PHYSICAL REVIEW E VOLUME 59, NUMBER 3 MARCH 1999
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We analyze the transmission of sinelike periodic signals by an ensemble of leaky integrate-and-fire neuron
models in the presence of additive noise. We observe that when the number of units in the ensemble is large
enough, the point process formed by pooling the spike trains of all units is an inhomogeneous Poisson process.
We obtain the intensity of this process, i.e., the instantaneous discharge rate of the ensemble, from the cycle
histogram of the discharge of a single unit. This enables us to link measures of the regularity of the output
discharge rate and the transmission of the periodic input, such as the signal to noise ratio and the input-output
power norm and normalized power norm directly to the shape of the cycle histogram. Furthermore, we also
show that firing precision in response to subthreshold stimulation is maximized at some intermediate noise
value, and argue that in this regime the ensemble can reliably transmit fast periodic signals below the resolu-
tion of the individual units. Our analysis clarifies the conditions whereby noise enhances signal transmission
and detection in ensembld$1063-651X99)09803-7

PACS numbegs): 87.10+¢, 07.05.Mh

I. INTRODUCTION rather than the other. This should help, in principle, to better
understand the conditions under which each scheme may be
Sensory neurons transform signals from the environmeneperating in nervous systems.
into trains of spikes that propagate to other structures in the More precisely, we study the influence of additive noise
nervous system. Since internal and external noise are ubign the response of an ensemble of leaky integrate and fire
uitous and unavoidable, many studies have investigated theifodel (LIFM) units to periodic stimulation. The choice of
effect on signal transmission by sensory neurons. These hayde model was motivated by the fact that the LIFM captures
shown that noise of appropriate amplitude linearizes the relh® essential properties of neurons, that is excitability and
sponse of neurons, leads to stochastic resoné®Bg and postdischarge refractoriness, so that the results should hold

maximizes input-output correlatiofpower norn), transin- for more complex models anc! living neurons. Thg- input sig-
formation and coherencfl]. These phenomena have re- na}l was se{/?/Ctﬁd ag_adperlodlcl onef beca_use of its b:ologl_cal
ceived considerable attention because of the surprisingl?r,/e evance. et studie ehxam_p etflo ;l)retmse tempora C? mgf
beneficial effect of noise, and theoretical analyses aim t?n nervous systems, such as in Ihe eleclro-sensory system o
. . . he fish eigenmannid. 0] and the auditory system of the barn
c!anfy the conditions under which they occlit,3]. For re- owl [11] rely on firing at a given phase of a periodic modu-
views on SR, sepd]. _ lation. Furthermore, the possible role of the interplay be-
In this work, we evaluate the effect of pooling the re- yeen subthreshold modulation and noise has also been ob-
sponse of a large number of neurons in parallel on the aforeseryed in the shark temperature sensitive electroreceptors
mentioned phenomena as such architecture may be involved | Finally, theoretical studies have indicated how nervous
in sensory systems. The importance of the study of the influsystems may learn and process information using this form
ence of noise on signal transduction across ensembles wg$ temporal coding13,14].
stressed ir5]. These authors showed that in the presence of This paper is organized as follows. In Sec. II, we describe
appropriate noise, such ensembles can reliably detect suthe model of the ensemble of LIFMs. In Sec. Ill, we con-
threshold pulses, through synchronous firing. Prior to theistruct a statistical model of the discharge train of this system.
study, the prevailing view was that noise would mainly de-This model is valid for subthreshold and suprathreshold, as
teriorate firing precision, so that noisy ensembles would enwell as slow or fast periodic stimulation. We use this statis-
code incoming signals into rate codes obtained through awical model to determine the noise levels that maximize
eraging the response of all unif§]. This standpoint was input-output fidelity(Sec. IV A), and discharge timing pre-
further supported by the fact that the input-output transduceision (Sec. IV B). We compare the corresponding regimes
tion fidelity of large ensembles is relatively insensitive toin Sec. IV C. Finally we discuss our results in Sec. V.
noise intensity, when this quantity is large enolgh-9).
In this study, we examine the two situations, that is the Il THE ENSEMBLE MODEL
influence of noise on both rate and temporal coding schemes,
in the same system. In this way, we intend to characterize the We consider an ensemble Bf LIFM units receiving the
noise intensities that would be adequate for one regimsame periodic stimulation and independent noise. Each
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LIFM is characterized by its membrane potential, denoted by When the input signal i§-periodic, so is the intensity
V;. WhenevelV; overtakes a constant thresh@g, a spike  A(t), and the normalized cycle histogramof the inhomo-
is generated, following whichV; is reset to a post-discharge geneous Poisson process is given by
hyperpolarizatioriVy. Between successive discharg¥s,is

determined by _ TAN(TO/127)
h(e)_—2wA(T) for O0s<é@<2m, (3.
Vi_Vr .
dvi=| - +AsIN(Qt+ 6o) | dt+DdW;, (2.1) where A(T)=f{\(u)du. The normalized cycle histogram

gives the probability that a discharge occurs at a given phase.

