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Fractal fluctuations in transcranial Doppler signals
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Cerebral blood flom{CBF) velocity measured using transcranial Doppler ultrasonogrdpi@D) is not

strictly constant, but has both a systematic and random component. This behavior may indicate that the axial
blood flow in the middle cerebral artery is a chaotic process. Herein we use the relative dispersion, the ratio of
the standard deviation to the mean, to show by systematically aggregating the data that the correlation in the
beat-to-beat CBF time series is a modulated inverse power law. This scaling of the CBF time series indicates
the existence of long-time memory in the underlying control process. We argue herein that the control system
has allometric properties that enable it to maintain a relatively constant brain perfusion.
[S1063-651%99)11503-4

PACS numbdss): 87.10+e

[. INTRODUCTION unenet al. [16] to determine if the apparently random fluc-
tuations in CBF are the result of random influences on the

Cerebral autoregulation is the phenomenon of maintainingrocess or if they are the result of chaos. They use the at-
relatively constant cerebral blood flo€BF) over a wide tractor reconstruction techniquéART), along with the
range of perfusion pressure and has been well documented @rassberger-Procaccia algoritH@PA), to analyze continu-
animals and humanl,2]. However, with the development ous waveforms of TCD signals. They found evidence for
of technology allowing measurements with high resolution inchaos based on the fact that the correlation dimension, ob-
time, such as transcranial Doppler ultrasonograph@D)  tained by applying the GPA to the correlation function in the
and laser Doppler flowmetry, it has been recognized thaémbedding phase space, saturates to a constant value with
regulation of CBF is a dynamical proceg3|. Beat-to-beat increasing embedding dimension. They concluded ! the
CBF consists of measurements of a small amount of apparefdct that a saturation is observed excludes a random pro-
“noise” superimposed on a steady-state mean value. Thisess.” This conclusion, however, is not necessarily justified.
pattern is similar to other physiological systems, such a®\ number of investigators have established that a chaotic
beat-to-beat variability of heart rafelRV). When investiga- time series and colored noise, that is, noise with an inverse
tors began processing HRV time series in more detail usingower-law spectrum, will be indistinguishable using GPA;
nonlinear dynamical techniquég—8], they discovered that see, for example, Osborne and ProvenZdl® and, for a
that small amount of “noise” had a great deal of information review, West[6]. Both chaos and colored noise processes
about the cardiac control system. A similar determinationhave fractal dimensions, so that the conclusion reached by
was made concerning the fluctuations in the stride interval irKeunanet al. [16] is weaker than they believed. This short-
a normal human gait. Although the standard deviation in theeoming was partially corrected in the sequel Keurdral.
fluctuations of the gait interval is only approximately 4%, it [17], where the authors made use of the idea of a surrogate
was found that, like heart rate variability, these fluctuationdata set that could be used to discriminate between chaos and
contain long-term memory and therefore provide informationcolored noise. The procedure is to randomize the phases be-
about the underlying control procelg-11]. The time series tween data points, thereby destroying the determinism in a
for both human gait and HRV were determined to be fractathaotic signal, but not influencing colored noise in any sub-
in nature, a consequence of the complex phenomenon that $¢antial way. In this manner they showed that the phase-
being controlled. We hypothesize that because of nonlineasspace portraits from ART lost their structure in the surrogate
ity of the complex control systefii,2], regulation of CBF is TCD data. Therein, they also used the fact that the largest
likely to be a fractal statistical process. Lyapunov exponent was positive to interpret the TCD time

