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Stochastic resonance and spike-timing precision in an ensemble
of leaky integrate and fire neuron models
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We analyze the transmission of sinelike periodic signals by an ensemble of leaky integrate-and-fire neuron
models in the presence of additive noise. We observe that when the number of units in the ensemble is large
enough, the point process formed by pooling the spike trains of all units is an inhomogeneous Poisson process.
We obtain the intensity of this process, i.e., the instantaneous discharge rate of the ensemble, from the cycle
histogram of the discharge of a single unit. This enables us to link measures of the regularity of the output
discharge rate and the transmission of the periodic input, such as the signal to noise ratio and the input-output
power norm and normalized power norm directly to the shape of the cycle histogram. Furthermore, we also
show that firing precision in response to subthreshold stimulation is maximized at some intermediate noise
value, and argue that in this regime the ensemble can reliably transmit fast periodic signals below the resolu-
tion of the individual units. Our analysis clarifies the conditions whereby noise enhances signal transmission
and detection in ensembles.@S1063-651X~99!09803-7#

PACS number~s!: 87.10.1e, 07.05.Mh
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I. INTRODUCTION

Sensory neurons transform signals from the environm
into trains of spikes that propagate to other structures in
nervous system. Since internal and external noise are u
uitous and unavoidable, many studies have investigated
effect on signal transmission by sensory neurons. These
shown that noise of appropriate amplitude linearizes the
sponse of neurons, leads to stochastic resonance~SR!, and
maximizes input-output correlation~power norm!, transin-
formation and coherence@1#. These phenomena have r
ceived considerable attention because of the surprisin
beneficial effect of noise, and theoretical analyses aim
clarify the conditions under which they occur@2,3#. For re-
views on SR, see@4#.

In this work, we evaluate the effect of pooling the r
sponse of a large number of neurons in parallel on the af
mentioned phenomena as such architecture may be invo
in sensory systems. The importance of the study of the in
ence of noise on signal transduction across ensembles
stressed in@5#. These authors showed that in the presence
appropriate noise, such ensembles can reliably detect
threshold pulses, through synchronous firing. Prior to th
study, the prevailing view was that noise would mainly d
teriorate firing precision, so that noisy ensembles would
code incoming signals into rate codes obtained through
eraging the response of all units@6#. This standpoint was
further supported by the fact that the input-output transd
tion fidelity of large ensembles is relatively insensitive
noise intensity, when this quantity is large enough@7–9#.

In this study, we examine the two situations, that is
influence of noise on both rate and temporal coding schem
in the same system. In this way, we intend to characterize
noise intensities that would be adequate for one reg
PRE 591063-651X/99/59~3!/3461~10!/$15.00
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rather than the other. This should help, in principle, to be
understand the conditions under which each scheme ma
operating in nervous systems.

More precisely, we study the influence of additive noi
on the response of an ensemble of leaky integrate and
model ~LIFM ! units to periodic stimulation. The choice o
the model was motivated by the fact that the LIFM captu
the essential properties of neurons, that is excitability a
postdischarge refractoriness, so that the results should
for more complex models and living neurons. The input s
nal was selected as a periodic one because of its biolog
relevance. Well studied examples of precise temporal cod
in nervous systems, such as in the electro-sensory syste
the fish eigenmannia@10# and the auditory system of the bar
owl @11# rely on firing at a given phase of a periodic mod
lation. Furthermore, the possible role of the interplay b
tween subthreshold modulation and noise has also been
served in the shark temperature sensitive electrorecep
@12#. Finally, theoretical studies have indicated how nervo
systems may learn and process information using this fo
of temporal coding@13,14#.

This paper is organized as follows. In Sec. II, we descr
the model of the ensemble of LIFMs. In Sec. III, we co
struct a statistical model of the discharge train of this syste
This model is valid for subthreshold and suprathreshold
well as slow or fast periodic stimulation. We use this stat
tical model to determine the noise levels that maxim
input-output fidelity~Sec. IV A!, and discharge timing pre
cision ~Sec. IV B!. We compare the corresponding regim
in Sec. IV C. Finally we discuss our results in Sec. V.

