both the longitudinal and transverse components with res
to the propagation vector. The dispersion relation reads

v25c2k21
vp

2

2
2 1

2 Avp
414c4k4, ~1!

wherev and k denote, respectively, the frequency and t
wave number,c is the speed of light in vacuum, andvp is
the electron plasma frequency (5A4pNe2/m). The light
wave in the plasma that we consider is a dispersionless w
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whose phase velocity is constant and is dealt with in deta
Sec. II. The decay of the light wave of frequencyv1 and
wave numberk1 into two TM mode surface waves of fre
quenciesv2 and v3 and wave numbersk2 and k3 requires
the resonance matching conditions

v15v21v3 ,
~2!

k15k21k3 .

We show later that the resonance conditions~2! can be met
easily and there would be numerous events of the reson
interactions.

In this work, we assume that the three waves propagat
thez direction and that the unperturbed interface is the pla
x50, separating the plasma (x.0) and vacuum (x,0). We
also assume that the plasma is a linear medium with res
to the high-frequency light wave, but nonlinear with respe
to the low-frequency TM mode surface wave. In order
investigate the nonlinear surface wave, all the nonlineari
which could be responsible for the resonant interaction
retained in this work. Especially, nonlinear boundary con
tions are used for the TM mode surface wave and spe
attention was paid to the rippling effect of the deformab
free boundary. When the boundary is fixed and unmovi
the important nonlinearity is dynamic nonlinearity (v•“v
and v3B force!. If the boundary is deformable, the kine
matic nonlinearity plays a role. We assessed the relative
portance of these two nonlinearities on the parametric de
instability.

The present analysis of decay instability of the TM mo
surface waves may be of importance for many applicati
since laboratory plasmas are bounded. Furthermore,
model used in this work may have direct relevance to
heating of laser-produced plasma, ionospheric plasma of
boundary layer, and the solar corona since the excited
face waves should be damped by the particles, leading
surface heating.

The paper is organized as follows. In Sec. II, the hig
frequency light wave which is transmitted to plasma fro
vacuum is described and its dispersion relation is derived
Sec. III, nonlinear equations for the low-frequency TM mo
surface wave are formulated and homogeneous solutions
obtained. In Sec. IV, nonlinear boundary conditions are
3503 ©1999 The American Physical Society
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up allowing for the rippling effect of the moving boundar
In Sec. V, perturbation analysis is carried out for the non
ear equation and the mode-coupling equation is derived
Sec. VI, the coupling equation is solved in the parame
approximation to find the thresholds and growth rates.
discussion is furnished in Sec. VII.

II. HIGH-FREQUENCY LIGHT WAVE

We envisage that the pump wave of frequencyv1 , polar-
ized parallel to the plane of incidence (x-z plane!, is incident
upon the interfacex50 between the plasma (x.0) and
vacuum (x,0) from the vacuum side with an angle of inc
denceu0 . The electric field of the pump wave can be writte
as

E05E0~ x̂ sinu02 ẑcosu0!ei ~v1 /c!~x cosu01z sin u0!2 iv1t.
~3!

Then the reflected and transmitted waves appear, which
the forms

E085E08~ x̂ sinu01 ẑcosu0!ei ~v1 /c!~2x cosu01z sin u0!2 iv1t,
~4!

E15~ x̂E1x1 ẑE1z!e
2a1xeik1z2 iv1t. ~5!

The transmitted waveE1 is represented by Eq.~5! only when

sinu0.A«1, ~6!

where«1512vp
2/v1

2 is the dielectric constant of the plasm
in response to the pump wave. Just in the case in wh
sinu05(12vp

2/v1
2)1/2, the internal reflection occurs, and w

havea150 andE1z50 @13#. The condition~6! restricts the
pump frequency to the window defined by@9#

vp,v1,
vp

cosu0
. ~7!