where V, is the resting potentials is the characteristic We remark that(1) the normalized cycle histogram of the
charge-discharge time of the membraAe, (1, and 6§, are, pooled spike train is exactly the same as that of any indi-
respectively, the amplitude, the angular velocity/Z and ~ Vidual unit in the ensemble, and, furthermof®), A(T) rep-

the initial phase of the stimulatiom is the noise amplitude esents the average number of discharges per input cycle and
and dW; are independent white Gaussian noise. Thus, allS given byA(T)=NT/(t) where(t) is the mean interspike

units receive the same periodic input, and the phase of th@terval of a single unit. o
latter isnot reset after each firinfL5]. These two properties are of practical importance because

they show that the discharge rateof the ensemblecan be
derived from the normalized cycle histogram and the mean
interspike interval of asingle unit.
Our main results hinge upon the statistical description of In Appendix A, we describe how and(t) can be ob-
the point process formed by the pooled discharge trains of tined using a first-passage time approach. Our approach ex-
large number of units in parallel. To introduce the descripiends previous methods used for the analysis of the noisy
tion of the summed spike train, let us recall that, similarly toLIFM with periodic modulation[3,17], in that it takes into
the central limit theorem that states that the sum of a larg@ccount the phase distribution of the discharges.
number of independent identically distributed random vari- For slow input signals, the intensity can also be esti-
ables becomes a Gaussian random variable, the sum of indéated, under the quasi-static assumption, from the mean dis-
pendent renewal point processes tends to a Poisson proce¥trge rate of an individual unit in response to a constant
[16]. In other words, inter-event intervals of the pooled pointstimulation[8]. Since the method presented in the previous
process are independent exponentially distributed randorparagraphs is valid independently from the modulation pe-
variables, and the intensity of the Poisson process is the sufipd, we have used it throughout our analysis, where empha-
of the rates of the individual processes. For example, th&is was put on the processing of fast periodic signals.
pooled spike train of a large number of LIFMs in parallel ~ The advantage of describing the pooled train as an IPP is
stimulated by independent white noise, without any otheithat all relevant quantities can be derived from the estimate
stimulation, forms a Poisson process, whose intensiig  Of the intensityx (t) and hence fronh and(t) obtained from
the sum of the discharge rates of the individual neurons. Athe response of a single unit. These will be described in a
equivalent statement is that the probability of having a disfollowing paragraph. Before this, we discuss the validity of
charge during an infinitesimal time interval of lengih is  the statistical description of the pooled spike train.
A dt. This description puts the emphasis on the temporal In order to test the null-hypothesis according to which the
homogeneity of the Poisson process since it indicates that tfehsemble spike train was a periodically modulated IPP, we
events occur with the same probabmty at any time. first “demodulated” time, and then we tested whether the
When a non-constant stimulation, such as a periodic singesulting point process was a HPP. These two steps are de-
like input current, is added to the units, the individual spiketailed in the following.
trains are no longer stationary. This character is also apparent We estimated the time-dependent intensitpf the pro-
in the pooled spike train: at times spikes are clustered and &ss from the estimate of the normalized cycle histogram.
others they are far apart. This observation indicates that th&€he latter was obtained both by numerical simulations and
pooled spike train is not a homogeneous Poisson procedy the numerical scheme presented in Appendix A. The
(HPP anymore since it displays temporal inhomogeneitiestime-step and discretization step for both the numerical inte-
There is a time-dependent intensity functid(t) such that —gration of Eq.(2.1), and the algorithm in Appendix A were
the probability that an event occurs betwdeandt-+dt is ~ chosen so as to have agreement between the two methods,
given by \(t) dt. In other words, the process obtained byand such that decreasing the steps did not modify the results.
pooling the spike trains of a large number of units receivingOnce the rate of the process was estimated, the point process
a common input added to independent noise forms an inh@f the discharge times was “demodulated” by a standard
mogeneous Poisson proce#3P). This process is character- rescaling of timg16], according to
ized by a time dependent intensity functiaft) that repre- .
sents the instantaneous firing rate of the ensemblg of the t—>t’:A(t)=f \(s)ds. (3.2
units. Hence\(t) suffices for the complete description of 0
the pooled spike train. Therefore, when the output of the
ensemble is modeled as an IPP, the main issue is to obtain &n other words, the rescaling of the time transformed the
estimate of the rat&. In the next paragraph, we show how sequence of discharge timeg<u,<---<ug<--- of the
in the case of a periodic stimulation, this can be achievegooled spike train into the sequenag<u,<---<uy
from the response of any given unit in the ensemble. <.--, where eachy, was obtained using E43.2). Practi-

Ill. THE POOLED SPIKE TRAIN
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cally, we performed this rescaling by replaciingt) in Eq. 0.025
(3.2 with the normalized ratev(t) =T\ (t)/27A(T). The 0.02
use ofv avoided the estimation of the mean interspike inter-

val (t). 50'015

If the original point process is an IPP, then the one ob- ¥
tained after demodulation is an HPP, and vice versa. Thus oos | |
testing the null-hypothesis according to which the original o AR
point process is an IPP of rate is equivalent to testing 0 80160 240

0.01

A1l | N 18 .
320 400 480

. interspike interval (ims) dimodL?laLed%mer\%gl
whether the demodulated process is an HPP. The latter ca 025 3
be done through several methdds]. We used the follow- 02| 25 )