II. THE ENSEMBLE MODEL

We consider an ensemble ofN LIFM units receiving the
same periodic stimulation and independent noise. E
3461 ©1999 The American Physical Society
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3462 PRE 59T. SHIMOKAWA, A. ROGEL, K. PAKDAMAN, AND S. SATO
LIFM is characterized by its membrane potential, denoted
Vi . WheneverVi overtakes a constant thresholdS0 , a spike
is generated, following which,Vi is reset to a post-discharg
hyperpolarizationV0 . Between successive discharges,Vi is
determined by

dVi5F2
Vi2Vr

t
1Asin~Vt1u0!Gdt1DdWi , ~2.1!

where Vr is the resting potential,t is the characteristic
charge-discharge time of the membrane,A, V, andu0 are,
respectively, the amplitude, the angular velocity 2p/T and
the initial phase of the stimulation,D is the noise amplitude
and dWi are independent white Gaussian noise. Thus,
units receive the same periodic input, and the phase of
latter isnot reset after each firing@15#.

III. THE POOLED SPIKE TRAIN

Our main results hinge upon the statistical description
the point process formed by the pooled discharge trains
large number of units in parallel. To introduce the descr
tion of the summed spike train, let us recall that, similarly
the central limit theorem that states that the sum of a la
number of independent identically distributed random va
ables becomes a Gaussian random variable, the sum of
pendent renewal point processes tends to a Poisson pro
@16#. In other words, inter-event intervals of the pooled po
process are independent exponentially distributed rand
variables, and the intensity of the Poisson process is the
of the rates of the individual processes. For example,
pooled spike train of a large number of LIFMs in paral
stimulated by independent white noise, without any ot
stimulation, forms a Poisson process, whose intensityl is
the sum of the discharge rates of the individual neurons.
equivalent statement is that the probability of having a d
charge during an infinitesimal time interval of lengthdt is
l dt. This description puts the emphasis on the tempo
homogeneity of the Poisson process since it indicates tha
events occur with the same probability at any time.

When a non-constant stimulation, such as a periodic s
like input current, is added to the units, the individual sp
trains are no longer stationary. This character is also appa
in the pooled spike train: at times spikes are clustered an
others they are far apart. This observation indicates that
pooled spike train is not a homogeneous Poisson pro
~HPP! anymore since it displays temporal inhomogeneiti
There is a time-dependent intensity functionl(t) such that
the probability that an event occurs betweent and t1dt is
given by l(t) dt. In other words, the process obtained
pooling the spike trains of a large number of units receiv
a common input added to independent noise forms an in
mogeneous Poisson process~IPP!. This process is characte
ized by a time dependent intensity functionl(t) that repre-
sents the instantaneous firing rate of the ensemble of
units. Hence,l(t) suffices for the complete description o
the pooled spike train. Therefore, when the output of
ensemble is modeled as an IPP, the main issue is to obta
estimate of the ratel. In the next paragraph, we show ho
in the case of a periodic stimulation, this can be achie
from the response of any given unit in the ensemble.
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When the input signal isT-periodic, so is the intensity
l(t), and the normalized cycle histogramh of the inhomo-
geneous Poisson process is given by

h~u!5
Tl~Tu/2p!

2pL~T!
for 0<u<2p, ~3.1!

where L(T)5*0
Tl(u)du. The normalized cycle histogram

gives the probability that a discharge occurs at a given ph
We remark that~1! the normalized cycle histogram of th
pooled spike train is exactly the same as that of any in
vidual unit in the ensemble, and, furthermore,~2! L(T) rep-
resents the average number of discharges per input cycle
is given byL(T)5NT/^t& where^t& is the mean interspike
interval of a single unit.

