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Electroporation is described mathematically by a partial differential equéBbi) that governs the distri-
bution of pores as a function of their radius and time. This PDE does not have an analytical solution and,
because of the presence of disparate spatial and temporal scales, numerical solutions are hard to obtain. These
difficulties limit the application of the PDE only to experimental setups with a uniformly polarized membrane.
This study performs a rigorous, asymptotic reduction of the PDE to an ordinary differential eq(@b&h
that describes the dynamics of the pore denNify). GivenN(t), the precise distribution of the pores in the
space of their radii can be determined by an asymptotic approximation. Thus, the asymptotic ODE represents
most of the phenomenology contained in the PDE. It is easy to solve numerically, which makes it a powerful
tool to study electroporation in experimental setups with significant spatial dependence, such vesicles or cells
in an external field[S1063-651X99)10603-3

PACS numbds): 87.16.Dg, 87.10-e

[. INTRODUCTION Chizmadzhev and colleagugd. Further development of the
theory of electroporation was undertaken by Weaver and col-
When a membrane is exposed to a high transmembrarleagues[10-13. A joint review by Weaver and Chiz-
potential, it exhibits a rapid increase in its conductivity by madzhev gives a thorough summary of current understanding
5-6 orders of magnitudgl]. Such an electrical breakdown of electroporation and the relation between the theory and
of the barrier function of the membrane is generally attrib-experimentg14].
uted to the creation of pores, which are the aqueous path- Investigating the electroporation process using PQE
ways in the lipid bilayer of the membrane. This processhas several drawbacks. First, this equation requires the
called electroporation, can be irreversible, leading to a meknowledge of several constants whose values cannot be mea-
chanical rupture of the membrane, or reversible, in whichsured directly. Most of these constants were estimated by
case pores reseal and the same membrane can experieticeoretical arguments and are known only by order of mag-
multiple episodes of the high conductivity state. The tran-nitude[12]. Because of the uncertainties in the values of the
sient state of high conductivity has important practical appli-parameters, the solution to E€L) gives only a qualitative
cations, allowing the fusion of cells and the introduction of picture of the electroporation process. Second, the connec-
the biologically active substancédrugs or genetic materjal tion between the variables of the PDE and the quantities that
into cells[2—-4]. On the other hand, electroporation occurs asare available from the experiments is far from obvious. Ex-
an undesirable side affect following the delivery of defibril- perimental studies use simplified, partial descriptions of the
lation shocks to the healb—7] and may be responsible for electroporation process to interpret the collected data
the late necrosis after the accidental exposure to high voltagd 5,16. Finally, the PDE(1), with its variable coefficients,
[8]. does not have an analytical solution and must be solved nu-
The theoretical understanding of the electroporation promerically. However, the exponential dependence of the cre-
cess is based on the Smoluchowski equation, a partial diffe@tion and destruction rates on the pore energy and the exis-
ential equationPDE) that governs the distribution of pores tence of disparate spatial and temporal scales makes the
as a function of their radius and time. Lefr,t) denote the numerical solution hard to obtain. Hence, numerical solu-
pore density distribution function such that at a given time tions of the PDE1) have been obtained only for a spatially
the number of porefper unit areawith radii betweerr and  clamped, uniformly polarized membrane pafd®,13,17.
r+dr is n(r,t)dr. According to the literaturen(r,t) satis-  Application of Eq.(1) to an experimental situation with sig-
fies the equation nificant spatial dependence, such a vesicle or a cell in an
external field18—20, would be impractical.
@ This paper presents a rigorous, asymptotic reduction of
—ﬁn—nr):S(r), (D PDE (1) to an ordinary differential equatiofODE). This
ODE describes the dynamics of the pore densify), which
whereD is the diffusion constant of poreg,(r) is the pore is related to the pore distribution functior{r,t) by
energy,k is the Boltzmann constant, is the absolute tem-
perature, an®(r) is the source term that represents the cre- N(t)= fwn(r tydr 7
ation and the destruction of pores. Subscrigenotes differ- o '
entiation with respect to time; differentiation with respect to
pore radius is denoted b§ or by a subscript. This equa- GivenN(t), the distribution of the pores in the space of their
tion was first used to describe electroporation in 1979 byadii can be determined by an asymptotic approximation.

n,+Dad,
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However, the essential features of the electroporation process “g’ f / (> Em)
are well reflected by the pore densitM(t) and the ,,/’
asymptotic ODE represents most of the phenomenology con- L 0; : L .
tained in the PDE.
The organization of this paper is as follows. Section II % 10 20
gives a physical background of the electroporation process pore radius (nm)

and introduces the initial-boundary value problem governing FIG. 2. The energy function of a pore at the transmembrane

:)hoeunpdoarrey (\j/:Inuselty;r(ort’)}()ahS’[gcttjliorrr:ellléic():r?lg\ézrtfsc) r::e Slmgﬁl pa_|ootentiaIVm=O_(based on Ref416,21)). This _plot uses the values
. . . . ’ of parameters in Table | and the formwf(r) in Eq. (5).
rameters in the dimensionless equations lead to a reduced
problem which is presented in Sec. IV. Section V uses order
of magnitude estimates to develop a heuristic overview Otn
the asymptotic dynamics of the pore dendityt). The ac-
tual derivation is carried out in Sec. VI. Section VII uses the
asymptotic ODE to demonstrate an explicit dependence of w(r)=2myr—mwor?+

pore creation rate on the transmembrane potential. Finally,

Sec. VIII discusses the limitations and practical implicationswherey is the energy per unit length of the pore perimeter

of this study. anda is the energy per unit area of the intact membrane. The
first two terms in Eq(5) are identical to the energy of the
[l. PHYSICAL BACKGROUND conducting pores given in the literatyrg0,16,21. The third
tgrm, added by us, represents the steric repul§igh23
ebetween lipid heads lining the pore and is responsible for the
i[ncrease in pore energy with shrinking radius:r; . Con-
stantC and the power are chosen so that E, , andr,, are