ing tests. First we estimated the mean inter-event interval of
the process, and we tested whether the normalized interz o
event interval histogram followed an exponential distribu-~ ©1
tion. Then, we tested whether the successive intervals wert s
independent. Precise description of the tests is given in Ap- - 7 T
pendix B. 0 loinlerspzilge inleli/oal (ms)4 0 % delmodulated hzuen/al :
Other studies have used the periodically modulated IPP a: 25,
an approximate model for the discharge train of a single unit |
[19,20. This assumption has given satisfactory results when
both the noise level and input amplitude are low. Therefore,z
in such cases, the ensemble spike train is the sum of inde®
pendent IPPs, and satisfies the required conditions. Howeve!
in our work, we are interested in a wide range of noise levels I
and input amplitudes, where the response of a single unitir % 1 2 3 4 s 002 004 006 008
the ensemble cannot necessarily be described by such a pro- interspie nterval () demodulated interval
cess. This is due, for example, to the presence of the refrac- FIG. 1. Normalized interspike interval histograms befdlet
tory period which forbids the occurrence of arbitrarily shortcolumn and after(right column demodulation forN=1 (upper
intervals. Nevertheless, despite the fact that individual poinpanelg, N=30 (middle panels andN=300 units(lower panels
processes are not IPP, when a large number of them ateft column: abscissas: interspike interval duration in milliseconds;
summed together, the resulting process is well described by%{dinatgs: pr_obabili;y de_nsity in l_<i|oher_tz. Right co_lumn: abscissas:
periodically modulated Poisson process. Figure 1 illustrate8ormalized interspike intervaldimensionless ordinates: prob-
this point. The left and the right columns show the normal-20ility density (dimensionless Model parameters:7=5 ms,
. . . . . T1=40 ms, V,=10 mV, V=0 mV, S=15 mV, and D
ized interspike interval histograms of ensembles before angO 5 mvims?2
after demodulation, respectively, fot=1 (upper pang| N ' '
=30 (middle panel, and N=300. The solid lines in each

panel show the distributions estimated from the normalized Co EX
cycle histogram under the assumption that the process is a Ci= —

periodically modulated IPP. For a single unit, there is only a \/Azsinz(ﬂt)()x(t)—)\(t))2 > lagl?
poor correspondence between the solid line and the histo- q=1

grams. This improves ifN= 30 where differences cannot be

detected by a mere visual inspection and appear only in sta- _ |

tistical tests. These discrepancies disappear Net 300,

where even statistical tests do not detect significant differ- 2 |01q|2
q=1

ences.
As mentioned previously, one of the advantages of the

description of the pooled spike train by a periodically modu-where overbar is time average over one cycle, thax(s),

lated IPP is that all relevant quantities for the study of the= 1/ngx(t)dt, anda, and a4 are the coefficients of the

input-output relation of the system can be obtained from theourier expansion ok (t) andh(#6), respectively, given by

estimate of the rata, which is directly related to the char-

acteristics of the response of a single unit through the nor- 1J

T .
A(t)e 91, (3.5
0

malized cycle histograrh, and the mean interspike interval
(t). For example, the power nor@, and the normalized
power hormC, are given by

aq=?

1 (2= ‘
aq=ﬂ h(0)e_q'0d0. (36)
0
CommaXASTTODN(TT 7} = Alay = 2o
=m si n}=Alai|= ———,
° T ! (t) For the study of SR, an important measure is the signal-to-

(3.3 noise ratio(SNR), which for an IPP is defined 449]
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2|ay|? 8N|ay|?
S=10 Ioglo( ) =10logg T) .
The expressions of the above quantities clarify the influ- S o.
ence ofN for large ensemblesC, and S increase linearly
with N and logN, respectively, whileC, is independent from 04 04
the size of the ensemble. These dependencies are valid fo o, 02
large ensembles for which the discharge train can be de- 05 1 13, 2,25 3 35 05 1 15, 2,25 3 33
scribed by an IPP. They indicate that the properties of the 2 2
system are mainly determined byand(t). For example, in
order to investigate the influence of noise amplitude on these ? "
guantities, and see whether they are maximized at a particu-., a1
lar noise level, we can as well consider the dependence on
the noise amplitude ofc,=Cy/(AN) and s=S—IlogN, 05 05
which do not depend explicitly on the siZ¢ of the en-
semble. Section IV A deals with the influence of noise@n ‘o wm ox  wr x| w2 oz w2
and the other measures of the input-output fidelity. ) phese (2 ) —
In the temporal coding scheme, the key assumption is that
units in the ensemble fire reliably close to a given phase of '* L3
the input signal. The shape a{t) reflects such a preferen- . -
tial phasey,, in that this function presents marked peaks at
¢, T KT. The firing precision, denote#, is then the ratio of 05 05
the peak height, defined as the difference between the maxi- Mﬂm_
mal and the minimal values of during one stimulus cycle, o x w0 s o
to the widthw at half peak. This is similar to the precision ) phose {rad) s phase frad)
used in[5]. Thus we have
L5 15
Am—A

P= ¥, (3.7 = 1 a1
where Ay =max\(t):0st<T}, \p=min{\(t):0<t<T}, and o o {MWM
W:tz_tl, W|th )\(tz):)\(tl):()\M+)\m)/2 and 0$t1<t2 0 mmmﬂﬂ.lmmnm”mmm 0 o —eet]

