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Fractal fluctuations in transcranial Doppler signals
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Cerebral blood flow~CBF! velocity measured using transcranial Doppler ultrasonography~TCD! is not
strictly constant, but has both a systematic and random component. This behavior may indicate that the axial
blood flow in the middle cerebral artery is a chaotic process. Herein we use the relative dispersion, the ratio of
the standard deviation to the mean, to show by systematically aggregating the data that the correlation in the
beat-to-beat CBF time series is a modulated inverse power law. This scaling of the CBF time series indicates
the existence of long-time memory in the underlying control process. We argue herein that the control system
has allometric properties that enable it to maintain a relatively constant brain perfusion.
@S1063-651X~99!11503-4#
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I. INTRODUCTION

Cerebral autoregulation is the phenomenon of maintain
relatively constant cerebral blood flow~CBF! over a wide
range of perfusion pressure and has been well document
animals and humans@1,2#. However, with the developmen
of technology allowing measurements with high resolution
time, such as transcranial Doppler ultrasonography~TCD!
and laser Doppler flowmetry, it has been recognized t
regulation of CBF is a dynamical process@3#. Beat-to-beat
CBF consists of measurements of a small amount of appa
‘‘noise’’ superimposed on a steady-state mean value. T
pattern is similar to other physiological systems, such
beat-to-beat variability of heart rate~HRV!. When investiga-
tors began processing HRV time series in more detail us
nonlinear dynamical techniques@4–8#, they discovered tha
that small amount of ‘‘noise’’ had a great deal of informatio
about the cardiac control system. A similar determinat
was made concerning the fluctuations in the stride interva
a normal human gait. Although the standard deviation in
fluctuations of the gait interval is only approximately 4%,
was found that, like heart rate variability, these fluctuatio
contain long-term memory and therefore provide informat
about the underlying control process@9–11#. The time series
for both human gait and HRV were determined to be frac
in nature, a consequence of the complex phenomenon th
being controlled. We hypothesize that because of nonlin
ity of the complex control system@1,2#, regulation of CBF is
likely to be a fractal statistical process.

Herein we examine the time series depicting the chan
in the cerebral blood flow velocity measured in the midd
cerebral artery in normal healthy subjects. Like the ECG a
gait time series, the time series of cerebral blood flow vel
ity consist of a sequence of waveforms. These waveforms
influenced by a complex feedback system involving a nu
ber of variables, such as arterial pressure, cerebral vas
resistance@12#, plasma viscosity@13#, arterial oxygen con-
tent @14#, arterial CO2 content@15#, as well as other factors
@6,16,17#.

The variability in the TCD signal was examined by K
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unenet al. @16# to determine if the apparently random flu
tuations in CBF are the result of random influences on
process or if they are the result of chaos. They use the
tractor reconstruction technique~ART!, along with the
Grassberger-Procaccia algorithm~GPA!, to analyze continu-
ous waveforms of TCD signals. They found evidence
chaos based on the fact that the correlation dimension,
tained by applying the GPA to the correlation function in t
embedding phase space, saturates to a constant value
increasing embedding dimension. They concluded ‘‘ . . . the
fact that a saturation is observed excludes a random
cess.’’ This conclusion, however, is not necessarily justifi
A number of investigators have established that a cha
time series and colored noise, that is, noise with an inve
power-law spectrum, will be indistinguishable using GP
see, for example, Osborne and Provenzale@18# and, for a
review, West@6#. Both chaos and colored noise process
have fractal dimensions, so that the conclusion reached
Keunanet al. @16# is weaker than they believed. This shor
coming was partially corrected in the sequel Keunanet al.
@17#, where the authors made use of the idea of a surrog
data set that could be used to discriminate between chaos
colored noise. The procedure is to randomize the phases
tween data points, thereby destroying the determinism i
chaotic signal, but not influencing colored noise in any su
stantial way. In this manner they showed that the pha
space portraits from ART lost their structure in the surrog
TCD data. Therein, they also used the fact that the larg
Lyapunov exponent was positive to interpret the TCD tim
series as chaotic. But again Provenzaleet al. @19# have es-
tablished that theK2 entropy, which is a lower bound on th
sum of the Lyapunov exponents, converges to zero fo
colored noise process. Therefore, finding a positive larg
Lyapunov exponent in a time series, in and of itself, is n
sufficient to conclude that the dynamical process is chao