The energyw(r) of conducting pores is given by the for-
ula

4

: ®

C

This paper assumes the existence of two types of por
[16,21,23. The hydrophobic pore§Fig. 1(a)] are simply
gaps in the lipid bilayer of the membrane, formed as a resul
of its thermal fluctuations. The hydrophilic or inverted pores
[Fig. 1(b)] have their walls lined with the water-attracting close to values measured bY Glaséal. [16]. .
heads of lipid molecules. Hence, the hydrophilic pores allow, '€ Pore energi(r) of Fig. 2 corresponds to the situa-
the passage of water-soluble substances, such as ions, whilg" When there is no externally applied transmembrane po-
the hydrophobic pores do not. In the remainder of this papef€ntial- In the presence of a transmembrane potewtiahe
the hydrophilic pores will be referred to as conducting andPOre €nergy, denoted by(r,t), is given by
the hydrophobic pores, as nonconducting. _ )

The crucial assumption in studying the behavior of pores e(r, O =E(r)—mapV=re, ©)

is the relationship between the pore radius and its energy,pqre the time dependence gnarises through the temporal
This paper assumes the pore energetics proposed by Abidgp iations ofv. The component ma,V2r? is the capacitive

et al. [16,21] depicted in Fig. 2. This energy function con- contribution[10,21]. The coefficienta, is a property of the
sists of two curvesy(r) for the nonconducting pores and emprane and its aqueous environment. The simplest esti-
w(r) for the conducting pores. The energyr) of a pore of mate, based on a continuum moftel, 16, givesa, in terms

radiusr is the lesser oti(r) andw(r) as shown in the inset ¢ omphrane thicknedsand dielectric constants,, and «;,
of Fig. 2. E(r) has two maxima, at, andry and a local ¢ \\ater and membrane:

minimum atr,,. The pore energies at_, r,, andry are
denoted by 1
ap:%(’(w_ Km) €, (7)
E,=E(ry), En=E(rm), andEq=E(rg). (3

Tvpical values of radii and enerdies are given in Table | wheree is the permittivity of vacuum. A nominal value of
yp 9 g - ap is given in Table I.

e e o Bemeepe en o PEEe, i v " Fora uffiieny smal. (1 has he same quaave
) ' _structure a€£(r): a cusplike maximum at, , a local mini-

for the values of parameters in Table I, the Bessel's function3

expression is well approximated by the quadratic function "o atry, and a maximum aty . However,r andry are
P PP y q now functions ofV. The energies at these radii are denoted

by

2
u(r)wE,c(L) . (4)
M ex=0(re 1), em=o(rm,t), eq=o¢(rq,t). (8)
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TABLE |. Values of parameters.

Parameter Symbol Value Source
Diffusion coefficient D 5X10 ¥ m?st [13]
Edge energy of a pore v 1.8x10 1 Jm? [13,16
Energy of an intact membrane o 1073 Im2 [13]
Constant in Eq(5) Cc 9.67x10 15 34 m est. from Eq(5)
Radii:

at local maximum M e 0.5 nm [16]

at local minimum M'm 0.8 nm [16]

at global maximum (o 18 nm est. from Eq(5)
Energies:

at local maximum E, 45 KT [16]

at local minimum Emn 25.6 kT est. from Eq(5)

at global maximum Eq4 238 kT est. from Eq(5)
Dielectric constant of water Kw 80 [13,14
Dielectric constant of lipid Km 2 [13,14
Permittivity of vacuum € 8.85x 10" 2 Fm™?
Thickness of the membrane h 5 nm [16]
Constant in Eq(6) a, 6.9x10 2 Fm 2 est. from Eq.(7)
Fluctuation rate per unit volume Ve 2x10*®¥ m3s [10]
Fluctuation rate per lipid molecule vy 10t st [16]

Figure 3 shows graphs a#(r,t) parametrized byw. AsV  implies that in timedt, the fraction of nonconducting pores

increases to a critical value ¥.~0.5V, the local minimum  with radii less tham, which are destroyed igydt, wherevg

rm and local maximunr 4 coalesce and disappear. is the frequency of lipid fluctuations. Hence, the nonconduct-
The last term in the Smoluchowski equati¢h) is the ing pores with radii between andr +dr, r<r, , are de-

source ternB(r) that represents the creation and the destrucstroyed at a rate

tion of pores. The formulation fo5(r) assumes that the

formation of pores is a two-step procegss,21,23. All

pores are initially created as nonconductfigg. 1(a)]. Ac- vgndr 12

cording to Ref.[10], nonconducting pores with energy be-

tweenU andU+dU are created at a rate .
per unit area of the membrane.

Based on the creation raf@1) and destruction ratél?2),

U
Vche_U/de(ﬁ (9 the source densit$(r) can be written as

per unit area of the membrane. Herg,is the “attempt rate

o . L1 -3 U
density” [10] with units s “m~° and S(r)=vchk—_|r_eu“‘T—vdnH(r*—r), (13)

U(r,t)y=u(r)—ma,V?r? (10)

denotes the energy of nonconducting pores at nonzero trans- 60 : *
membrane potential. The differentidll of energy in Eq(9)
is related to a corresponding differentthl of the pore radius 0.1
by dU=U,dr. Hence, the pores with radii betweerandr

0.2
+dr are created at a rate

40 ]

0.3
U

vch k_'lr' e VkTgr (11)

per unit area of the membrane.