Using the continuity of the tangential components of t
electric and magnetic fields and the normal component
the electric displacement, one finds

k15
v1

c
sinu0 , ~8!

a15
v1

c
Asin2 u02«1, ~9!

E1x5
ck1

v1«1

2E0

11
ia1 tanu0

k1«1

, ~10!

E1z52
ia1

k1
E1x . ~11!

Equation~8! is the dispersion relation of the high-frequen
light wave propagating in the plasma transmitted from
vacuum with the angle of incidenceu0 . Equation ~11! is
obtained from“•E50. The transmitted fieldE1 gives rise to
-
In
c

ke

h

of

e

the following magnetic field and electron velocity comp
nents oscillating with the frequencyv1 in the plasma:

By~v1!5
v1«1

ck1
E1xe

iu12a1x, ~12!

vz~v1!5
2 ie

mv1
E1ze

iu12a1x, ~13!

vx~v1!5
2 ie

mv1
E1xe

iu12a1x, ~14!

where

u15k1z2v1t, ~15!

and we used the linear electron equation of motion,

m
]v

]t
52eE.

III. LOW-FREQUENCY EQUATIONS

To describe the nonlinear low-frequency surface wa
we use the following set of fluid and Maxwell equations:

]n

]t
1“•@~n1N!v#50, ~16!

S ]

]t
1n D v1v•“v52

e

m S E1
1

c
v3BD , ~17!

“•E524pen, ~18!

“3E52
1

c

]B

]t
, ~19!

“3B5
1

c

]E

]t
2

4pe

c
~N1n!v. ~20!

In the above, linear terms represent the low-frequency (v2 or
v3) surface wave quantities, and the quadratic terms
beatings of the high-frequency waves with another lo
frequency wave to excite the low-frequency wave under c
sideration. In Eq.~17!, n represents the collision frequenc
We can discard the nonlinear currentnv in Eqs. ~16! and
~20! because the density perturbationn50 for the high-
frequency light wave as well as for the low-frequency s
face wave as shown later@see Eq.~60c!#. It should be noted
that our low-frequency variables are the TM mode
(Ex ,Ez ,vx ,vz ,By), and the rest can be set to zero. The a
plitude of the surface wave varies in thex direction while
propagating in thez direction, and they coordinate can be
assumed to be ignorable (]/]y50). EliminatingB between
Eqs.~19! and ~20!, one obtains

F 1

c2

]2

]t2 1
vp

2

c2

]

]t S ]

]t
1n D 21GF ]2

]x22A2GEz

5
]

]t S ]

]t
1n D 21S A2Qz2

]2Qx

]x]zD , ~21!



at

h
e
s

t

th
.

e

igh-

op-

ries

ua-

-

d
of

an
ns
the
ous

PRE 59 3505PARAMETRIC COUPLING OF A LIGHT WAVE AND . . .
]2Ez

]x]z
1A2Ex52

]

]t S ]

]t
1n D 21

Qx , ~22!

where

Q5
4peN

c2 S v•“v1
e

mc
v3BD , ~23a!

A5H 1

c2

]2

]t2 1
vp

2

c2

]

]t S ]

]t
1n D 21

2
]2

]z2J 1/2

. ~23b!

Some remarks are in order regarding the inverse oper
(]/]t1n)21 and the operatorsA or A21 used in the follow-
ing. These operators act on the two-scale functions suc
f (z1 ,t1)eikz02 ivt0, wherez0 and t0 are fast space and tim
variables, andz1 and t1 are slow variables. The derivative
]/]t and ]/]z are derivative-expanded in the fashion]/]t
5]/]t01«(]/]t1) and ]/]z5]/]z01«(]/]z1), where« is
the expansion parameter. Takingn as a quantity of order«,
we can expand as

S ]

]t
1n D 21

5S ]

]t0
D 21

2«S ]

]t0
D 22S ]

]t1
1n D , ~24!