Herein we examine the time series depicting the changeseries as chaotic. But again Provenzetel. [19] have es-
in the cerebral blood flow velocity measured in the middletablished that th&, entropy, which is a lower bound on the
cerebral artery in normal healthy subjects. Like the ECG andum of the Lyapunov exponents, converges to zero for a
gait time series, the time series of cerebral blood flow veloceolored noise process. Therefore, finding a positive largest
ity consist of a sequence of waveforms. These waveforms adeyapunov exponent in a time series, in and of itself, is not
influenced by a complex feedback system involving a numsufficient to conclude that the dynamical process is chaotic.
ber of variables, such as arterial pressure, cerebral vascular A less ambitious approach to the processing of TCD time-
resistancg 12], plasma viscosity13], arterial oxygen con- series data was taken by Rossitti and Stephef@@n They
tent[14], arterial CQ content[15], as well as other factors processed the time series to determine if it is fractal and,
[6,16,17. rather than analyzing the continuous waveforms of TCD

The variability in the TCD signal was examined by Ke- time series, they averaged CBF velocity pdes intervals,
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and over successive cardiac cycles, to obtain discrete timation of that inverse power law. The presence of this modu-
series. As in other physiological temporal fractals, the loss ofation is also evident in the data of Rossitti and Stephensen
complexity in physiological phenomena may be likened to[20], but they did not mention it in their discussion, focusing

senescence or disease conditipris Rossitti and Stephesen instead on the interpretation of the inverse power-law behav-
[20] argue that such analysis of TCD data may become usgor. The existence of this harmonic modulation is strong ad-

ful in clinical diagnosis. Instead of ART and GPA thé§0s- ditional evidence for the scaling or fractal properties of the
sitti and Stephesgrused the relative dispersion, the ratio of Tcp data as we discuss.

the standard deviation to the mean, of the time series for a |, sec. 1| we discuss the acquisition and processing of
number of levels of aggregation of neighboring data pointStcp time series using a renormalization-group approach. In

'L 70 ish the ilntgrva(ljlover which thed.time ;eries is iver:agedphysical processes the solution to scaling equations, as the
then the relative dispersion is indicated BYo). If the coarse-grain length scale is changed, is a fixed point of the

?hveera?ellr;%i\/lgter(jvizlsegiinm\il\r/] 'ng;iisegafg’zﬁg glr\]/;(l)’] byrenormalization—group transform. The repeated application
. N : of the renormalization-group operation, which decimates the
D(2719),D(37g),...,D(n7g). If the time series is a simple group op

f . . ; underlying temporal structure, captures successively the ef-
ractal, then the aggregated relative dispersion has a powe%réc,[S of lar d| I £l : he | i
law form [7] rger and larger scales o gqtuatlons on the largest
scale variations of interest. An explicit reference to fluctua-
D(n7g)=D(7o)n* P (1)  tions of a given scale is eliminated by coarse-graining. Their
effects are carried forward implicitly in the parameters of the
so that if a plot of the aggregated relative dispersion is madeoarse-grained observable; see, for example Bruce and Wal-
versus the aggregation numbreon log-log graph paper, one |ace [22] for a more complete discussion. In Sec. Il the
obtains functional form for the relative dispersion developed in Sec.
Il is fit to the data. The agreement between theory and the
TCD time-series data is quite good. In Sec. IV the physi-

and the fractal dimensioR is determined by the slope of the °logical implications of the results are explored using the
straight line. Rossitti and Stephens@®)] obtain fractal di- Properties of universality and scaling.
mensions from their discrete time series in the interval 1
<D< 1.5, indicating a fractal random point procésRPP
with memory. Il. METHODS

However, the nonlinear dynamical properties of TCD A Subi
. . . . . . . jects
time series obtained in those previous studies are based on
relatively short data segment analysis. Theoretically, the Six healthy subjectsfive men and one womamwith a
length of the time series should not make a difference in thénean age of 288 years, height of 177 cm, and weight
analysis, because fractal or chaotic time series have no cha@f 76+ 14 kg, voluntarily participated in the study. All were
acteristic time scales, so the dynamics of the process can @nsmokers and were free of known cardiovascular, pulmo-
revealed over any time interval. However, in the real worldnary, and cerebrovascular disorders. Each subject was in-
the fractal character of an experimental time series is onljormed of the experimental procedures and signed a written
apparent over some longest and shortest time scale, ag@nsentform approved by the Institutional Review Boards of
within this frequency band it is useful to characterize theThe University of Texas Southwestern Medical Center and
time series as fractal. We therefore need to distinguish bePresbyterian Hospital of Dallas.
tween a mathematical fractal and a physiological fraidal
for the purposes of data analysis. The TCD time series, es- B. Procedures and measurements
pecially the continuous waveforms over the time scale of
several cardiac cycles, is most likely determined by linea
properties of cerebrovascular impedance, rather than by no
linear regulatory mechanisni8,21]. Furthermore, analysis
based on short data segments by itself, whether fractal or nd?