If a nonconducting pore is created with the radius
>r, , it spontaneously changes its configuration and forms
an inverted, conducting porfFig. 1(b)]. This conducting 05V
pore survives as long as its radius remains absgveHence, 0 '
with r>r, , Eq.(11) is effectively a creation rate density of 0 v 2

. . . : pore radius (nm)
conducting pores. If a nonconducting pore is created with the
radiusr <r, , the pore remains nonconducting and it has a FIG. 3. The change in the energy function of a pore at the
lifetime “on the order of the lipid fluctuations’[16]. That  transmembrane potentisf,,#0.

04 |

pore energy (units of KT)
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where H(r), the Heavyside’s step function, represents theHere, e, u, andy are dimensionless parameters
fact that only nonconducting pores<@ <r ) are being de-
stroyed. With Eq(13), PDE (1) is complete. 1 E,
The standard initial and boundary value problem associ- e KT
ated with PDE1) requires that an initial condition(r,0) be

given inr >0, and that a boundary condition aratr =0 be 1 ri
specified for alt. This paper assumes that 0 is an absorb- %D vg~5Xx10°,
ing boundary, i.e.,
n(0t)=0. (14) y=—03__04. (19
vchry
Intuitively, condition (14) means that when pores shrink to
zero, they disappear. The nominal values of and i are small whiley is of order
unity. This suggests an asymptotic analysis in whicj are
IIl. DIMENSIONLESS FORM OF THE BOUNDARY treated as gauge parameters tending to zeroyaisdreated
VALUE PROBLEM as a constant independent .
The quantity
The initial-boundary value problertl),(14) of pore dy-
namics is amenable to asymptotic solution. A preliminary 1
nondimensionalization leads to the recognition of relevant f=- g ern=n (20
gauge parameters. The variables are scaled according to the
system of units in the scaling table: in the left hand side of Eq(18) is the dimensionless flux.
The right hand side of Eq18) contains the dimensionless
Variable r t o,U n (15 source, with the creation rate
Unit - r3/D E. Ur§ 1
—Uu,e Ve (21)

The units of pore radius and energy clearly come from the me

structure of pore energy as a function ofr (Fig. 2. The
unit of time is the duration required for pore radius to diffuse
a distance on the order of . It is assumed that the charac- y
teristic time associated with the temporal variationg¢ofs —nH(1-r). (22
equal or larger than this unit of time. The unit of pore distri- K

bution functionn amounts to comparing the density of pores this destruction rate indicates that a lifetime of a noncon-
to the density of lipid heads: Lef(r) be the nondimensional ducting pore is on the order gf.

pore distribution as a function of nondimensional radius
=r/r, . Given the unit I3 of nin Eq. (15), n andn are

related by
3 1_( r
n(r)y= ri n s

Hence, the pore numb&t per unit areg2) can be expressed
as

and the destruction rate

IV. REDUCTION OF THE BOUNDARY VALUE PROBLEM
TOr=1

(16) A. Pore creation and destruction nearr=1

Simple order of magnitude estimates based on the dimen-
sionless PDE18) provide physical insight into the creation
of conducting pores. There are two routes for the creation of
conducting pores.

©1 [r r 1 (= (i) The “indirect” route, in which a nonconducting pore
N:f _Zﬁ( —)d(—) = _Tf n(rdr. (17) is created with radius<1 and then diffuses into>1 be-
ol M/ M) Ty Jo fore it is destroyed. Once in>1, it turns into a conducting
) ) _ — ) pore.
If the dimensionless integrafon(r)dr is of the order of (i) The “direct” route, in which a nonconducting pore is

unity, thenN has the order of magnituderf/. Assuming created with radius>1 and immediately converts into a
that ri is comparable to the area of a lipid head groupconducting pore.

[12,14), 1/r,2c corresponds to “one pore per lipid molecule.” Since the dimensionless creation ré#) decays expo-
So indeed, measuring in units of 142 leads to a dimen- nentially with length constant asr increases, it is clear that
sionless distribution function which is the density of poresthe creation of nonconducting porestircl is much more
per density of lipid molecules. Physically reasonable soluprolific than the creation of conducting pores with 1. Can

tions are expected to havemuch smaller then unity. it be that even though there is a voracious destruction of the
The dimensionless version of the Smoluchowski equatiomonconducting pores at dimensionless ré2@) in r<1,
1) is enough of them cross over into>1 to make the indirect

route dominant? The answer depends on the relative magni-
1 10U . tudes ofe and u.
n‘+a’( - E‘Prn_nr) B ;(?e —ynHA=n ] Consider nonconducting pores created with radiersl
(18 —X, where 0<x<1. Can they be transported intc-1 dur-
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ing their dimensionless lifetimg? The drift velocity inr
<1 is seen from Eq(18) to be negative~ ¢, /e=—U, /¢
<0, so the only transport process that increasés diffu-
sion. The dimensionless time required to diffuse distaxce
(in order to cross inta>1) is O(x?), and the fraction of

pores which make it have order of magnitmfé‘z“‘. Hence,

the ratev’ at which conducting pores are created by the
indirect route is estimated in order of magnitude by the inte-

gral

U(l‘x>’8e"‘2/“dx.

f gl 23)

0 em

Here, the Gaussian factar X/ represents the fraction of
pores making it ta>1 and the reminder of the integrand is
the creation rate at=1—x. Since for the nominal values of
e andu in Eq. (19), Ju<e, the Gaussian factor dominates

in Eq. (23) and the integral is estimated by Laplace’s method

to give the order of magnitude of,

1 (p,)
e Px'e,
Vi

eVp

v =0

(24

Direct creation of conducting pores with-1 proceeds at
rate

= U 1
vzf —LeVlegr= g o5, (25)

1ep ©

Note that the main contribution te comes from a “1°
boundary layer,” 0<r—1=0(g). Comparison of Eq924)
and(25) reveals that
V/
_:o(ﬁ)
14 &

=0.064. (26)

Sincev’ <v it is thedirect route that dominates the creation
of conducting pores.