A less ambitious approach to the processing of TCD tim
series data was taken by Rossitti and Stephensen@20#. They
processed the time series to determine if it is fractal a
rather than analyzing the continuous waveforms of TC
time series, they averaged CBF velocity over 1 s intervals,
3492 ©1999 The American Physical Society
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PRE 59 3493FRACTAL FLUCTUATIONS IN TRANSCRANIAL . . .
and over successive cardiac cycles, to obtain discrete
series. As in other physiological temporal fractals, the loss
complexity in physiological phenomena may be likened
senescence or disease conditions@7#. Rossitti and Stephese
@20# argue that such analysis of TCD data may become u
ful in clinical diagnosis. Instead of ART and GPA they~Ros-
sitti and Stephesen! used the relative dispersion, the ratio
the standard deviation to the mean, of the time series f
number of levels of aggregation of neighboring data poin
If t0 is the interval over which the time series is averag
then the relative dispersion is indicated byD(t0). If the
averaging intervals are now increased to 2t0,3t0 ,...,nt0 ,
the relative dispersion in each case is given
D(2t0),D(3t0),...,D(nt0). If the time series is a simple
fractal, then the aggregated relative dispersion has a po
law form @7#

D~nt0!5D~t0!n12D ~1!

so that if a plot of the aggregated relative dispersion is m
versus the aggregation numbern on log-log graph paper, on
obtains

lnD~nt0!5 lnD~t0!1~12D !ln n ~2!

and the fractal dimensionD is determined by the slope of th
straight line. Rossitti and Stephensen@20# obtain fractal di-
mensions from their discrete time series in the interva
,D,1.5, indicating a fractal random point process~FRPP!
with memory.

However, the nonlinear dynamical properties of TC
time series obtained in those previous studies are base
relatively short data segment analysis. Theoretically,
length of the time series should not make a difference in
analysis, because fractal or chaotic time series have no c
acteristic time scales, so the dynamics of the process ca
revealed over any time interval. However, in the real wo
the fractal character of an experimental time series is o
apparent over some longest and shortest time scale,
within this frequency band it is useful to characterize t
time series as fractal. We therefore need to distinguish
tween a mathematical fractal and a physiological fractal@6#
for the purposes of data analysis. The TCD time series,
pecially the continuous waveforms over the time scale
several cardiac cycles, is most likely determined by lin
properties of cerebrovascular impedance, rather than by
linear regulatory mechanisms@3,21#. Furthermore, analysis
based on short data segments by itself, whether fractal or
may cause unreliable results@7#. Thus, we reason that t
reveal the scaling properties of TCD time series, it is nec
sary to examine the data over an extended period which
ers a multitude of different time scales in the TCD tim
series.

Herein we make use of the relative dispersion of TC
time-series data over a duration of 2 h. For each pulse in
waveform we calculate a mean flow velocity. Thus,t0 in our
analysis is based on heartbeat numbers. However, we do
restrict our analysis of these data to the assumption o
simple fractal as done to obtain Eq.~1!. Instead we deter-
mine that the aggregated relative dispersion satisfie
renormalization-group relation whose solution yields, in a
dition to the inverse power law in Eq.~1!, a harmonic modu-
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lation of that inverse power law. The presence of this mo
lation is also evident in the data of Rossitti and Stephen
@20#, but they did not mention it in their discussion, focusin
instead on the interpretation of the inverse power-law beh
ior. The existence of this harmonic modulation is strong a
ditional evidence for the scaling or fractal properties of t
TCD data as we discuss.

In Sec. II we discuss the acquisition and processing
TCD time series using a renormalization-group approach
physical processes the solution to scaling equations, as
coarse-grain length scale is changed, is a fixed point of
renormalization-group transform. The repeated applicat
of the renormalization-group operation, which decimates
underlying temporal structure, captures successively the
fects of larger and larger scales of fluctuations on the larg
scale variations of interest. An explicit reference to fluctu
tions of a given scale is eliminated by coarse-graining. Th
effects are carried forward implicitly in the parameters of t
coarse-grained observable; see, for example Bruce and W
lace @22# for a more complete discussion. In Sec. III th
functional form for the relative dispersion developed in S
II is fit to the data. The agreement between theory and
TCD time-series data is quite good. In Sec. IV the phy
ological implications of the results are explored using t
properties of universality and scaling.