L e e ot T e et 4 meseS f hengos in CB n a beat bt basi. A 2z
sary to examine ?hg dgta over an extended perioﬁ which COVI?oppIer probe(DWL_ EIektromsc_:he Systemewas placed
ers a multitude of different time scales in the TCD time over 'the temporal V\_/lndow and fixed at a constant Qngle qnd
series position with an adjustable headgear to obtain optimal sig-

. . . . nals from the MCA according to standard techniques, see
Herein we make use of the relative dispersion of TCDAmerican Academy of Neurologi23).

time-series data over a duration of 2 h. For each pulse in the
waveform we calculate a mean flow velocity. Thuagin our
analysis is based on heartbeat numbers. However, we do not
restrict our analysis of these data to the assumption of a Real time beat-to-beat mean values of CBF velocity were
simple fractal as done to obtain E€). Instead we deter- calculated as waveform integration of the sampled peak ve-
mine that the aggregated relative dispersion satisfies kcity signal within each cardiac cycle divided by the corre-
renormalization-group relation whose solution yields, in ad-sponding pulse interval and stored for off-line analysis. We
dition to the inverse power law in E41), a harmonic modu- label the mean velocity of thgth beat byX;, with j

InD(n7g)=INnD(19)+(1—D)Inn (2)

; Cerebral blood flow velocity in the middle cerebral artery
r(1|§/ICA) was obtained continuously for two hours in the sub-
jects at supine rest, using transcranial Doppler ultrasonogra-
hy. A typical example of these time series is shown in Fig.
*. This technique allows noninvasive and repeatable esti-

C. Data analysis
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% ‘ ‘ ‘ ‘ guessing the form of the solution and determining if the as-
sumed form satisfies the equation. In this spirit we assume
80 | the solution
70 Z(r)=A(r)r#, (7
g I which when substituted into E@6) separates into the two
3 @ equations
= 50 | b#=a, (8

A(br)=A(r). 9

40 -

The first of these relations yields a power-law indgx
30 : : =Inallnb. The second of these equations indicates that the
[ 1000 2000 3000 4000 5000 6000 7000 8000 900 - - - P . -
function A(r) is periodic in the logarithm of the aggregation
size,r, with a period given by Ib. Thus, we conclude that
FIG. 1. A typical beat-to-beat CBF velocity time series from one the relative dispersion for a FRPP should have the functional
of our subjects is depicted. Note that the time series shown is a 1form
min segment ba 2 hdata set.

Beat Number

A(T)

=12..., N, and we are interested in the statistics of the Dx(1)= (o1 (10
beat-to-beat variability oK;. For N beats the mean is given _ . .
by where we have associated the power-law ingdewith the

fractal dimension in Eq1). Note that the coefficierA(r) in

1 X the general solutio10) was assumed to be constant in the
X(1)= NZI X; (3 fit to the data made by Rossitti and Stephensen. However, a
) more interesting choice of this function for the beat-to-beat
and the variance is given by TCD data is
1 N A(r)=exga+hcodyinr)] (11
201y — o 2
X(D)= N ;1 [X=X(1)] ) which is a periodic function in the logarithm ofwith period