B. Absorbing boundary condition at r=1

In the PDE(18), the pore distribution functiom(r,t) is
defined in G6<r <. In practical problems, only conducting
pores with radiug >1 are of interest. Pore density ik
<1 matters only through its effect on pore densityrinl.
The proceeding analysis determines whetherrtid pores

really matter by comparing the magnitude of the pore distri-

bution functionn in the 1" and 1~ boundary layers.

In the 1" boundary layer, &r—1=0(e), the convec-
tive component-ne, /e and the diffusive componentn,
of the fluxf (20) balance each other and the creation nate

(25) in the order of magnitude. This leads to the order of

magnitude estimata® of nin the 1* boundary layer
8 .
n+=0<;e“"*’s) in 0<r—1=0(e). (27)

Now consider pore distribution in the 1boundary layer, O
<1-r=0(y/u). The O(y/u) thickness of this boundary
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layer is equal to the distance a nonconducting pore diffuses
in its lifetime . Pores are introduced into the boundary
layer by three processes.

(i) Conducting pores cross over from»1 intor<1 at a
rate whose order of magnitude@ (1/u)e™ ¢+ /?], the same
as the magnitude of (25).

(ii) Spontaneous creation at a rate

1 U 1
f —Le Vedr=0 e exl2 |,
1-Vu EM Vu

evp
The estimate of the integral in the left hand side is based on
Ju<e as in Eq.(19).

(iii) Pores also enter the lboundary layer across the left
endpointr =1— /. This rate is estimated the same wily
was. In fact, its order of magnitud®[(1/eJu)e ¢+ '] is
the same as that of’ (24).

In the limit \/u<e, processi), representing the crossover
from r>1, dominates. Hence, pores are introduced into the
left boundary layer at rate (25). This rate must be balanced
by the rate of pore destruction in this interval, which has
order of magnitude

n- n-

o[ va)-ol %

P Vi

Here,n™ represents the order of magnituderofn the 1~

boundary layer, to be determined by balance of E2{).and
(29). This balance gives

(28)

o) . (29)

1
n~=0 —e‘”*’S) (30)
o
and, consequently,
n-
n_:O(\/a_;) =0.064. (31

The magnituden™ in the 1= boundary layer is much less
than magnituden™ in the 17 boundary layer. Hence, in the
limit &, Vu/e—0, the pore distribution functionin r>1 is
subject to the effective, absorbing boundary condition and
the full boundary value problem can be replaced by a re-
duced boundary value problem im>1. It consists of the
Smoluchowski equation

- U
N+ 4, or n—nr] =—Le Vs inr>1, (32
€ eu
together with absorbing boundary condition
n(1t)=0. (33

V. HEURISTIC OVERVIEW OF THE ASYMPTOTIC
DYNAMICS OF PORE DENSITY

A heuristic overview of phenomena contained in the
boundary value probler82),(33) can be given in advance of
detailed derivation. Consider the situation in which the local
energy minimum at =r, exists. A significant fraction of the
pores created in the*1boundary layer congregate near this
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energy minimum. Pores cannot accumulate araynohdefi- N
nitely. Eventually, saturation must set in. One mode of satu- pRei (#x = om)le, (39

ration consists of pores crossing the diffusion barrier at

and expanding without bounds. For artificial bilayers such ashjs is simply the tail amplitudé38) divided by thickness

in Chernomordik’s experimentd], this is catastrophic: Me-  of the 1* boundary layer. In the presence of pore creation
chanical rupture of the membrane is imminent. In actual bio{25), the net flux of pores from the*Lboundary layer to the
logical cell membranes, unbound pore growth is generallyaccymulation ar,, should be the difference between Egs.

arrested by mechanical structures in the membrane such @5 and (39). This gives the conjectured ODE fi(t),
the cytoskeletal network24,25. In any case, the fate of

pores after crossingy is beyond the scope of the analysis .1 _ . N (g
presented here. There is only one relevant question about N%;e o gt fxfm
breakdown: How long does it take? This topic has been ex-

tensively studied1,9,26. The expected time to breakdown |t turns out that Eq(40) is in fact correct up to factors of
scales with the energy barriel;— ¢y, ase™ (¢a™em)/e, O(1), so itproperly captures the dependence on gauge pa-

e, (40)

A second mode of saturation consists of pores mear

climbing back the energy barrier a&=1 and crossing over

rameterse, u. From Eq. (40), it is evident that net pore
production is turned off, N=0, whenN achieves the equi-

into r<1 where they are destroyed. This process is calleGprium value N, with order of magnitude
resealing. The time for resealing scales with energy barrier a

¢x—mase (xmemle,

If ¢4>¢, , resealing is seen long before breakdown. In

this case, a first guess at the ODE fg(t) follows from

83/2
Neqzo<7e_‘pm/8>. (41)

simple order of magnitude estimates. Suppose that the accu-

mulation of pores about,, is initially negligible. The net
flux of pores from the 1 boundary layer ta, is approxi-

mated by the creation rate (25). For times much shorter
than the breakdown time, pores continue to accumulat

aroundr ,, with none crossing into>r 4. The pore distribu-

tion n(r,t) in 1<r<ry is approximated in order of magni-

tude by the Boltzmann distribution
n(r,t)~n,e (¢ -emle (34

where n,=n(r,,t). There is a sharp peak about=r,
which accounts for most of the total pore dendiyt). In
fact, n,, in Eq. (34) is related toN according to

Td

Nznmf e (¢memleqy, (35)
1

The integral may be evaluated by the Laplace’s method

rg 27e
fe*<¢*¢m>’8dr~\/7=0<ﬁ),
1 Pm

where ¢, = ¢, (rm,t). Combining Eqs(35) and(36) gives

(36)

N

Nk

The Boltzmann distributior(34) implies that the sharp
peak atr, is surrounded by exponentially small “tails” in
the rest of K r<ry. The tail amplitude at =1 has order of
magnitude