<T. Using Eq.(3.1), and the fact that\ (T)=NT/(t) we C ey T e T
can define . o . -
FIG. 2. Upper row: abscissae: noise intendityin (millivolt)
T 1 hy—h, over (millisecond*? ordinates: normalized power nor@; (di-
p=——P=— , (3.9 mensionless for period T=10 ms (thick solid ling, T=50 ms
47°N () W (dashed ling and T=100 ms(thin solid line. Second to fourth

rows from top: abscissae: input phase at a discharge in radian; or-
where  hy=maxh(6):0<6<2m},h,=min{h(6):0<6<27},  dinates: normalized cycle histogramgdimensionlessof a single
andW=27w/T. The quantityp is proportional to the preci- neuron for a period =50 ms and three different noise intensities
sion, yet it does not depend on the number of units in thé=0.5 mVim9'2 (second row, D=1.5 mVAms9*? (third row),
ensemble, showing that the precision increases linearly withnd D=2.5 mVv/{m9? (fourth row). The histograms were com-
the number of units once the ensemble is large enough fagruted using both numerical resolution of Eg.1) (box graph and
the IPP assumption to hold. Besides the fact thig inde-  the method described in Appendix &olid line graph. Left col-
pendent fromN, another advantage of using this quantity isumn: subthreshold modulation amplitudd’=Ar/\1+(Q7)?
that it can be computed directly from the normalized cycle=3.5 mV. Right column: suprathreshold modulation amplitude
histogram and the mean interspike interval of a single unitA’=6 mV. Model parameters 7=5 ms, V,=10 mV, V,
In Sec. IV B we describe how this quantity varies with noise.=0 mV, andS=15 mv.

IV. INFLUENCE OF NOISE with noise. Next, in Sec. IV B, we examine the influence of
noise on firing precision.

In this section, we examine how changing the noise inten-
sity modifies input-output fidelity and discharge timing pre-
cision in the response of the ensemble of LIFMs to a sinelike
periodic signal. In this way, we link the optimal noise values The two upper panels in Fig. 2 show hd@4 changes
which maximize the various criteria to the correspondingwith the noise amplitud®, for subthresholdleft pane) and
discharge patterns through the normalized cycle histodram suprathresholdright panel modulations with three different
Atfirst, in Sec. IV A, we consider how the normalized power periods. All six curves increase with the noise level and satu-
norm varies with the noise amplitude, for both sub and surate at one. This effect is similar to the no-tuning effect re-
prathreshold stimulations. We also mention how the otheported in the case of weak aperiodic input sigrils9]. It
two measures, namely the power norm and the SNR, vargan be explained in terms of the “shape” of the normalized

A. Input-output fidelity
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cycle histogramh. Indeed,C; measures the relative impor- 0.08 0.08
tance of|a,|, that is the first coefficient in the Fourier ex-
pansion ofh. When C, tends to one, it indicates that the
Fourier coefficients of order higher than one tend to zero, §004
which in turn implies thath takes on progressively a sine-
like shape. This is illustrated in the six lower panels in Fig. 2,
which showh for a fixed period T=50 ms), at three dif-
ferent noise levels, for the subthreshdldft column and
suprathresholdright column periodic modulations. At low
noise levelsh displays a sharp pedkecond row from top,
which broadens as the noise amplitude is increasieidd
row from top), and eventually becomes sinelidewer row) -
at higher noise levels. As the nonlinearities are reduced, the
higher order coefficients of the Fourier expansion vanish.
Thus, the no-tuning effect reflects the fact that as the noise
amplitude increases, the ensemble firing rate becomes pro
gressively like a sine wave. For suprathreshold periodic
stimulation, these results are in agreement with the experi-
mental data reported by Frenehal.[21] who evaluated the
Fourier coefficients of the cycle histogram of a periodically
modulated sensory neuron in the presence of noise, as wel
as other studies who reported that nonlinear distortions in &
cycle histograms decrease with the noise léf@l a review 02
see[1]). 0.
The progressive linearization of the shape lobccurs 0.2
jointly with the decrease of its amplitude given fay;|. This
is of importance for the determination &f; and the SNR.
For a fixed number of neurons and a given input amplitude,
Cy is proportional to the ratio betwedw,| and(t), while
SNR evolves in the same way as the ratio betwegff and
(t). Both|ay| and(t) tend to zero as the noise amplitude is 0 0
increased. The former because the cycle histogram become 05 1 15 2 25 3 35 05 1 15 %2 25 3 35
flat, and the latter because shorter interspike intervals be- . o . o
come more probable. The relative speed with which these FIG. 3. Upper row: abscissas: noise intendtyn mv/(ms™
two quantities decrease determines the behavior of the powdé;g';atgsr;vﬁxz tzgm:g;:gg z/a (SA ’r\ll())iZ('eai;'t: nzétt; :‘:1]i|||i(\lll()0|![]'e(;t|’2-
norm Cy and the SNR. For the parameter range considered;. - e . ro
for bot(r)1 subthreshold(left coILE)mr) and sup%athreshold d'n‘j’uessfs_ '_Og'\!(de.c'be)’ Wheres's thel,sz’.NR' .Th"d r.OW fro.m
modulation(right column, c,, and thereforeC,, increases - abscissas: noise intensiyin mv/(ms™, ordinates: Fourier
and stabilizes at a plategupper row, while s (and hence coefficientag /N=2/t) in kilohertz for h. Lower row: abscissas:

- . o noise intensityD in mV/(ms)*’2 ordinates: Fourier coefficient;
the SNR is hump shapedsecond row from top i.e., it is (dimensionlessfor A. Left panels: subthreshold stimulatiods

maximized at an intermediate noise le¢#lg. _‘?’)' The hump =A7/{1+(Q7)°=3.5 mV. Right panels: suprathreshold stimula-
is more pronounced for the subthreshold input. The corregons A’=6 mv. Eor all the panels, modulation period 1

sponding values ofa;| and(t) are shown in lower four —10 msthick solid line, T=50 ms thick dashed ling and T

panels of Fig. 3. _ =100 ms(thin solid line. Model parameterss=5 ms, V,=10
These results indicate that the no-tuning effect observeghy, vy=0 mv, andS=15 mv.