II. METHODS

A. Subjects

Six healthy subjects~five men and one woman! with a
mean age of 2968 years, height of 17767 cm, and weight
of 76614 kg, voluntarily participated in the study. All wer
nonsmokers and were free of known cardiovascular, pulm
nary, and cerebrovascular disorders. Each subject was
formed of the experimental procedures and signed a wri
consent form approved by the Institutional Review Boards
The University of Texas Southwestern Medical Center a
Presbyterian Hospital of Dallas.

B. Procedures and measurements

Cerebral blood flow velocity in the middle cerebral arte
~MCA! was obtained continuously for two hours in the su
jects at supine rest, using transcranial Doppler ultrasono
phy. A typical example of these time series is shown in F
1. This technique allows noninvasive and repeatable e
mates of changes in CBF on a beat-to-beat basis. A 2-M
Doppler probe~DWL Elektronische Systeme! was placed
over the temporal window and fixed at a constant angle
position with an adjustable headgear to obtain optimal s
nals from the MCA according to standard techniques,
American Academy of Neurology@23#.

C. Data analysis

Real time beat-to-beat mean values of CBF velocity w
calculated as waveform integration of the sampled peak
locity signal within each cardiac cycle divided by the corr
sponding pulse interval and stored for off-line analysis. W
label the mean velocity of thej th beat by Xj , with j
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3494 PRE 59B. J. WESTet al.
51,2,..., N, and we are interested in the statistics of t
beat-to-beat variability ofXj . For N beats the mean is give
by

X~1!5
1

N (
j 51

N

Xj ~3!

and the variance is given by

X2~1!5
1

N (
j 51

N

@Xj2X~1!#2 ~4!

so that the relative dispersion using all the data points is

DX~1!5
AX2~1!

X~1!
. ~5!

If the nearest-neighbor intervals~data points! are added to-
gether to form a data set of sizeN/2, the relative dispersion is
thenDX(2). Continuing the process of adding the near
neighbors yields time series withN/4, . . . ,N/2n data points
after n iterations of the procedure, so that we have for
relative dispersionsDX(4),DX(8),...,DX(2n). If the time se-
ries is a simple fractal, which is to say it has self-simi
statistical properties, we obtain a relation of the form~2! for
a log-log graph of the aggregated relative dispersion ve
the size of the aggregate.

Equation~1! has the form of the simplest solution to th
scaling equation

Z~br !5aZ~r !, ~6!

wherea andb are parameters to be determined, andZ(r ) is
an unspecified function; see, for example, West and Dee
@24#. Scaling relations of the form~6! have solutions in the
same way that differential equations have solutions, whic
to say that the dynamics of the underlying phenomenon
determined by finding the general form of the function th
obeys the scaling relation and fitting the parameters to
data. One technique for solving such scaling equations is

FIG. 1. A typical beat-to-beat CBF velocity time series from o
of our subjects is depicted. Note that the time series shown is
min segment of a 2 h data set.
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guessing the form of the solution and determining if the
sumed form satisfies the equation. In this spirit we assu
the solution

Z~r !5A~r !r m, ~7!

which when substituted into Eq.~6! separates into the two
equations

bm5a, ~8!

A~br !5A~r !. ~9!

The first of these relations yields a power-law indexm
5 ln a/ln b. The second of these equations indicates that
functionA(r ) is periodic in the logarithm of the aggregatio
size, r, with a period given by lnb. Thus, we conclude tha
the relative dispersion for a FRPP should have the functio
form

DX~r !5
A~r !

r D21 , ~10!

where we have associated the power-law indexm with the
fractal dimension in Eq.~1!. Note that the coefficientA(r ) in
the general solution~10! was assumed to be constant in t
fit to the data made by Rossitti and Stephensen. Howeve
more interesting choice of this function for the beat-to-b
TCD data is

A~r !5exp@a1l cos~g ln r !# ~11!

which is a periodic function in the logarithm ofr with period
ln b, the latter being related to the parameters in Eq.~11! by
g52p/ ln b and a5 ln a. The fractal dimension can be ex
pressed in terms of the power-law index by

D512m512 ln a/ ln b ~12!

and wherea fixes the overall amplitude in Eq.~10!. The
equation that is fit to the data on a log-log graph, that
places Eq.~2!, is therefore given by

lnDX~m!5a1~12D !ln m1l cos~g ln m!. ~13!

Here again the fractal dimension is determined by the sl
of the fitting curve, but now the curve also has a harmo
modulation in the logarithm of the number of aggregati
points in addition to a dominant inverse power law.