Nm=0 (37

ﬂe—(w* —¢emle
e

nme (¢x~¢mle  or (39)

on account of Eq(37). If there were no pore creation in the

1" boundary layer, crossover inte<1 would proceed at a
rate whose order of magnitude is

VI. SINGULAR PERTURBATION ANALYSIS
A. Regularizing transformation

This section presents the rigorous derivation of the ODE
?40) governing the pore densifji(t). The analysis assumes
that the local energy minimum at, exists, thate, <¢q,
and that the dimensionless time constantgtd temporal
variations is of order unity. The first step is a preliminary
regularization of the boundary value problgBR),(33). In
intervals ofr where the total fluX is much smaller than its
components—n, and —ng, /e, one can determine the ap-
proximate form ofn by settingf =0 in Eq.(20) and integrat-
ing the resulting ODE. The result is

nwe—[qa(r,t)—c(t)]/e, (42)
whereC(t) is a function of time, as yet undetermined. The
1/e in the exponent indicates that solutions fdr,t) gener-
ally have length and time constants of s2és). The expo-
nential is factored out by a transformation fromto a new
variableg, defined by

n(r,t)y=g(r,t)e [enH=COVe, (43
The idea is that solutions fay should not contain length and
time constants of siz&(¢), at least not in whole regions of
the (r,t) plane of size unity.

The curver =r ,(t) in (r,t) plane represents the position
of the energy minimum as a function of time. Suppression of
short length and time constants frapin a neighborhood of
this curve leads immediately to the determination of the
function C(t) in Eq. (43). Assuming that length and time
constants of in a neighborhood of,,,(t) areO(1), thelocal
behavior ofn in an O(\/&) neighborhood of () is well
approximated by the following asymptotic form:

N~gme ™ (¢m~C/ee™ ¢l ~Tm /e, (44)

which was obtained by replacingy(r,t) in Eq. (43) by g,
=g[rm(t),t] and substitutingp(r,t) in the exponential by
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its Taylor series around,,. Equation(44) has a Gaussian The right hand side of Eq52) is possibly singular at,, and

factor e~ #m" "W \which shows thamn(r,t) is sharply
peaked about,, and that almost all the total pore densiy
is due to pores withr —r | =O(\/¢). Integrating Eq(44) in
r and using Eq(36), one finds an asymptotic form of,

2me
— (45)
Pm

ngme—(gom—C)/s

N generally does not contain short time constants of duration
e. In fact, the usual situation is quite the opposite. Recall Pr
from Eg. (40) that the resealing time constant is exponen-

tially large ine. Given absence of time constanin N(t), it
is clear from Eq.(45) that in order forg,, not to have are
time constantC(t) must be

C)=em=¢[rm(t),t].

With Eq. (46), transformation43) is completely defined

(46)

n(r,t)=g(r,tye” (¢~ em’e, (47)
In addition, Eq.(45) relatesg,, to N by
e
gm_ 2me N (48)

Substituting the representati®f?7) of n into Eq. (20) gives
the fluxf in terms ofg

f=—g,e (¢ emle, (49)

Substitution of Eq.(47) into Smoluchowski equatiori32)
gives a PDE fog,

©t— Pm P
Oi— Tg_grr+ :gr

_&e*%/se*(Uﬂp)/a

= in r>1,
e

(50

and the absorbing boundary conditi@8) translates into
g(1n=0. (51

In addition, the initial distribution functiom(r,0) induces
the corresponding initial distribution functiay(r,0).

B. Outer solution

Asymptotic analysis of probleni50),(51) for g begins

with the outer limit process in which length and time con-

stants ofg are O(1), independent ok. The leading order

approximation to the PDHE50) comes from balance of

O(1/e) terms

€9~ (et—¢m)d

or

%M ©t— Pm

g Pr %2

rq,» wheree,=0. The singularity ar, is removable. Note
that

. d .
(sz&‘Pt[rm(t)rt]z(¢t+r‘Pr)|r=rm= @t(rm,t)

SO

@tr(rm,t)

ei—em @) —ei(rm,t)
- R
@rr(rm,t)

er(r,t)

as r—rpy.
(53

The limit of the indeterminate form is computed by
L'Hospital's rule. Since the right-hand side of E(2) is
regular atr,,, Eq. (52 may be integrated to give

g~9gm\,
with

oo
)\=)\(r,t)sexp<f Mdr)in 1<r<ry. (59
m

Py

There are immediate questions about this outer solution:
At any timet, its values in the entire interval of, 1<r
<ry4 are set by its valug,, atr=r,,. It is clear that this
outer solution cannot match arbitrary initial valuesgyéf,0),
nor does it satisfy the absorbing boundary conditigf t)
=0 unlessg=0. The leading order outer solution exhibits
nonuniform validity in the following.

(i) An initial layer where 0<t=0(g). This layer re-
solves the rapid relaxation of the initial dagér,0) to thet
=0" limit of outer solution.

(i) The 1" boundary layewhere 0<r—1=0(¢). This
boundary layer solution resolves the noncompliance of the
outer solution with the absorbing boundary conditionr at
=1 and determines the effective flux of pores from the 1
boundary layer ta .

(iii) An internal layer about the diffusion barrier, where
|r—rd|=O(\/§), due to the generally nhonremovable singu-
larity of (¢i—¢em)/ @, at rq. This singular behavior is re-
solved by matching with an internal layer solution which
describes the flux across the diffusion barrier.

This paper addresses oniy), the 1" boundary layer so-
lution. As argued in the Discussiofi) and (iii) are either
negligible or irrelevant to the scenarios of pore dynamics
addressed here. Relaxation of the initial distribution to the
outer solution and escape overtime-dependentliffusion
barrier are addressed in a separate paper, currently in prepa-
ration.