which obviously satisfies the relation (]/]t1n)(]/]t
1n)2151. Since]/]t052 iv and ]/]z05 ik, these opera-
tors and their inverses are in fact algebraic quantities, and
meaning of the inverse operator in Eq.~24! is not ambigu-
ous. An operator involving inverse~21! or ~1

2! power will be
derivative-expanded by binomial theorem as was done in
above and the meaning ofA or A21 is not also ambiguous
Therefore, we can expand the operatorA in Eq. ~23b! as

A5A01«A15a1 i«S ]a

]v

]

]t1
2

]a

]k

]

]z1
D1«n

]A

]nU
0

,

~25!

where

]A

]nU
0

5
2 ivp

2

2c2va
, ~26!

evaluating the derivative atn5]/]t15]/]z150, and

a~k,v!5S k21
vp

22v2

c2 D 1/2

. ~27!

Likewise we have

A215~A21!01«~A21!1

5a211 i«S ]a21

]v

]

]t1
2

]a21

]k

]

]z1
D1«n

ivp
2

2c2va3 .

~28!

In the vacuum, the low-frequency electric field is determin
by

S ]2

]x22L2DEz50, ~29!
or

as

he

e

d

L2Ex1
]2Ez

]x]z
50, ~30!

whereL is an operator defined by

LS ]

]t
,

]

]zD5S 1

c2

]2

]t22
]2

]z2D 1/2

. ~31!

We first discuss the vacuum solutions. Thex dependence of
the functionEz in Eq. ~29! is usually sought in the form of a
power series, as is often done in the water wave or Rayle
Taylor instability problems@14,15#. In fact, the derivation of
the power series solution is facilitated by regarding the
erators]/]t and]/]z as algebraic quantities. Then Eq.~29!
is solved by

Ez~x,z,t !5exL~]/]t,]/]z!W~z,t !, ~32!

where the exponential function should read as a power se
and the operatorL acts on the unknown functionW which is
determined from the appropriate boundary conditions. Eq
tion ~30! yields

Ex~x,z,t !52exLL21
]W

]z
. ~33!

The perturbation expansion of the operatorL parallels that of
A: settingvp5n50 in Eqs.~25! and ~28! gives the corre-
sponding formulas forL with the replacement ofa→l,
where

l5S k22
v2

c2 D 1/2

. ~34!

Turning to the plasma equations~21! and ~22!, we note that
the solutionEz as well asEx consists of two parts, the ho
mogeneous and the particular solutions:

Ez5EzH1EzS. ~35!

The homogeneous solutionEzH solves Eq.~21! with the
right-hand side set to zero and thus can be written as

EzH5e2xA~]/]t,]/]z!F~z,t !, ~36!

whereF(z,t) is an unknown function yet to be determine
by the boundary conditions. The homogeneous solution
Ex is determined from Eq.~22!:

ExH5e2xAA21
]F

]z
. ~37!

The particular solutionsEzS and ExS of Eqs. ~21! and ~22!
are determined with the right-hand sides constructed by
iterative procedure, i.e., by using the lower-order solutio
for the quadratic terms. In our perturbation scheme,
lowest-order solutions are extracted from the homogene
solutions.
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IV. BOUNDARY CONDITIONS

The solutions of the equations formulated in the preced
section for the plasma and the vacuum regions should
matched on the interface

S~x,z,t !5x2j~z,t !50, ~38!

through appropriate boundary conditions. Firstu, the normal
velocity of the moving boundaryS(x,z,t), is expressed by

u5
]j/]t

A11S ]j

]z
D 2

, ~39!

and the unit vector normal to the surfaceS50 denoted byn̂
is

n̂5
x̂2 ẑ]j/]z

A11S ]j

]z
D 2

. ~40!

The kinematic relationu5n̂•vuj gives the equation

vxuj5
dj

dt
5

]j

]t
1vz

]j

]z
, ~41!

as expected. The boundary conditions on the moving in
face have been obtained in Kruskal and Schwarzschild@16#,
and we have

@ n̂3E#5
u

c
@B#, ~42!