III. RESULTS

The renormalization-group model solution~10! is fitted to
the data using aggregated relative dispersion on the bea
beat variability of the CBF velocity. The parameter valu
determined from the fitting equation~13! for the modulated
inverse power law are listed in Table I. We obtain an avera
fractal dimension for the six subjects ofD51.1560.04, a
value not inconsistent with those obtained by the previo
investigators. The average fractal dimension and stand
deviation is a little lower than that given in Rossitti an
Stephesen, 1.2460.09 for the case of 1 s averages of the
time series, but when the heart beat is used as the defi
interval for the calculation of mean velocity, such as we u

15
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PRE 59 3495FRACTAL FLUCTUATIONS IN TRANSCRANIAL . . .
here, they obtain 1.1760.09, with which our results are in
complete agreement. In Fig. 2 the relative dispersions gi
by the data and the fits to these relative dispersions for
six subjects are depicted on log-log graph paper. It is ap
ent that the dominant behavior is inverse power law, bu
each case that behavior is harmonically modulated.
strength of the modulation changes slightly from person
person as does the fractal dimension. However, the cu
are more like one another than they are different. This wo
suggest a normal range of parameter values for healthy i
viduals. Note that for each subject we have the approxim
relation lnb52p(0.9660.08). Whether this particular valu
of the period of modulation is significant is too early to te
The value may be more indicative of the length of the tim
series than it is of any physiological process. It remai
however, that the period of oscillation indicates the existe
of a preferred scale in the coarse-graining procedure,
additional data sets must be tested to determine whethe
not this is an artifact.

To determine if the modulated inverse power law is
consequence of noise or of chaos, we implement the su
gate data technique@25# of shuffling the time-series dat

FIG. 2. The logarithm, base 2, of the relative dispersions
plotted versus the exponent of 2 in the numbers of aggregated
points for each of the six subjects. Each time series is 2 h long and
consists of between 73103 and 83103 data points. The lines are
the best fits to the data and their slopes as well as the other fi
parameters are recorded in Table I. It is clear that the curves d
modulated inverse power laws.

TABLE I. Renormalization fit to TCD time series data. Th
best-fit four parameters in the renormalization-group solution~10!
to the scaling equation~13! are listed here for the TCD time-serie
data. Also indicated are the average values of the parameters
their standard deviations over the six subjects.

a l g D

23.62 20.15 1.05 1.19
23.66 20.08 0.90 1.13
23.47 20.18 0.90 1.18
23.71 20.12 1.0 1.14
22.88 20.16 0.90 1.17
23.24 20.05 1.05 1.09

Avg 23.43 20.12 0.96 1.15
Std 0.32 0.05 0.08 0.04
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points to random positions in the sequence for each of
subjects. In Table II the four parameters for the fitting equ
tion ~13! are recorded using surrogate data sets. We do
for each of the subjects separately. From this second table
see that the intercepts are virtually unchanged, thel and g
parameters are zero, and the fractal dimensions all clu
aroundD51.5, that is, 1.5260.03. The nearest-neighbor au
tocorrelation coefficient@7#,

r 152322D21, ~14!

allows us to interpret the fractal dimension in terms of t
correlation properties of the time series. The fractal dim
sion D51.5 impliesr 150, so there would be no tempora
correlations in surrogate data sets for this fractal dimens
On the other hand, using the average fractal dimension a
with its errors, we findr 150.5860.2, for the CBF data,
indicating a relatively strong correlation between adjac
beat-to-beat variations in the mean CBF velocity. Of cour
perfect correlation would ber 151 and would have a fracta
dimension of unity according to Eq.~14!.

s
ata

ng
ne

FIG. 3. The logarithm, base 2, of the relative dispersion is p
ted versus the exponent of 2 in the number of aggregated
points~d!. The solid curve is the best fit to the data and has a sl
of 20.15. The dashed curve is the average best fit to ten surro
data sets and has a slope of20.5260.03, with the probability that
the difference in the slopes of the two curves can be explained
linear, additive, uncorrelated random process beingp,1026.

nd

TABLE II. Renormalization fit to surrogate TCD time-serie
data. The best-fit four parameters in the renormalization-group
lution ~10! to the scaling equation~13! are listed here for the sur
rogate data of the time series used to calculate the values in Ta
Each surrogate ensemble consists of 10 members and the ave
of the fitting parameters are listed. Also indicated are the aver
values of the parameters and their standard deviations.

a l g D

23.60 0 0 1.54
23.69 0 0 1.51
23.55 0 0 1.51
23.89 0 0 1.48
22.80 0 0 1.56
23.26 0 0 1.52