for the noise versus the normalized power norm, does not
necessarily hold for other measures of the input-output fidel-
ity which take into account the fact that the amplitude of the
output rate decays down to zero as the noise is increase
Such measures, as for instance the SNR, may be maximiz
at intermediate noise amplitudes reflecting a compromise b
tween the increase 6, and the decrease || (left panel
of the second row from top in Fig.)3

To our knowledge, no general results on the speed at B. Firing precision
which the two quantitiega,| and (t) tend to zero with
increasing noise levels is available. Our numerical in- In the previous section, we were mainly concerned with
vestigations (not shown indicate that the variations of the relation between the discharge rate of the ensemble with
Co and the SNR with the noise amplitude can depend orthe input signal. The measures of transmission fidelity that
other model parameters. As the main concern of thavere used were related to this aspect. Consequently, the
present section was to determine the range of noisaoise-induced enhancement in signal transmission occurs for
where the no-tuning effect foC,; takes place, we will noise levels such that the normalized cycle histogram re-

0.02

fficient

0.6

1er Coe:

ur

0.4

0.15

0.1

0.05

Fourier coefficient

ot detail this point any further. This issue together
ith a detailed description of the dependence of the shape
o) C, and Cy on model parameters will be addressed
elsewhere.
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0.025 . , . - - For suprathreshold stimulation, the situation is different.
The precision decays monotonously as the noise level is in-
0.02 r 1 creaseddata not shown Indeed, whereashg,—h,,)/W has
the same noise dependency as in the case of subthreshold
0.015 1 stimulation, that is, decreasing from infinity to zero as the

noise is increased, the quantity(t/ tends to a finite non-
zero value a® tends to zero.

Thus, as in the case for a single stimulat[&f, noise of
appropriate amplitude can enhance the precision for sub-
threshold periodic stimulation, however, it only deteriorates
0 ‘ ' : ‘ : the precision for suprathreshold input signals. In the next

: D : : section, we compare the discharge characteristics of single
units and ensembles in regimes of high precision with those

FIG. 4. The evolution op [Eq. (3.8)] for different modulation iy regimes of high-fidelity, in order to better shed light on the
period, T=10 ms(thick solid ling, T=50 ms(thick dashed ling similarities and differences between them.
and T=100 ms (thin solid ling. Abscissa: noise intensitl in

mV/(ms*2 ordinate:p= (T/4w2N)P in kilohertz per radian, where ) b hiah-fideli

P is the spike timing precision. Model parameters:5 ms, V, C. Comparlson et.vv.een '9 fidelity

=10 mV, Vo=0 mV, S=15 mV, andA’'=3.5 mV (subthresh- and high precision regimes

old modulation. On the one hand, Sec. IV A confirmed that, in agreement
with previous studie$7—9], noise of appropriate amplitude

sembles the input waveform. In this section, we consider théan enhance the input-output fidelity in an ensemble of
influence of noise on the discharge time precision defined b/FMs receiving subthreshold periodic stimulation. On the
Eq. (3.7). other hand, Sec. IV B extended the work[B] by showing
Figure 4 shows the evolution i (Eq(3.8)) for sub- that tuning noise can enhance discharge precision in re-
threshold periodic modulations with periodE=10 ms sponse to subthreshold period stimulation. The purpose of
(thick solid lin@, T=50 ms (thick dashed ling and T the present section is to compare the regimes that lead to

=100 ms(thin solid line. The amplitudes of the input sig- optimal behavior in each situation.