@ n̂•E#54ps, ~43!

where the bracket@B#5B(plasma)-B(vacuum) is evaluated
at x5j. Other bracketed quantities also have a similar me
ing. In Eq. ~43!, the surface charge densitys is given by
Sedov@17#,

]s

]t
1n̂•J1“•Ji* 50, ~44!

whereJi* is the surface current density flowing on the inte
face and will be assumed to be zero. It would be instruct
to derive Eq.~44! alternatively. By definition, we have

s52eE
2d

d
n dx,

where the surface charge layer is denoted by the ra
~2d,d!, and the limitd→0 is implied by assuming that th
interfacex50 is fixed for simplicity. Using Eq.~16! gives

]s

]t
5eE

2d

d H ]

]x
@~n1N!vx#1

]

]z
@~n1N!vz#J dx.

~448!

The first integral ise@(n1N)vx#015Jx . Equation~44! is a
generalization of Eq.~448!. Here we note that the secon
g
e

r-

n-

e

ge

integral of Eq.~448! can give rise to higher-order surfac
currents@18,19#, but we neglect those terms in this work fo
simplicity.

Using u5n̂•v in Eq. ~44! yields

]s

]t
5e~n1N!

]j/]t

A11S ]j

]z
D 2

. ~45!

The y component of Eq.~42! reads

2@Ez#5
]j

]z
@Ex#1

1

c

]j

]t
@By#. ~46!

Equations~43! and ~45! yield

@Ex#24peNj5@Ez#
]j

]z
. ~47!

In writing Eq. ~47!, we neglected terms ofO(«3). The sur-
face elevationj has all three components of high and lo
frequencies. Equations~46! and ~47! are general jump con
ditions valid for both high- and low-frequency waves. Th
last term of Eq.~46! can be omitted since@By#50 in the
linear approximation for both the light wave and the surfa
wave. If Eq.~46! is used in Eq.~47! for @Ez#, the last term of
Eq. ~47! turns out to be of«3 order, and can be neglecte
Thus we have

@Ez#52
]j

]z
@Ex#, ~468!

@Ex#54peNj. ~478!

The linear equation~478! is nothing but the continuity of the
normal component of the electric displacement vectorD
5«dE («d is the dielectric constant! @20#. Equation~468! is
the nonlinear version for the jump of the tangential comp
nent of the electric field.

Using Eqs.~32! and ~36!, Eq. ~468! is rewritten as

F2W5j~AF1LW!24peNj
]j

]z
2EzS~j![NB~j!,

~48!

where we expanded the exponential operators.
It seems more advantageous to have the homogen

solutions explicitly appear in Eq.~478!. Differentiating Eq.
~478! with respect tot gives

]

]t H e2jAA21
]F

]z
1ExS~j!1ejLL21

]W

]z J
54peNH vx~j!2vz~j!

]j

]zJ , ~49!

where we used Eq.~41!.
Inverting Eq.~17! yields

vxH~j,z,t !52
e

m
e2jAA21S ]

]t
1n D 21 ]F

]z
, ~50!



.
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vxS~j,z,t !52F S ]

]t
1n D 21S e

m
ExS~x,z,t !1

c2

4peN
Qx~x,z,t ! D G

x5j

, ~51!

where the subscriptsH andS correspond, respectively, to the homogeneous and particular solutions. Differentiating Eq~49!
with respect tot again and using Eqs.~49! and ~50!, one obtains

]2

]t2 H e2jAA21
]F

]z
1ejLL21

]W

]z J 1vp
2e2jAA21

]

]t S ]

]t
1n D 21 ]F

]z

54peN
]

]t
vxS~j!24peN

]

]t S vz~j!
]j

]zD2
]2

]t2 ExS~j!1vp
2 ]j

]t
e2jAS ]

]t
1n D 21 ]F

]z

[NA~j!. ~52!
e
e

tr

th

qs
n
in

e

th

s

reak

a:
Equations~48! and ~52! are the two equations which w
analyze in the multiple scale perturbation scheme in the n
section. The right-hand sides of Eqs.~48! and ~52! contain
the quadratic terms which are responsible for the parame
interactions. The lowest-order solutions of Eqs.~48! and~52!
are the linear solutions which will be used to construct
right-hand sides by an iterative procedure.