C. Boundary layer solution in r=1*% and asymptotic
ODE for pore density

In the 1" boundary layer, &cr—1=0(e), g generally
exhibits O(e) length and time constants. In this case, the
“time terms”

o— @
g———g (55)

&
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10000 s

’ € '
elexRgg=—e #m/ee VRt F, (62
)7
ter soluti boundary | luti . . . .
7500 - ojfter soldtion ol RCary fayer SoIon whereF is a constant of integration. It is related to the net
(145 flux out of the 1" boundary layer. In the limit—0, R>0
! fixed, the flux(49) reduces to
g 5000 - \\V/_ .
exact f~— ;e‘“"* _¢m)/8(gRe_“D;|R). (63
=T — <ﬁ(9 | The expression in parentheses is equal to the left-hand side
of Eqg. (62). Hence, after substituting in its place the right-
hand side of Eq(62), it is seen that this boundary layer
0 10 T approximation to the flux converges to
pore radius (units of r, }
1
FIG. 4. Approximation of functiong(r,t) by the outer and fo=— ;e_(‘P*_‘Pm)’SF as R—ow. (64)

boundary layer solutions.

are one power of smaller than the “space terms” ExpressingF in terms off., in Eq. (62), and dividing by

el*xIR gives
Pr
- + — ’ ’ ’
O T 9 (56) gR:ie—¢m/se—(u*+|¢*|)R_se((p*—<pm)/se—\<p*|fo
7’

in Eq. (50). Hence, in the 1 boundary layer, time term&5) .
may be dropped from the leading order approximation to Eq. in R>0. (65

(50). What survives is the ODE . . )
Integrating Eq(65) in R from 0 toe and using the boundary

U conditions(60),(61) gives
_grr+ﬁgrw_reiwmlsei(U7‘P)/g- (57)
& EM —omle
e e 'm € Y
Imh (L) = — = el e (66)
Introducing to Eq.(57) the boundary layer coordinate pn UL +lep] el
r—1 This obscure looking relation is actually the asymptotic ODE
= (58  for N(t): The net fluxf, is of courseN, the rate of change
of the pore densit\N(t), andg,, is related toN by Eq. (48).
and taking the limit: —0, R>0 fixed, one obtains With these substitution and further rearrangement, (E6)

becomes
/ € ) a—emlea—(UL+|o DR
_QRR_|<P*|9R“—U*G Pmie@™ (M TPy in R>0.
73

I'\I—K(l—i) (67)
(59) Neg/'

€q

Here, ¢! =¢,(1%,t) and similarly, U, =U,(1*,t). Since WhereK andNeq are functions of time given by
¢, is generally negative, it is represented by¢, | so no

minus sign hides in Eq59). Effective boundary conditions K= Ee—qo* e (68)
are o
=0 at R=0, 60 @,
’ 0 am ol (69)
U,+ | Py |
g—0gm\(1t) as R—oo, (61
3/2
Equation(60) is the absorbing boundary condition and Eq. Neqzs_be—%/s, (70)
y72

(62) follows from matching with the outer solutig®4). Fig-
ure 4 gives an illustration of the matching conditi¢éi).
The boundary layer and outer solutions are depicted in rela- b= 1 /2_7" Ty o)l gpdr
tion to each other and to the exact solution gor U, +le,l . '
The complete solution fog can be easily obtained from
the boundary value problei®9)—(61). However,g itself is  In the expressions foK andN¢,, the dependence on gauge
not relevant. What is really needed is the net flux of poregparameterse, x and exponentially small factore™ ¢+ ’¢,
out of the I' boundary layer. This flux can be extracted frome™¢m’® are written out explicitly. The remaining factoes
Egs.(59—(61) as follows. The first integral of Eq59) is andb areO(1) functions of time. Note further that the terms

(71

m
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where

Vep= el . (76)

TheO(1) coefficientain Eq. (68) also depends oY but this
dependence is much weaker than that of the exponential
eVVep® and is unlikely to be detectable experimentally. In
practice,a is treated as a constant independenVopfresult-

7 ing in an approximation fokK,

1.0e-08 |- n(r,0)

7.56-09 - oty = E()

n(r,t)

5.0e-09 -

~ a(VIVep)?
2.56-09 K~ae P (77

The approximation tdN¢q based on the same reasoning is

L L L

2 2
4 6 8 10 ~ rm(V/Vep)
pore radius (units of r, ) Neq~Nge'm ™ Tep’ (78)

0.0e+00
0

N -

FIG. 5. Asymptotic approximation of the pore density distribu- IN Eds. (77),(78), a and N, are nominal “constants” in
tion functionn(r,t) at transmembrane potentisl},=0 for which ~ Which weakV dependence has been suppressed. The mini-

pore energyp=E(r). mum energy radiusg,, also depends oW but, as Fig. 3
makes cleart ,, changes very little a¥ is increased from O

of the ODE (67) and N, (70) indeed have the orders of to V.. Hence,r, is also treated as a nominal “constant.”

magnitude predicted in Eq&40),(41). The ODE (67) with K and Neq given by (77),(78) has the

If the dimensionless characteristic time of temporal varia-Same form as the model proposed by DeBruin and Kras-
tions of pore energy is much longer that unity, thepp,|, ~ SOwska[27], in which constantsy, Ve,, No, andr,, were
lém|<1 and the exponential factor chosen to fit experimental data.