precision

upper left panel in Fig. 2 and upper two panels of left columny, those that satura@, and C, or maximize the SNR.
in Fig. 3 where the various measures of the input outpUirhis s consistent with our interpretation of the relationship
f@ehty were reprgsgnteq. For all three subthreshold periodigeatween the noise-induced changes and the shape of the nor-
signals, the precision increases at low noise levels, go&ggjized cycle histograrh, and their implication for the vari-
through a maximum, and then decays progressively as thgys criteria used to assess input-output fidelity and discharge
noise amplitude increases. timing precision. Indeed, the former reach their optimal val-
The behavior of the precision as function of the noiseues when the cycle histogram takes on a sinelike shape,
level can be understood in terms of the relative contributionsvhereas the latter is maximal whérhas a marked peak.
of the two terms that compose it, namelyt}/and (y In order to clarify the implications of this difference in the
—h)/W. The former is the inverse of the mean interspikeshape oh on the discharge characteristics of the units within
interval duration. For subthreshold modulation, this quantitythe ensemble, we have representBdm top to bottom in
is zero in the deterministic limit wheD =0. As the noise upper panels of Fig.)Zhe input current, the spike train emit-
level is increased, {f) grows and tends to infinity at the ted by four neurons, the pooled trains of one thousand units,
limit of large noise intensities. The second term has the conand the discharge rate of the same ensemble for three differ-
verse behavior i.e., it decays progressively from infinity toent noise level§ D=0.9 (left column, D=2 (middle col-
zero as the noise level is increased. Indeed, it measures tiienn and D = 3.5 (right column]. The two lower panels in
sharpness of the peak bf At low noise levels, this quantity each column represent the corresponding normalized cycle
tends to infinity, as the neurons mainly fire when the mem-histogram and the ISIH of a single neuron. The first two
brane potential oscillations reach their maximal value. Thisoise intensities represent the optimal values for the preci-
strong affinity to discharge at a preferential phase is reflectedion (D=0.9) and the SNR=2.0). At the third one D
as a marked narrow peak in the normalized cycle histogram-3.5), C; is larger than 0.95. Visual inspection of the spike
(e.g., second panel from top in left column of Fig. s the  trains of the individual units reveals that for none of the
noise intensity is increased, the height of the peak decreasesise levels, do the units discharge at all input cycle. This is
and its base widen@eft panels in two lower rows of Fig.)2  due to the fact that the input peridd=10 ms is relatively
This leads to a progressive decrease ligy € h,,)/W. Fi-  short. Besides this similarity, the main difference that stands
nally, in the limit of large noiseh flattens, i.e.,hy,=h,, out is that, as expected, the number of discharge within the
while W tends to 2r. As a result, by, —h,)/W tends to  observation window increases with the noise level. However,
zero. Thus the unimodal shape of the precision is the resulhere visual inspection of these spike trains does not clarify
of the interplay between two factors with opposite tendencieshe origin of the differences between them. The difference
as the noise level is increased. between the three noise levels are more striking at the level
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FIG. 5. Upper row: we depict input current, the spike train emitted by four neurons, the pooled spike tidin 000, and instanta-
neous discharge raig(t). From the pooled spike train, we calculate histogram and adjust the height to satisfy the area at one cycle is equal
one. Then we superimpose it Xqt). Abscissas in upper row: time in millisecond; ordinates in upper row: unitless except for the last graph
A\ (t) in kilohertz. Horizontal mark in upper middle panel corresponds to the length of modulation ferib@ ms. Vertical mark in upper
middle panel corresponds to the size }0f£0.1 in kilohertz. Middle row: abscissas: input phase at a discharge in radian; ordinates:
normalized cycle histograrh (dimensionlessof a single neuron. Lower row: abscissas: interspike interval in millisecond; ordinates:
interspike interval histogram of a single neuron in kilohertz. Left column: noise intensiy=i6.9 mVi{ms)*?, which gives the hump of
the precision(Fig. 4). Middle column: noise intensity B=2.0 mV{ms¥? which gives the hump of SNReft panel in the middle row of
Fig. 3. Right column: noise intensity i®=3.5 mVA(ms*?, at whichC; is larger than 0.9upper left panel in Fig. 2 Model parameters:
T=10 ms, 7=5 ms, V,=10 mV, V,=0 mV, S=15 mV, andA’=3.5 mV (subthreshold modulation

of the pooled trains. AD=0.9, this train is clearly formed characteristics of the neurons that would maximize the pre-
by a periodic succession of bursts occurring around a prefeision, the SNR oC; .

erential input phase. AD =2, bursts are still visible, how- If all discharges occur exactly at the same input phase in
ever the distinction between successive bursts is less marked input cycles, then the spike timing precision is maximal.
than for D=0.9. Finally, for D=3.5, the pooled train is This ideal situation is possible when individual units phase
densely packed, and the input periodicity is less visible. Thdock to a suprathreshold periodic input, in the absence of
discharge rates of the ensembles for the three noise levels aneise. When the input signal is subthreshold, however, some
represented under the corresponding spike trains. That of th®ise is necessary to elicit discharges. At low noise levels,
lowest noise level is a succession of sharp peaks separated 8igcharges are possible only when the membrane potential
the modulation period. For the intermediate noise level, theeaches its maximal value within each cycle. Thus, spikes
peaks are still present, albeit they are wider, and finally at theccur narrowly spread around a given phase, the lower the
highest noise level, the rate resembles a sine function. Thisoise level and the smaller the width of this distribution.
progressive change in the shape of the firing is also present &towever, in this regime, especially when the input modula-
the level of the normalized cycle histograms of individual tion is fast compared to the membrane charge-discharge time
units. To clarify the origin of the difference between theseconstant, single units do not fire at every input cycle, but
regimes, we provide a heuristic description of the dischargeather, unreliably once every several cycles, with a large
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variation in the number of cycles separating two successivirains of the four unitgupper right panels Fig.)5and the
discharges. Tateno et §22] have coined the term stochastic peaks at multiples of the modulation period in the ISIH.
phase locking to describe this form of firing pattésee also However, in contrast with the two previous cases, a given
[23]): spikes display a strong preferential phase leading to anit can now discharge several times during a single input
cycle histogram with a marked peak, while, in contrast withcycle.

deterministic phase-locking the spike train is not periodic. In  In summary, the three measures of the input-output trans-
other words, in stochastic phase locking, a neuron fires oformation in the ensemble reach their optimal level for noise
averager spikes per cycle, with the discharges occurringlevels that correspond to different discharge characteristics at
near the preferential phase. At low noise levels, and for fasthe level of individual units. Furthermore, our results illus-
signals,r is smaller than one. This can be seen in the distrate the beneficial effect of pooling the response of units
charge trains of the four neuron models in the upper lefiyith the ensemble to improve both input-output fidelity and
panels of Fig. 5. The ISIH of any of these units resembles thgpike timing precision in the case of fast periodic signals,

one represented in the bottom left panel of the same figurghat can be below the resolution limit of the individual units.
The ISIH has peaks at multiples of the modulation period, a