In b, the latter being related to the parameters in @4) by
so that the relative dispersion using all the data points is y=2w/Inb and a=Ina. The fractal dimension can be ex-
pressed in terms of the power-law index by
VX2(1) D=1-p=1-Ina/lnb 12
Dy(1)= ——. (5) I (12)
X(1)

and wherea fixes the overall amplitude in Eq10). The
equation that is fit to the data on a log-log graph, that re-

If the nearest-neighbor intervaldata points are added to- places Eq(2), is therefore given by

gether to form a data set of siké2, the relative dispersion is
then Dy(2). Continuing the process of adding the nearest InDy(m)=a+(1-D)Inm+Xcogylnm). (13
neighbors yields time series witk/4, . .. N/2" data points

after n iterations of the procedure, so that we have for theHere again the fractal dimension is determined by the slope
relative dispersion®y(4),Dx(8),....Dx(2"). If the time se-  of the fitting curve, but now the curve also has a harmonic
ries is a simple fractal, which is to say it has self-similar modulation in the logarithm of the number of aggregation
statistical properties, we obtain a relation of the fgq@pfor  points in addition to a dominant inverse power law.

a log-log graph of the aggregated relative dispersion versus

the size of the aggregate. Ill. RESULTS
Equation(1) has the form of the simplest solution to the o ) o
scaling equation The renormalization-group model soluti¢to) is fitted to
the data using aggregated relative dispersion on the beat-to-
Z(br)=az(r), (6)  beat variability of the CBF velocity. The parameter values

determined from the fitting equatidii3) for the modulated
wherea andb are parameters to be determined, &fd) is  inverse power law are listed in Table |. We obtain an average
an unspecified function; see, for example, West and Deerinffactal dimension for the six subjects 8f=1.15+0.04, a
[24]. Scaling relations of the forn6) have solutions in the value not inconsistent with those obtained by the previous
same way that differential equations have solutions, which isnvestigators. The average fractal dimension and standard
to say that the dynamics of the underlying phenomenon ardeviation is a little lower than that given in Rossitti and
determined by finding the general form of the function thatStephesen, 1.240.09 for the casefol s averages of the
obeys the scaling relation and fitting the parameters to théme series, but when the heart beat is used as the defining
data. One technique for solving such scaling equations is binterval for the calculation of mean velocity, such as we use
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TABLE I. Renormalization fit to TCD time series data. The  TABLE Il. Renormalization fit to surrogate TCD time-series
best-fit four parameters in the renormalization-group solutit) data. The best-fit four parameters in the renormalization-group so-
to the scaling equatiofilL3) are listed here for the TCD time-series lution (10) to the scaling equatiofil3) are listed here for the sur-
data. Also indicated are the average values of the parameters anogate data of the time series used to calculate the values in Table I.

their standard deviations over the six subjects. Each surrogate ensemble consists of 10 members and the averages
of the fitting parameters are listed. Also indicated are the average
a A y D values of the parameters and their standard deviations.
—3.62 -0.15 1.05 1.19 o N y D
—3.66 —-0.08 0.90 1.13
-3.47 -0.18 0.90 1.18 —3.60 0 0 1.54
-3.71 -0.12 1.0 1.14 —3.69 0 0 151
-2.88 -0.16 0.90 1.17 —3.55 0 0 151
-3.24 -0.05 1.05 1.09 —3.89 0 0 1.48
Avg —3.43 -0.12 0.96 1.15 —2.80 0 0 1.56
Std 0.32 0.05 0.08 0.04 —3.26 0 0 1.52
Avg —3.47 0 0 1.52
Std 0.38 0 0 0.03

here, they obtain 1.170.09, with which our results are in
complete agreement. In Fig. 2 the relative dispersions give
by the data and the fits to these relative dispersions for thg