Avg 23.47 0 0 1.52
Std 0.38 0 0 0.03
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In Fig. 3 the relative dispersion data points for a typic
one of the six subjects is shown along with the fit using E
~13!. That fit is compared with the average fit over an e
semble of ten realizations of the corresponding surrog
time series. The question then arises as to whether the
ference between these two fits is statistically significant.
use the fractal dimension as an indicator of the dynam
properties of the TCD time series and determine the leve
statistical significance using at test:

S5
uD2Davu
S , ~15!

whereDav is the average fractal dimension for the surrog
ensemble andS is the standard deviation in the fractal d
mensions for that ensemble. The probability of observin
significanceSor larger if the random process is linear, add
tive, and uncorrelated isp5erfc@S/&# @25#. Thus, in com-
paring the fractal dimension of each of the experimental ti
series with that of the average of the corresponding surro
ensembles, we require a significance level greater than 0
This level of significance is achieved with ten realizations
each surrogate ensemble withS.2.26. The significance
level is determined to be greater than this value in each of
six time series and therefore we observe that the beat-to-
CBF velocity time series for healthy individuals is a rando
fractal point process.

It is obvious from Fig. 3 that in addition to the change
slopes~the fractal dimensions between the relative disp
sions using the original and the surrogate time-series d!
there is also a loss of modulation. This loss of modulation
the relative dispersion is a clear indication that the long-ti
correlation observed in the original data is a consequenc
the underlying dynamics of the phenomenon. This is ad
tional evidence for the fractal nature of the statistical po
process.

IV. DISCUSSION

As we pointed out, a fractal random point process~FRPP!
is a stochastic process in which the sample paths hav
noninteger dimension. To visualize such a process, cons
a random walker in a plane, that is, a person who takes a
of a given length at equally spaced time intervals, but wh
step direction is uniformly distributed in angle on the interv
~0,2p!. This is the original form of a simple random wa
articulated by the biostatistician Pearson@26# and solved by
the physicist Lord Rayleigh@27#. The trail the walker leaves
behind is quite erratic, so to characterize it we draw conc
tric circles to enclose the trail, the radius of the circle d
pending on the time over which the walk has been tak
place. In this way the remarkable result that the asympt
length of the trail is proportional to the radius of the circ
raised to a noninteger power is obtained; see, for exam
Mandelbrot@28#. The power-law index of the radius yield
the fractal dimension of the random walk; see, for exam
Montroll and West@29#. A simpler way to observe the sca
ing is by means of the second moment of the dynam
variable Xj at the discrete timej, which for a one-
dimensional random walk is
l
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^Xj
2&} j 2H ~16!

and the parameterH is called the Hurst exponent with 0
<H<1. The random-walk approach to processing the d
was adopted by Hausdorffet al. @9,10# in their analysis of
gait and by Penget al. @4# in their analysis of cardiac time
series. In the language of random walks, for 1>H. 1

2 . the
random walker has a tendency to continue in the direct
she is going, so there is persistence to the process. A ste
a particular direction is remembered, and the likelihood
the next step being in the same direction is greater than
of reversing directions. This results in a superdiffusive p
cess, one that diffuses more rapidly than normal. In the sa
way, for 1

2 .H>0, the random walker prefers to change h
mind with each step, so there is an antipersistence. A ste
a particular direction is remembered, and the likelihood
the next step being in the same direction is less than tha
reversing directions. This results in a subdiffusive proce
one that diffuses more slowly than a normal process. Fina
for H5 1

2 there is no memory and the random walker
equally likely to step in either direction, no matter what t
last step was. This last is a normal diffusion process wh
the second moment grows linearly in time.

The relation between the Hurst exponent and the fra
dimension of a random time series is well known to be@7#

H522D ~17!

so that for the TCD time series we have the average H
exponentH50.8560.04, using the average fractal dime
sion from Table I. Thus, the beat-to-beat variability in t
CBF velocity has a long-time memory and is persistent. T
control process for CBF regulation therefore manifests s
ing through the long-time correlations of the fluctuations
the CBF velocity. The tying together of the long and sh
time scales is necessary in order for the feedback to ad
tively regulate the complex CBF process to achieve a c
stant mean velocity in a changing environment.