V. PERTURBATION ANALYSIS

In this section we carry out a perturbation analysis of E
~48! and~52! to derive coupled mode equations for the no
linear wave interactions among the three waves satisfy
the resonance conditions~2!. In Fig. 1, we plotted the dis-
persion curves given by Eq.~8! of the high-frequency light
wave~L! and Eq.~1! of the low-frequency TM mode surfac
waves~S!. It is shown that the resonance conditions~2! can
be easily met by constructing a parallelogram. The tips of
arrow falling on curveL give the values ofv1 andk1 while
the tips of the arrows on curveS give the values of (v2 ,k2)

FIG. 1. Dispersion curves of light wave~L! and surface wave
~S! and a resonant triad.
xt

ic

e

.
-
g

e

and (v3 ,k3). In Fig. 1, the angle of incidenceu0 , which
gives the slope of the straight lineL, is taken to be 30° as a
typical value.

We expand the various quantities in Eqs.~48! and~52! in
the perturbation series as

F~z,t !5«F ~1!~z0 ,t0 ,z1 ,t1!1«2F ~2!1¯ . ~53!

The quantitiesW, j, vx , By , ExH , andEzH are expanded in
the fashion of Eq.~53!. However, the particular solutionsExS
andEzS are expanded as

ExS5«2ExS
~2!1«3ExS

~3!1¯ , ~54!

although we do not need the«3-order terms. The operator
are already expanded in Sec. III.

By means of the above perturbation scheme, we can b
down Eqs.~48! and ~52! order by order. In the« order, we
have the relations

L0F ~1!50 ~55!

with

L05S ]2

]t0
2 1vp

2D ~A21!0

]

]z0
1

]2

]t0
2 ~L21!0

]

]z0
~56!

and

F ~1!5W~1!. ~57!

Equation~55! admits the solution in the form

F ~1!~z,t !5F̃~z1 ,t1!eiu ~58!

with u5kz02vt0 and the linear dispersion relation@20,21#,

D~k,v!5
1

l
1

1

a S 12
vp

2

v2D 50, ~59!

wherea andl have been introduced in Eqs.~27! and ~34!.
Equation~59! can be solved to give Eq.~1!. Corresponding
to F (1), we have the following linear solutions in the plasm

vx
~1!5

ek

mva
e2xaF̃eiu, ~60a!
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vz
~1!52

ie

mv
e2xaF̃eiu, ~60b!

n~1!50, ~60c!

By
~1!52 i

c

v S a2
k2

a De2xaF̃eiu, ~60d!

j~1!5
iek

mv2a
F̃eiu. ~60e!

Likewise the«-order vacuum solutions of the surface wa
are

Ez
~1!5exlF̃eiu, ~60f!

Ex
~1!52

ik

l
exlF̃eiu, ~60g!

By
~1!52

iv

cl
exlF̃eiu. ~60h!

It may be seen thatBy
(1) and Ez

(1) are continuous acrossx
50 in the linear approximation. When we evaluateNA(j)
and NB(j) in Eqs. ~48! and ~52!, we need the quantities a
the boundaryx5j. The exponential factore2ja512ja
1(j2/2)a1¯ generates all the higher-order terms. Sin
we need only the quadratic terms, it is sufficient in this wo
to evaluate the boundary values atx50 in Eqs.~60!.

Next we move on to the«2-order equations. Equation
~48! and~52! yield in the«2 order, takingn as a quantity of
e order,

L0F ~2!1L1F ~1!5nvp
2A0

21S ]

]t0
D 21 ]F ~1!