Slr)1(t s{ﬁb{etﬁs 3rem(idr?pr|1(;tﬁdhonVilorg];Ioig]ngr?ph pavp\)le:.lltvlvs Epg?tfion (13) are recorded using surrogate data sets. We do this
€ at the dominant benavior 1S INVerse power 1aw, but Ny, o4 0p of the subjects separately. From this second table we

each case that behavior is harmonically modulated. Th : :
strength of the modulation changes slightly from person to‘gee that the intercepts are virtually unchanged,Nfand y

. ; eoarameters are zero, and the fractal dimensions all cluster
person as does the fractal dimension. However, the curv

are more like one another than they are different. This woulqgroundD: 1.5, thatis, 1.52.0.03. The nearest-neighbor au-

suggest a normal range of parameter values for healthy ind|-0 correlation coeficient7],

viduals. Note that for each subject we have the approximate r=23"20_1 (14)
relation Inb=27(0.96+0.08). Whether this particular value
of the period of modulation is significant is too early to tell. allows us to interpret the fractal dimension in terms of the
The value may be more indicative of the length of the timecorrelation properties of the time series. The fractal dimen-
series than it is of any physiological process. It remainssijon D=1.5 impliesr,=0, so there would be no temporal
however, that the period of oscillation indicates the existenceorrelations in surrogate data sets for this fractal dimension.
of a preferred scale in the coarse-graining procedure, an@n the other hand, using the average fractal dimension along
additional data sets must be tested to determine whether @jith its errors, we findr;=0.58+0.2, for the CBF data,
not this is an artifact. indicating a relatively strong correlation between adjacent
To determine if the modulated inverse power law is apeat-to-beat variations in the mean CBF velocity. Of course,

consequence of noise or of chaos, we implement the surrgyerfect correlation would be;=1 and would have a fractal
gate data techniqug25] of shuffling the time-series data dimension of unity according to E14).

oints to random positions in the sequence for each of the
ubjects. In Table Il the four parameters for the fitting equa-
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FIG. 3. The logarithm, base 2, of the relative dispersion is plot-

FIG. 2. The logarithm, base 2, of the relative dispersions isted versus the exponent of 2 in the number of aggregated data
plotted versus the exponent of 2 in the numbers of aggregated dajints(®). The solid curve is the best fit to the data and has a slope
points for each of the six subjects. Each time sese® h long and  of —0.15. The dashed curve is the average best fit to ten surrogate
consists of between710° and 8< 10° data points. The lines are gata sets and has a slope-60.52+0.03, with the probability that
the best fits to the data and their slopes as well as the other fittinghe difference in the slopes of the two curves can be explained by a
parameters are recorded in Table I. It is clear that the curves definfear, additive, uncorrelated random process bgirgLO ™.
modulated inverse power laws.
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In Fig. 3 the relative dispersion data points for a typical (xJ?)ochH (16)
one of the six subjects is shown along with the fit using Eq.
(13). That fit is compared with the average fit over an en-and the parametet is called the Hurst exponent with 0
semble of ten realizations of the corresponding surrogatecH<1. The random-walk approach to processing the data
time series. The question then arises as to whether the difyas adopted by Hausdorét al. [9,10] in their analysis of
ference between these two fits is statistically significant. Weyait and by Pengt al. [4] in their analysis of cardiac time
use the fractal dimension as an indicator of the dynamic%eries_ In the language of random walks, foeH>%. the

properties of the TCD time series and determine the level ofandom walker has a tendency to continue in the direction

statistical significance usingtaest: she is going, so there is persistence to the process. A step in
a particular direction is remembered, and the likelihood of
|ID-D,y| the next step being in the same direction is greater than that

(15 of reversing directions. This results in a superdiffusive pro-
cess, one that diffuses more rapidly than normal. In the same
way, for 3>H=0, the random walker prefers to change her

whereD,, is the average fractal dimension for the surrogatemind with each step, so there is an antipersistence. A step in

ensemble and is the standard deviation in the fractal di- a particular direction is remembered, and the likelihood of
mensions for that ensemble. The probability of observing ahe next step being in the same direction is less than that of
significanceS or larger if the random process is linear, addi- reversing directions. This results in a subdiffusive process,
tive, and uncorrelated ip=erfc[Sv2] [25]. Thus, in com-  one that diffuses more slowly than a normal process. Finally,
paring the fractal dimension of each of the experimental timgor H :% there is no memory and the random walker is
series with that of the average of the corresponding surrogaigqually likely to step in either direction, no matter what the
ensembles, we require a significance level greater than 0.0fast step was. This last is a normal diffusion process where