signature of skipping. Interestingly the peak height at the
modulation period itself is the lowest among those visible. In
other words, at this noise level, the individual units do not We studied the response of an ensemble of LIFMs to a
transmit reliably the input period. The effect of pooling the sinelike periodic signal in the presence of noise. The main
response of a large number of units is that a propontioh  conclusions of our study can be summarized as follows.
them will fire at every input cycle. Due to the central limit (i) The spike train generated by large ensembles of LIFMs
theorem, there will be little variability in the proportion of receiving a common periodic sine-like input and independent
units firing at each cycle, when the ensemble is large enouglmoise can be accurately modeled by a periodically modulated
At low noise level, the proportion is small, so that despite |PP. This approach is advantageous for the description of the
the fact that the normalized cycle histogram has a sharpesponse of the system, in that all relevant quantities can be
peak, the discharge timing precision is low: there are notomputed from the intensity of the IPP. Previous studies
enough units responding at each cycle. Increasing the noidgave used a similar assumption for the description of the
level improves the response amplitudeat the same time as discharge times of single units. As argued2d], in the case
it widens the normalized cycle histogram. The optimal noiseof single units, this hypothesis approximately holds for low
level that maximizes the precision represents a balance bewise levels, but breaks down for other parameter values. For
tween these two effects. ensembles, however, the range of validity of the statistical
The situation for the SNR is different in that this quantity model is wider than that for single units, and this allowed us
is not sensitive directly to the peak height of the normalizedto describe the response of the system to both sub and su-
cycle histogram as the precision, but rather to the first coefprathreshold stimulations, for a wide range of noise ampli-
ficient of its Fourier expansiofEg. (3.6)]. In this way, the tudes.
change of the SNR with the noise level is more subtle than In [24], the event times of a periodically modulated sys-
that of the precision. Nevertheless, at low noise levels, theem in the presence of noise have also been modeled by an
SNR is small because in this regime the mear(tpiis very  IPP. However, if24], the assumption is that the response of
large, and Xt) dominates the evolution of the SNR. When the system is determinexipriori by an IPP so that the func-
the noise level is large enough, howeVer,|? becomes pre- tion giving the instantaneous rate is an exponential and does
ponderant. The value dx,|> depends on two factors, one not change with the noise level, whereas in our analysis,
the dynamical range of the response, that is the amplitude afnce the output of the system is known, we shawgoste-
h (i.e., hy—h,), the other is the similarity between the riori, that it can be statistically modeled by an IPP, so that it
shape oh and a sine function. However, in contrast with the is the very shape of the rate function that depends on the
precision, the SNR does not depend on the width.ofhis  noise.
is the main reason why the SNR is maximal at a larger noise (ii) The intensity of the IPP can be estimated from the
intensity than the precision. Nevertheless, at this noise levetesponse of a single unit in the ensemble, and we developed
the individual units still display skipping, i.e., the ISIH has a method for the description of the response of a single
marked peaks at the multiples of the modulation period. InLIFM in response to periodic modulation with noise. This
terestingly, the peak height at the modulation period is thamethod followd 22], and relies on the iterations of a stochas-
largest, and significantly larger than for=0.9. There is also tic phase transition operator, which generalizes the concept
a small hump appearing at I1SIs shorter than the modulatioof phase transition curve used to describe the response of
period, due to the spread m oscillators to periodic stimulation, to the case of stochastic
Finally, the situation represented in the right panels wheresystems. In this way, the normalized cycle histogram of the
C, takes a large value is different from the two previoussystem is the invariant density of this operalt®5,26. In a
cases in that, as already explained in Sec. IV A, this quantitgompanion publication, we will present a study of the influ-
is independent from the dynamical range, and measures thance of noise on this operator.
relative importance ofa;,| in comparison with the other co- (iii) There is a direct link between the normalized cycle
efficients. ThereforeC, tends to one, s& becomes flat. histogramh and the mean IS{t) of any single unit within
Despite the fact thah strongly resembles a sine function at the ensemble and measures of the input-output fidelity such
this noise level, the discharges of the individual units stillas Cy,C; and the SNR, as well as spike timing precision.
display some skipping, as attested by the sparse dischardéis relation clarifies the discharge characteristics that maxi-

V. DISCUSSION
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mize each of these quantitie@) The “no-tuning effect,” interval distribution from the first passage times of an
that is, the steady increase ©f and progressive saturation Ornstein-Uhlenbeck process through a time-dependent
at a maximal level as the noise intensity is increafgfd boundary rather than the numerical resolution of Efl.
results from the reduction of nonlinear distortionshinThis  Let thenth interspike interval, i.e., the time interval between
phenomenon had been first observed2| for suprathresh- (n—1)th andnth firing of an LIFM described by Eq2.1),

old modulation(see alsd1] for a review and8,9] for more  bet,, and let thenth phase, i.e., the phase of input sinu-
recent discussions(b) Other measures of input-output fidel- soidal current anth firing, bed,. Then the first firing occurs

ity such as SNR do not necessarily display the no-tuningat t=t; and it follows 6;=Qt;+ y(mod 27). Similarly,
phenomenon. Instead, they are maximized at intermediatéhe second firing occurs at=t;+t, and ,=Q(t;+t,)
noise levels that represent a compromise between the lineas- 9,(mod 27r). We are interested in the sequen¢gsand
ization of h and the dynamical range in the respon@®. ¢,. Since both of these are random variables, we compute
Discharge-timing precision to subthreshold modulation canheir respective probability density functiépdf) denoted by

be enhanced by noise. This extends the resuliSjiwhere  j (t) and h,(6). Assuming thatV(0)=V,, we havei(t)

this phenomenon was first reported in the response of arg(t|6,) andh,(8)=7(66,). g(t|6)da is the probabil-
ensemble to a single post-synaptic potential. The possiblgy that a discharge occurs irt,(+dt). f(¢|6)d¢ is the
biological implication of this phenomenon is that evenconditional probability that the firing phase is inp(¢
highly specialized neuronal assemblies known to detect-d¢) given the previous firing phasg andf is described
minute differences below the temporal resolution of indi- g5

vidual units that compose them, can actually benefit from the 1>
presence of some noise. In other words, noise does not nec- f(¢l6)= 520 g
essarily disrupt temporal coding, rather, if tuned properly, it B

can improve the reliability of ensembles. Whether such a.. . o5 _(2m
tuning is actually present in nervous systems remains to gglmnarly, for n=2, i5(t) =Jo"g(t| )N, (6)d and hy()