The constan¥/,,, defined in Eq(76), is a characteristic
oI i o rdr (72) voltage of electroporation. Fas defined in EQ.(19), V¢,
=0.084 or, in dimensional units, 0.267 V. At a glance, this
in Eq. (71) is nearly unity. In this “quasistatic limit,” the estimate appears to be significantly smaller than experimen-

; ; : tal evidence, which puts threshold for observable electropo-
asymptotic ODE67) for N(t) is equivalent to the ODE that _ _
would results ife were assumed time independent. In this"ation between 0.5 and 1.2 V, depending on the type of the

caseNgq would represent the saturation valueNofit which membrane]1,28]. However, ifV increases from 0 W/,
the net pore creation rate is zero. the rate of pore creation increases only by a facta &uch

Given pore densityN(t), the pore distribution function rate is too small to produce during a typical few milliseconds

n(r.t) is recovered asymptotically from Eq47) with g SB?CI'( pore de_nsny sgfflment fo(; thte expe_lr_lmentally detect- _
given by Eq.(54). The resulting formula is able increase in membrane conductance. To cause an experi-

mentally observable effect/, must exceed/,, by a factor of

] 2 or 3. Hence, threshold voltage for electroporation mea-
n(r,t)~N /ﬂef{m(sar¢m>/¢rdref<¢fsom)/s_ (73)  suredin experiments is actually-2V,,=0.53-0.8V, well
2me within the range of experimental estimates.

Figure 5 depicts the asymptotic distributionat transmem- VIIl. DISCUSSION
brane potentiaV,,=0.
The analysis presented in this paper reveals several inter-
VIl. PORE CREATION RATE COUPLED esting features of the electroporation process. First, regarding
TO TRANSMEMBRANE POTENTIAL the source of the conducting pores: Essentially all conduct-
ing pores are initially created as hydrophobic pores with ra-
The coefficient andNgqin the ODE(67) depend on the  dius r>r, (more precisely, in a thin boundary layer just
energy functionsp and U. These in turn depend on trans- right of r, ) and immediately convert to hydrophilic pores.
membrane potential. The dimensionless version of E§)  Because of a very fast destruction rate, pores created with
is r<r, have practically no chance of increasing their radius
and converting to conducting pores. Naively, one might ex-
o(r,t)=E(r)—mrv?, (74 pect the interval &r<r, to act as a source of pores be-
S ) ) _ ) cause pore creation rate is exponentially larger for the
where V is dimensionless potential, measured in units ofsmaller pores. In fact, the opposite is true. A certain number
(VE4 /ap)/r, . An analogous dimensionless relation holdsof pores created with>r, cross over ta <r, , where they
for U(r,t). Substitutinge=¢(r,t), U=U(r,t) into formu-  are destroyed. Hence, instead being a source of pores, the

las (68)—(71) gives the dependence & andNeq uponV. interval 0<r<r, acts as a sink, causing a drop in the pore
For instance, considé<: The main dependence ahcomes  distribution functionn(r,t) in a thin boundary layer to the
from the exponential factor right of r, . This feature of the electroporation process al-

) ) lows the analysis to focus only on conducting pores living in
g #xle=g By legmVile— =By log(VIVep® (75  ther>r, interval and to treat, as an absorbing boundary.
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Second, regarding the pore distribution function: A vastonly transiently, during the time whew reaches its peak.
majority of pores accumulate around the energy minimumRapid creation of pores leads to an increase of the transmem-
rm. The pore distribution functiom(r,t) is well approxi- brane current, which in turn leads to the decreas¢ bélow
mated by a Gaussian distribution with a sharp peaig,a@nd V.. The diffusion barrier at 4 is restored, and the fact that
exponentially small “tails” in the rest of the intervdFig.  most of the cells survive implies that the restorationggf
5). The interaction of these tails with the energy barriers ahappens sufficiently fast and that, is sufficiently high to
r, andrq is responsible for pore creation, saturation, resealprevent the escape of pores. Therefore, the ODE derived in
ing, and rupture. Which events will take place, depends orthis study may be applied even under transmembrane poten-
the relative magnitude of the two energy barriers.¢lf tials larger thanV.. There will be some loss in accuracy:
<@y, then the interaction of the left tail with energy barrier during the short transient when the diffusion barrier disap-
atr, slows and shuts down the creation. If the number ofpears, the pore distribution(r,t) is not Gaussian and this
pores is larger than the equilibrium, excess pores reseal hyodel probably underestimates the magnitude of current
climbing back the energy barrier gt and crossing over into flowing through the membrane.
r<r, where they are destroyed. #;<¢, , then the pores The asymptotic ODE67) was derived under the assump-
of the right tail cross the energy barrier gt and expand tion that the temporal variations of energyr,t), U(r,t)
without bounds, possibly leading to irreversible breakdownhave characteristic time on the orderrgf/D~5 us. When
and mechanical rupture of the membrane. A qualitativelythe characteristic time of,U is much longer than fus,
different situation occurs if the energy minimumrgt and  n(r,t) responds “quasistatically” to the temporal variations:
the energy barrier aty do not exist. In this case, the pores Except for the boundary layer neay , the distribution is
created near, all expand without bounds, similar to a nearly proportional to the Boltzmann facter *"%¢T in Eq.
“mudslide,” again setting up a stage for a mechanical rup-(47). In this case, the quasistatic limit of the OOE7) as
ture. discussed in Sec. VI is valid. When the characteristic time of

For ¢, <¢4, the asymptotic ODE67) derived in this ¢.U approaches and decreases below thes imit, the tails
study describes pore creation when pore densit)  Of n(r.t) away fromr,, manifest significant deviations from
<N, saturation and turning the creation rate off witgt) ~ the Boltzmann factor. Still, the responserdf ,t) to tempo-
approachesle,, and resealing wheN(t)>Ne,. In this case, ral variation of ¢,U is nearly instantaneous and the pore
the ODE (67) determinesN(t) and the pore distribution Creation rate is described by the time-dependent version of
function n(r,t) is computed from Eq(73). Having n(r,t), the ODE(67). Npte that even in this case, the main depen-
one can determine the current flowing through pores andlence of coefficient& andNeqin Eqs.(68)—~(71) uponV(t)
using an appropriate circuit equation, follow the temporalis quasistatic, via exponential factoes"/Ved”, efm(V/Ved”
evolution of the transmembrane potentél The non-Boltzmann tail effect manifests itself as an expo-