It may not be clear how the analysis of the continuo
waveforms of the TCD signal by Keunanet al. @16# reveals
the same fractal properties of the underlying phenomeno
the analysis of the discrete TCD time series done herein
that done by Rossitti and Stephenson@20#. To clarify this
point, consider the continuous time seriesZ(t), which we
partition intoN intervals of equal lengtht and average ove
each of these intervals separately. In this way we obtain
set of discrete values

Zj
~t!5

1

t Ej t

~ j 11!t
Z~ t !dt, ~18!

where j is the discrete index that replaces the continuo
time and the integral is from thej th to thej 11 point in time.
Cox @30# showed that if the original time series has an
verse power-law correlation function

C@Z~ t !Z~ t8!#}ut2t8u2b ~19!

as established, for example, for the continuous waveform
the TCD time series by Keunanet al., then the corresponding
discrete time series has the correlation function@7#
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C@Zj
~t!Zj 1k

~t! #5 1
2 @ uk11u22b1uk21u22b2uku22b# ~20!

which asymptotically has the inverse power-law form

C@Zj
~t!Zj 1k

~t! #}uku2b ~21!

independently of the averaging interval,t. Thus, the smooth-
ing done herein in the averaging process does not supp
the scaling present in the original data set. In fact, the p
cess of aggregation emphasizes the scaling behavior o
time series; see, for example, the discussion in West@24#.

Regulation of CBF is a complex dynamical process. C
remains relatively constant over a wide range of perfus
pressure via a variety of feedback control mechanisms, s
as metabolic, myogenic, and neurally mediated change
cerebrovascular impedance responding to the changes in
fusion pressure@1,2#. Furthermore, different regulator
mechanisms may act on different time scales@3#. The fractal
characteristics of beat-to-beat variations in the CBF velo
revealed in the present study may indicate that although
ferent regulatory mechanisms may act independently on
ferent time scales, their effects on dynamical changes in C
may be tied together through scaling. Thus, impairment
one individual component of CBF regulation may influen
the overall changes in brain perfusion, but it would not
catastrophic within the compensatory range of CBF regu
tion.

The interdependence, organization, and concinnity
physiological processes have traditionally been expresse
biology through the principle of allometry. However, th
principle, as usually articulated, is static in nature@32#, and it
is only recently that an attempt to extend the allometry id
to irregular physiological time series in terms of the prop
ties of feedback control have been made@6,31#. An allomet-
ric control system achieves its purpose through scaling,
abling a complex system such as the regulation of CBF to
adaptive and accomplish concinnity of the many interact
subsystems. West and collaborators@6,11,24,31# have argued
that allometric control is a generalization of the idea of fee
back regulation that was implicit in Cannon’s concept
homeostasis. The basic notion is to take part of the syste
output and feed it back into the input, thus making the s
tem self-regulating by minimizing the difference between
input and the sampled output. More complex systems suc
autoregulation of CBF, that involve the elaborate interact
of multiple sensor systems, have more intricate feedback
iph
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rangements. In particular, since each sensor responds t
own characteristic set of frequencies, the feedback con
must carry signals appropriate to each of the interacting s
systems. The coordination of the individual responses of
separate subsystems is manifest in the scaling of the
series in the output and the separate subsystems selec
aspect of the feedback to which they are the most sensi
In this way an allometric control system not only regulat
CBF, but also adapts to changing environmental and ph
ological conditions.

The idea of the renormalization of a physical process u
in the data analysis is that through coarse graining one
determine if the phenomenon under investigation has uni
sality and scaling. By universality we mean that the mac
scopic properties of the system are independent of the
ticular microscopic mechanisms present in the phenomen
In this way we find that the statistical properties of CBF a
the same as those of other complex physiological phenom
@4,6,9–11,31#. Thus, for the purposes here, the particular v
ues of the parameters in Eq.~13!, determined from the data
are not significant, except in so far as they indicate that
data scale. Over the long term if we can establish a norm
these parameters, that is, a range of values that can be
ciated with health and values outside that range can be a
ciated with pathologies, then the values of the scaling par
eters for a single individual will be quite important. In fac
these parameters, in particular the fractal dimension, may
used as diagnostics@5#.

In summary, we have demonstrated that beat-to-beat fl
tuations in CBF velocity are described by a fractal rand
point process. The allometric properties of TCD time seri
as indicated by a modulated inverse power law of the agg
gated data, reveal an important property of the cerebral
toregulatory system. Furthermore, this scaling character
may be related to different mechanisms of autoregulat
and enable a relatively constant brain perfusion under a
riety of perturbations of the external environment. Final
this scaling is consistent with the regulation of CBF bei
accomplished by means of a low-dimensional, determinis
nonlinear, dynamical process.
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