2
elucidated.(d) Comparison of discharge characteristics atzf0 f(#0)h.(0)dé. In general,
noise levels that maximized input-output fidelity and spike- om
timing precision clearly showed that these correspond to dis- in(t)= g(t|o)h,_(0)de, n=12,...
tinct regimes. In the former, discharges occur at all input 0
phases, whereas in the latter, spikes display a strong prefer- ,
ential phase. In both cases pooling the spike trains of the N B
units within the ensemble balances the variability in the re- hn( )= JO f(¢lO)ha-1(6)d6, n=12,....
sponse of individual units.

In summary, our results show that not only rate coding\whenn—o, i, andh, converge to invariant distributions
but also temporal coding can be improved by the presence qf, andh.,. Let us define the stochastic phase transition op-
noise. However, the noise levels that maximize input-outpukratorP ash,(¢)="Ph,_1(#). It is a Markov operator with
fidelity are significantly different from those that enhancekeme|f(¢|9)_ Applying the Markov operator iteratively to
spike timing precision. Our study was concerned Withs-  the pdf h, of the initial phase, we can obtaih, as h,
sible beneficial effects of noise in signal processing and:phn_lz...:pnho_ As n goes to infinity, we get invari-
transmission in nervous systems. At this point, experimentaint distributionh., i.e., h uniquely, and this function corre-
measurements of the variability of individual units dis- sponds to the eigenfunction fbelonging to the eigenvalue
charges would be necessary to determine whether the noige
in neuronal ensembles is indeed close to optimal levels that The scheme described above provides a method for the
maximize either the spike-timing precision or the INput-nymerical computation di... Indeedg(t|6) corresponds to
output fidelity. the first passage time pdf of an Ornstein-Uhlenbeck process

through an appropriate time varying boundary and can be
ACKNOWLEDGMENTS numerically evaluated using the algorithm j27]. Then
g(t|#) can be used to compute iterativefy, and i, until

A.R. would like to express her thanks to Pr. Sato and theeaching the invariant densities. Finally, let us remark that
members of his laboratory for their hospitality during herh,_ is the normalized cycle histograim so that\ can be
visit which was partially supported by Monbusho. A.R. andderived fromh., using Eq.(3.1) together with the fact that
K.P. would like to thank Dr. J. Pham for his help regarding A (T)=TN/(t) where (t)=[5ti..(t)dt is the mean inter-
the algorithms for testing Poisson processes. spike interval.

In Fig. 3, we have comparddobtained using our method
(solid line) explained in this appendix with numerical simu-
lation (Euler schemgof corresponded stochastic differential

When the periodic signal is exogenous, the membranequation Eq(2.1) (histogram. The histogram oh is made
potential and the threshold are reset after the discharge bby 30 000 data of the firing time. We have tested whether the
not the phase of the external indu5]. Hence, the phase of null hypothesis, which, in these two histograms is the same,
the signal at the firing is a random variable with probability is rejected or not. For all parameter sets in Fig. 3, chi-square
density functiorh. For the calculation ofi for a single noisy test did not reject the null hypothesis, that is to say, the solid
LIFM, we follow the approach introduced [22,25,26. This  line of h obtained by our method fit the histogram by the
method relies on the numerical evaluation of the interspikenumerical simulation.

d—0

APPENDIX A: THE RESPONSE OF A SINGLE UNIT



3470 T. SHIMOKAWA, A. ROGEL, K. PAKDAMAN, AND S. SATO PRE 59

APPENDIX B: STATISTICAL TESTS n—k n-k
T S 1, T
Let random variable¥, t=1, --,n denote a series of kK n—ki& ' K n—k& UK

events, i.e.X;=1 if an event occurs at timg and O other-

wise. We denote by, the time interval between eventg - i i o )

and X, . pkyn—1 is asymptotically normally distributed so indepen-
{X,} form a Poisson Process with intensityif I, is inde- dEnce, i.e., null-hypothesi$;,:p1=0, is rejected at levet if

pendently exponentially distributed with paramexerThus  |p1|>c,/\n—1 wherec, is read in a standardized normal

when given a series of events, to test whether the corrgable. To insure that there is no correlation of higher order,

sponding point process is Poisson, we need to test wheth&re also test whethep, is significantly different from O for

(i) intervals are independent, afit) they are exponentially k=1,...,5.

distributed. The statistical test of the exponential distribution, i.e.,
The statistical test of the independencd othat we used ~ with null-hypothesis Hy:F(X) =F(X), where F(x)=1

is based on serial correlation coefficient. An estimation of—e=** with A=3i/n and Fo(X) is the sample repartition

these coefficients from a sample, whefi) is not known, is  of |, that we used is based on Cramer Von Mises Statistic:

n—k
> =TT

1 & [2t— 2
- t=1 2= 2 2 t)} .
Px= , 2 t=1
n—k n—k
T7\2 T\ 2
;1 (=T ;1 (=T wherei;<i,<---<i,. The null-hypothesi#, is rejected
with level «=0,05 if (1+0.16h)nw?>0.224(empirical re-
where sults obtained by simulation. See Biometrika talj2g]).
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