This level of significance is achieved with ten realizations inthe second moment grows linearly in time.

each surrogate ensemble wit>2.26. The significance The relation between the Hurst exponent and the fractal

level is determined to be greater than this value in each of thetimension of a random time series is well known to[Bg

six time series and therefore we observe that the beat-to-beat

CBF velocity time series for healthy individuals is a random H=2-D 17

fractal point process.

It is obvious from Fig. 3 that in addition to the change in so that for the TCD time series we have the average Hurst
slopes(the fractal dimensions between the relative disperexponentH=0.85+0.04, using the average fractal dimen-
sions using the original and the surrogate time-series) dataion from Table I. Thus, the beat-to-beat variability in the
there is also a loss of modulation. This loss of modulation inCBF velocity has a long-time memory and is persistent. The
the relative dispersion is a clear indication that the long-timecontrol process for CBF regulation therefore manifests scal-
correlation observed in the original data is a consequence afg through the long-time correlations of the fluctuations in
the underlying dynamics of the phenomenon. This is addithe CBF velocity. The tying together of the long and short
tional evidence for the fractal nature of the statistical pointtime scales is necessary in order for the feedback to adap-
process. tively regulate the complex CBF process to achieve a con-

stant mean velocity in a changing environment.
It may not be clear how the analysis of the continuous
IV. DISCUSSION waveforms of the TCD signal by Keunaat al. [16] reveals

As we pointed out, a fractal random point procéSBPP the same f.ractal properties of the qnderlying phenomenqn as
is a stochastic process in which the sample paths have the analysis of the .d|.screte TCD time series don.e he(em or
noninteger dimension. To visualize such a process, considdpat done by Rossitti and Stephend@@]. To clarify this
a random walker in a plane, that is, a person who takes a std}fint, consider the continuous time seriét), which we
of a given length at equally spaced time intervals, but whos@artition intoN intervals of equal lengthr and average over
step direction is uniformly distributed in angle on the interval€ach of these intervals separately. In this way we obtain the
(0,2m). This is the original form of a simple random walk Set of discrete values
articulated by the biostatistician Peard@®] and solved by _
the physicist Lord Rayleigf27]. The trail the walker leaves Z§T>=1 J(Hl)TZ(t)dt (19)
behind is quite erratic, so to characterize it we draw concen- Yor )y, '
tric circles to enclose the trail, the radius of the circle de-
pending on the time over which the walk has been takingvherej is the discrete index that replaces the continuous
place. In this way the remarkable result that the asymptoticime and the integral is from thigh to thej + 1 point in time.
length of the trail is proportional to the radius of the circle Cox [30] showed that if the original time series has an in-
raised to a noninteger power is obtained; see, for exampleierse power-law correlation function
Mandelbrot[28]. The power-law index of the radius yields
the fractal dimension of the random walk; see, for example CLZ(t)Z(t")]ex|t—t"| 7R (19
Montroll and Wes{29]. A simpler way to observe the scal-
ing is by means of the second moment of the dynamicahs established, for example, for the continuous waveforms of
variable X; at the discrete timej, which for a one- the TCD time series by Keunat al, then the corresponding
dimensional random walk is discrete time series has the correlation funcfiéh

S ’
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Cz"z{), 1=4[|k+ 1|2 P+|k—1|>"F—|k|>"#] (200 rangements. In particular, since each sensor responds to its
b own characteristic set of frequencies, the feedback control

which asymptotically has the inverse power-law form must carry signals appropriate to each of the interacting sub-
(1) - systems. The coordination of the individual responses of the
AZ;7zZi7 o< k| ~P (21)  separate subsystems is manifest in the scaling of the time