]z0
1vp

2j~1!
]F ~1!

]z0

1
]2

]t0
2 L0

21 ]

]z0
NB

~2!~j !1NA
~2!~j !, ~61!
.
i

h
e

n

e

W~2!5F ~2!2NB
~2! , ~62!

where

L15S ]2

]t0
2 1vp

2D H ~A21!1

]

]z0
1A0

21 ]

]z1
J 12

]2

]t0]t1

3~A0
211L0

21!
]

]z0
1

]2

]t0
2 S ~L21!1

]

]z0
1L0

21 ]

]z1
D ,

~63!

NA
~2!54peN

]

]t0
vxS

~2!~j50!24peN
]

]t0
H vz

~1!~j50!
]j~1!

]z J
2

]2

]t0
2 ExS

~2!~j50!1vp
2H ]j~1!

]t0
S ]

]t0
D 21 ]F ~1!

]z0
J , ~64!

NB
~2!~j !5j~1!~A0F ~1!1L0W~1!!

24peNj~1!
]j~1!

]z0
2EzS

~2!~j50!. ~65!

TheL1F (1) term in Eq.~61! can be shown to reduce to

kv2S ]D

]v

]F ~1!

]t1
2

]D

]k

]F ~1!

]z1
D ~66!

upon using the dispersion relation~59!. If Eq. ~61! reads as
the v2-frequency equation, theL1F (1) term and the
v2-frequency term on the right-hand side generated by
beats satisfying the resonance matching conditions~2! cause
the secularity when one attempts to solve Eq.~61! for F (2).
All these secularity-causing terms should be removed by
quiring that
kv2S ]D

]v

]

]t1
2

]D

]k

]

]z1
DF ~1!1nH S ]2

]t0
2 1vp

2D ivp
2

2c2va32vp
2A0

21S ]

]t0
D 21J ]F ~1!

]z0

5vp
2S j~1!

]F ~1!

]z0
D

v

1NA
~2!~v!2

ik

l
v2NB

~2!~v!, ~67!
iate
where v stands for eitherv2 or v3 , the low frequencies
Equation~67! is the desired mode-coupling equation, and
remains for us to evaluate the coupling terms on the rig
hand side. In writing Eq.~67!, we tacitly assumed that th
amplitude of the light wave is of order« ~weak pump!. When
one evaluates the coupling terms, one needs the elevatio
the perturbed interface oscillating with frequencyv1 , which
is obtained from the linear equation]j (1)(v1)/]t5vx

(1)

3(v1) as, with the aid of Eq.~14!,
t
t-

of

j~1!~v1!5
eE1x

mv1
2 ei ~k1z02v1t0!. ~68!

Omitting the details, we only present essential intermed
steps in the following. From Eq.~23a! we have

Qx~v2!5 im lE1xF̃* ~v3!eiu22~a11a3!x, ~69!

Qz~v2!5mgE1xF̃* ~v3!eiu22~a11a3!x, ~70!
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where

m5
evp

2

mv1v3c2 , ~71!

l 5~a11a3!S a1

k1
1

k3

a3
D , ~72!

g5k2S a1

k1
1

k3

a3
D , ~73!

and u25k2z02v2t0 , a i5a(v i ,ki) ( i 51,2,3). Equations
~21! and ~22! can be solved to give

Ez~v2!5
2mg

~a2
22k2

2!
E1xF̃* ~v3!eiu22~a11a3!x, ~74!

Ex~v2!52
i l m

~a2
22k2

2!
E1xF̃* ~v3!eiu22~a11a3!x. ~75!

From Eq.~64!, we obtain

NA
~2!~v2!5 imc2H k31v2S a1k3

2

k1v3a3
2

k1

v1
D J . ~76!

After spending a considerable amount of algebra to calcu
the whole right-hand side of Eq.~67!, we finally obtain

S ]

]t1
1

]v2

]k2

]

]z1
1G2D F̃~v2!