The asymptotic ODHE67) can also be used in cases in nential factor(72). It is buried in theO(1) coefficientb in
which the diffusion barrietp, is lower thane, or altogether Eq.(70) and, as such, it is barely discernible in any practical
absent. Ifoy<¢, , saturation is achieved fad much less sense.
thanN¢qin Eq. (70). This is because escape over the energy The lower bound on the admissible temporal variations of
barrier atry is energetically much easier than climbing up ¢,U is set by the relaxation time ai(r,t) from arbitrary
the energy barrier at=r, . With N<N,,, the resealing initial data to Gaussian fornir3). As argued in Sec. VIB,
term in Eqg.(67) may be dropped. If a local energy minimum this relaxation occurs within an initial layer of dimensionless
I, does not exist, there is no mechanism at all to generate @duration . The dimensional time corresponding tois
tail of n(r,t) nearr=r, . Without the significant resealing er2/D~0.1us. Hence, the time-dependent version of the
induced by this tail, the resealing term in E§7) can again ODE (67) remains valid when the time constantsgt) are
be dropped. Hence, for both cases discussed above, the ra@td us or longer.
of pore production is approximated by omitting the resealing Setting limits on temporal variations of pore enexgyJ
term —N/Ngq in Eq. (67). However,n(r,t) no longer has a imposes the same limits on the transmembrane potevifial
simple approximation such as a Gaussian abgutConse- which is the quantity available for experimental manipula-
quently, one has no means of computing the current througtion. During a typical electroporation experiment, changes to
pores and its effect on the transmembrane potential V occur due to two mechanisms:

Hence, foroy<e¢, , the pore densityN(t) computed from (i) Direct charging of the membrane adjacent to the elec-
the ODE is valid only ifV is set by an external circuit, such trode. This process has a time const&j{C,~1—-10ms,
as during voltage-clamp experimenis16]. whereR,, andC,, are the surface resistance and surface ca-

For the values of parameters in Table I, the diffusion barpacitance of the membrah29].
rier ¢4 disappears &.~0.5V. Does it mean that the ODE (i) Polarization of the individual cells by an electric field.
loses validity atv close to 0.5 V? Not necessarily. Accord- Here, the time constant depends on the shape of the cell. An
ing to PDE (1), all pores created near, should expand order of magnitude estimate i€,d/o;=0.25-2.5us,
without bounds, leading to the mechanical rupture of thewhered is the dimension of the cell ang; is the conductiv-
membrane. However, such catastrophic scenarios are not oity of the cytoplasni30].
served in practice. In typical electroporation experiments, Comparing these estimates with the 5 and @sllimits
majority of the cells reseal and survive, even if they areshows that the asymptotic ODE§7) and its quasistatic ap-
exposed tov of 1 V and larger. The explanation is that, in proximation are both valid for cage: Even if the stimulat-
most experimental situations, the diffusion barrier disappearsg current has frequency in the MHz range, the response of
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the membrane is slow enough to shield pore energy from fadtants which at present are known only to the order of mag-
changes. The frequency of the stimulus may be an issue initude. Fourth, the ODE67) is easy to solve numerically, at
case(ii). Small cells polarize and depolarize very rapidly in a minimal computational cost and may serve as a tool to
the external field, these rapid changes are reflectegdand  study electroporation in the spatially distributed systems.
U, and the use of the quasistatic version of OBF may be The ODE(67) is an asymptotic reduction of the Smolu-
“pushing the envelope.” Still, even in this case, one canchowski equation(1) assuming a specific form of the pore
expect only a modest difference between solutions using thenergy functione (6). In this formulation, the factors con-
guasistatic and time-dependent ODE. As argued above, thebuting to the energy are the surface tension of the mem-
time dependence affects only @1) coefficientb (70).  brane, the line tension of the pore edge, and the membrane
Therefore, for most experimental setups, the OF)  capacitance, which introduces dependence on the transmem-
should give an adequate description of the electroporatiobrane potential. Pore enerd§) is at present the most widely
process. The only exception may be voltage clamp experiused in the literature. However, there exist formulations that
ments, in which the rate of rise &f does not depend on the account for different factors, such as osmotic presfaitg;
intrinsic properties of the cells and membranes but is enelectrocompression of the lipid bilayg32], interaction with
forced by an external circuit. the membrane cytoskeletd@5], or deformation of cells by
The advantages of the asymptotic ODE are fourfold. Firstglectric field[33]. To electroporation theories based on these
the simple form of the ODE67) makes it amenable to ana- alternative formulations, the exact form of the OR&?7)
lytical examination that can elucidate the most importantobviously does not apply. However, if these theories are
gualitative features of the electroporation process. The samgased on the Smoluchowski equation and if they contain
gualitative features exist in the PDE) but are buried and, small parameteréwhich is quite likely, then an asymptotic
because of the difficulties associated with solving the PDHEeduction similar to the one presented here should be fea-
and its analysis, are much harder to uncover. Second, thable. In such cases, the present study can provide a “blue-
ODE contains a smaller number of parameters and most qirint” for deriving simplified approximations for the theories
them are related in a straightforward way to experimentabf electroporation based on different pore energetics.
measurementfl6]. Thus, the ODE provides a convenient
conceptual fram_ework for' the de3|g.n and interpretation of ACKNOWLEDGMENTS
the electroporation experiments. Third, formul&s)—(71)
presented in this paper provide the connection between the This work has been supported in part by the National
parameters of the ODE and the molecular-level constantistitutes of Health Grant No. HL54071-01 and the National
appearing in the PDE. This connection provides a way ofScience Foundation Engineering Research Center Grant No.
using experimental results to evaluate the value of these colDR-8622201.
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