, o series in the output and the separate subsystems select that
independently of the averaging interval,Thus, the smooth-  ;qpact of the feedback to which they are the most sensitive.
ing done herein in the averaging process does not SUPPregs this way an allometric control system not only regulates
the scaling present in the original data set. In fact, the PrOTBF, but also adapts to changing environmental and physi-
cess of gggregation emphasizes thg scal!ng pehavior of ”B?ogical conditions.
time series; see, for example, the discussion in V2 The idea of the renormalization of a physical process used
Regulation of CBF is a complex dynamical process. CBF, the data analysis is that through coarse graining one can
remains relatively constant over a wide range of perfusionyetermine if the phenomenon under investigation has univer-
pressure via a variety of feedback control mechanisms, su lity and scaling. By universality we mean that the macro-

as metabolic, myogenic, and neurally mediated changes ig.opic properties of the system are independent of the par-
cerebrovascular impedance responding to the changes in pgfsjar microscopic mechanisms present in the phenomenon.
fusion pressure[1,2]. Furthermore, _different regulatory , this way we find that the statistical properties of CBF are

mechanisms may act on different time scdléls The fractal  {he same as those of other complex physiological phenomena

characteristics of beat-to-beat variations in the CBF velocity, g 9_11 31 Thus, for the purposes here, the particular val-
revealed in the present study may indicate that although difgoq of the parameters in E(.3), determined from the data,

ferent regulatory mechanisms may act independently on dify.¢ not significant, except in so far as they indicate that the

ferent time scales, their effects on dynamical changes in CBRa¢4 scale. Over the long term if we can establish a norm for
may be tied together through scaling. Thus, impairment ofpese parameters, that is, a range of values that can be asso-

one individual component of CBF regulation may influencejateq with health and values outside that range can be asso-
the overall changes in brain perfusion, but it would not begisteq with pathologies, then the values of the scaling param-
catastrophic within the compensatory range of CBF regula

i eters for a single individual will be quite important. In fact,
ion.

, L o these parameters, in particular the fractal dimension, may be
The interdependence, organization, and concinnity of,geq as diagnostids].

physiological processes have traditionally been expressed in |, summary, we have demonstrated that beat-to-beat fluc-

biology through the principle of allometry. However, this y,ations in CBF velocity are described by a fractal random
principle, as usually articulated, is static in nat{8@], and it nint process. The allometric properties of TCD time series,
is only recently that an attempt to extend the allometry idea,q indicated by a modulated inverse power law of the aggre-
t_o irregular physiological time series in terms of the PrOPergated data, reveal an important property of the cerebral au-
ties of feedback control have been md@g1]. An allomet- 5 00 jatory system. Furthermore, this scaling characteristic

ric control system achieves its purpose through scaling, effyay " pe related to different mechanisms of autoregulation
abling a complex system such as the regulation of CBF 10 bgq enaple a relatively constant brain perfusion under a va-

adaptive and accomplish concinnity of the many interactingjety of perturbations of the external environment. Finally,

subsystems. West and collaborafs1,24,31 have argued  his' scaling is consistent with the regulation of CBF being

that allometrip control is a gene_ra}li;ation of the idea of feed'accomplished by means of a low-dimensional, deterministic,
back regulation that was implicit in Cannon’s concept of

; . L P nonlinear, dynamical process.
homeostasis. The basic notion is to take part of the system’s

output and feed it back into the input, thus making the sys-
tem self-regulating by minimizing the difference between the
input and the sampled output. More complex systems such as The authors would like to thank the U.S. Office of Naval
autoregulation of CBF, that involve the elaborate interactiorResearch and NIH Neurolalésrant No. HL53206 -0Bfor

of multiple sensor systems, have more intricate feedback apartial support of this work.
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