5
ievp

2h2

mv1v3v2
2k2

]D2~v2 ,k2!

]v2

E1xF̃* ~v3!, ~77!

where

G25
n~k2

21a2
2!vp

2

2a2
3v2

3 ]D~v2 ,k2!

]v2

~78!

is the effective collision frequency

h252k21
k3

a3

v2

v3
S a1

k3

k1
1a2

v2

v1
D2

k2
2

a2
S a1

k1
1

k3

a3
D
~79!

and we used Eq.~59!. If we assume that the interface is fixe
and unmoving, the coupling coefficienth2 reduces to the las
term in Eq.~79!. That is, the first two terms inh2 come from
the rippling of the interface. The evolution equation for t
amplitude of thev3 frequency takes the form

S ]

]t1
1

]v3

]k3

]

]z1
1G3D F̃~v3!

5
ievp

2h3

mv1v2v3
2k3

]D2~v3 ,k3!

]v3

E1xF̃* ~v2!, ~80!
te

whereG3 andh3 are obtained fromG2 andh2 , respectively,
by interchanging the subscripts 2 and 3. Equations~77! and
~80! will be solved in the parametric approximation in th
next section.

VI. PARAMETRIC INSTABILITY

In this section we consider the parametric instability, a
the group velocity terms in Eqs.~77! and ~80! will be ne-
glected assuming that]/]t1@(]v/]k)(]/]z1). At the onset
of a parametric instability this inequality is always valid. W
also introduce a small frequency mismatchD in the reso-
nance matching conditions;D5v21v32v1 . Then Eqs.
~77! and ~80! are written as

S ]

]t1
1G2D F̃~v2!5 ih28E1xF̃* ~v3!eit 1D, ~81!

S ]

]t1
1G3D F̃~v3!5 ih38E1xF̃* ~v2!eit 1D, ~82!

whereh28 andh38 , the coefficients in Eqs.~77! and~80!, are

real. One can easily eliminateF̃(v2) in the above two equa
tions to get

]2A

]t1
2 1~ iD1G22G3!

]A

]t1
2VA50, ~83!

whereA5F̃* (v3)eG3t1 and

V5

uE1xu2S evp
2

mv1
D 2

h2h3

v3
3v2

3k2k3

]D2

]v2

]D3

]v3

~84!

with Di5D(v i ,ki) ( i 52,3).
We consider the threshold and growth rate of the insta

ity. Setting ]/]t15 i (v32v)1G3 , Eq. ~83! gives the fol-
lowing dispersion relation:

~v2v3!21~v2v3!~ iG21 iG32D!2G2G32 iG3D1V50,
~85!

which is the standard form for the dispersion relation of t
parametric instability@22#. After separating this equation
into real and imaginary parts, withv2v35x1 iy , and
eliminatingx, we get

~y1G2!~y1G3!H 11
D2

~2y1G21G3!2J 5V. ~86!

If the value ofV is not large enough, Eq.~86! can be satis-
fied by a negative value ofy. For instability (y.0), it is
seen by inspection thatV should be greater than at lea
G2G3 ~whenD50). The threshold value ofV for instability
is obtained by settingy50 in Eq. ~86!,

V th5G2G3S 11
D2

~G21G3!2D . ~87!
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In the following, we shall setD50 and take the threshol
value asG2G3 , and then the condition of instability is give
asV.G2G3 , which can be written in the form

4e2uE1xu2

c2m2n2 .
k1

2k2k3~k2
21a2

2!~k3
21a3

2!

h2h3a2
3a3

3 sin2 u0
. ~88!

In writing Eq. ~88!, we used Eq.~8!. We numerically calcu-
lated the right side quantity for the resonant triads~Fig. 4!.
The maximum growth rateym above the threshold is ob
tained whenD50 in Eq. ~86!:

ym5 1
2 $A~G22G3!214V2~G21G3!%. ~89!

We assume that the value ofV is slightly above the threshold
G2G3 , i.e., V5G2G31dV with dV!G2

2,G3
2.

Expanding the square root in Eq.~89!, we have

ym.
dV

G21G3
. ~90!

That is, the growth rate just above the threshold is invers
proportional to (G21G3). Using Eq.~78!, we have

n

2~G21G3!
5

1

vp
2 H k2

21a2
2

a2
3v2

3 ]D2

]v2

1
k3

21a3
2

a3
3v3

3 ]D3

]v3

J 21

. ~91!

Equations~88! and~91! give, respectively, the dimensionles
threshold and growth rate for the resonant triads which
isfy the matching conditions~2!. We first solved the match
ing condition Eq.~2! numerically and plotted it in Fig. 2
where the high-frequency wave resonant frequencies
wave numbers are represented on the dimensionless (v1 ,k1)
plane. The restrictions on the dispersion of the hig
frequency wave@Eqs. ~6!–~8!# require thatv1.ck1 and
vp

2,v1
2,vp

21c2k1
2. The upper limit ofv1 comes from the

FIG. 2. The frequencies and wave numbers of the hi
frequency light wave meeting the three-wave resonant conditio
ly

t-

nd

-

fact that the surface wave frequency is less thanvp /&.
Thusv1 cannot be greater than&vp . For the resonant tri-
ads for which the high-frequency wave belongs to the ro
shown in Fig. 2, we plotted the right-hand sides of Eq.~91!
~growth rate! and Eq.~88! ~threshold!, respectively, in Figs.
3 and 4. Figure 3 indicates that the higher the light wa
frequency is, the faster the surface wave grows. This ill
trates the tendency of the short wave components of the
face wave to be more easily excited than the long wave c
ponents. In the approximation employed to derive Eq.~91!,
the rippling effect of the boundary does not manifest itself

-
.

FIG. 3. Growth rate@right-hand side of Eq.~91!# versus light
wave frequency.

FIG. 4. Threshold@right-hand side of Eq.~88!# versus light
wave frequency for different wave numbers. Solid~dotted! line rep-
resents the case where the boundary is free~fixed!. The numbers on
the curves represent the values ofck1 /vp .
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the growth rate. In Fig. 4, we plotted the threshold both wh
the boundary is rippling~solid curve! and fixed ~broken
curve!. It is interesting to note that the right-hand side of E
~88! is negative if the rippling effect of the boundary is n
glected, provided that the light wave frequency is not b
enough. In Fig. 4, we plotted only the positive values of t
right-hand side of Eq.~88! as dotted lines whose values a
obtained fromh @Eq. ~79!# retaining only the fixed boundar
term. A negative value of threshold~V! means that, in view
of Eq. ~86!, no instability occurs~even though the resonanc
conditions are met!. If the rippling effect is included, all the
resonant triads give rise to instability.

VII. SUMMARY

We investigated a decay instability in which a hig
frequency light wave decays into two daughter waves
low-frequency TM mode surface wave. In deriving th
s

m

.

n

.

e

f

coupled mode equations, we presented a method whic
capable of dealing with the kinematics of the rippling fr
boundary. The nonlinear boundary conditions are formula
in terms of the surface charge and volume currents. The
face wave equation, whose solutions involve a power se
in the perpendicular coordinate, can be conveniently sol
in operatorial form, and two-scale analysis can be straig
forwardly carried out. We solved the coupled mode eq
tions in the parametric approximation and calculated
thresholds and growth rates. The dominant nonlinearities
sponsible for the parametric instability are thev3B force
and the rippling effect of the free boundary. The nonline
current is absent. If the boundary is assumed fixed, not a
the resonant triads give rise to instability. This feature
instability may be attributed to the absence of nonlinear c
rents. However, if the kinematics of rippling are include
parametrically unstable interactions are given rise to by al
the resonant triads.
s,

er.
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