These two properties are of practical importance beca
they show that the discharge ratel of the ensemblecan be
derived from the normalized cycle histogram and the me
interspike interval of asingleunit.

In Appendix A, we describe howh and ^t& can be ob-
tained using a first-passage time approach. Our approach
tends previous methods used for the analysis of the n
LIFM with periodic modulation@3,17#, in that it takes into
account the phase distribution of the discharges.

For slow input signals, the intensityl can also be esti-
mated, under the quasi-static assumption, from the mean
charge rate of an individual unit in response to a const
stimulation@8#. Since the method presented in the previo
paragraphs is valid independently from the modulation
riod, we have used it throughout our analysis, where emp
sis was put on the processing of fast periodic signals.

The advantage of describing the pooled train as an IP
that all relevant quantities can be derived from the estim
of the intensityl(t) and hence fromh and^t& obtained from
the response of a single unit. These will be described i
following paragraph. Before this, we discuss the validity
the statistical description of the pooled spike train.

In order to test the null-hypothesis according to which t
ensemble spike train was a periodically modulated IPP,
first ‘‘demodulated’’ time, and then we tested whether t
resulting point process was a HPP. These two steps are
tailed in the following.

We estimated the time-dependent intensityl of the pro-
cess from the estimate of the normalized cycle histogra
The latter was obtained both by numerical simulations a
by the numerical scheme presented in Appendix A. T
time-step and discretization step for both the numerical in
gration of Eq.~2.1!, and the algorithm in Appendix A were
chosen so as to have agreement between the two meth
and such that decreasing the steps did not modify the res
Once the rate of the process was estimated, the point pro
of the discharge times was ‘‘demodulated’’ by a standa
rescaling of time@16#, according to

t→t85L~ t !5E
0

t

l~s!ds. ~3.2!

In other words, the rescaling of the time transformed
sequence of discharge timesu1,u2,•••,uk,••• of the
pooled spike train into the sequenceu18,u28,•••,uk8
,•••, where eachuk8 was obtained using Eq.~3.2!. Practi-
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cally, we performed this rescaling by replacingl(t) in Eq.
~3.2! with the normalized raten(t)5Tl(t)/2pL(T). The
use ofn avoided the estimation of the mean interspike int
val ^t&.

If the original point process is an IPP, then the one o
tained after demodulation is an HPP, and vice versa. Th
testing the null-hypothesis according to which the origin
point process is an IPP of ratel is equivalent to testing
whether the demodulated process is an HPP. The latter
be done through several methods@18#. We used the follow-
ing tests. First we estimated the mean inter-event interva
the process, and we tested whether the normalized in
event interval histogram followed an exponential distrib
tion. Then, we tested whether the successive intervals w
independent. Precise description of the tests is given in
pendix B.

Other studies have used the periodically modulated IPP
an approximate model for the discharge train of a single u
@19,20#. This assumption has given satisfactory results wh
both the noise level and input amplitude are low. Therefo
in such cases, the ensemble spike train is the sum of in
pendent IPPs, and satisfies the required conditions. Howe
in our work, we are interested in a wide range of noise lev
and input amplitudes, where the response of a single un
the ensemble cannot necessarily be described by such a
cess. This is due, for example, to the presence of the ref
tory period which forbids the occurrence of arbitrarily sho
intervals. Nevertheless, despite the fact that individual po
processes are not IPP, when a large number of them
summed together, the resulting process is well described
periodically modulated Poisson process. Figure 1 illustra
this point. The left and the right columns show the norm
ized interspike interval histograms of ensembles before
after demodulation, respectively, forN51 ~upper panel!, N
530 ~middle panel!, and N5300. The solid lines in each
panel show the distributions estimated from the normali
cycle histogram under the assumption that the process
periodically modulated IPP. For a single unit, there is onl
poor correspondence between the solid line and the h
grams. This improves inN530 where differences cannot b
detected by a mere visual inspection and appear only in
tistical tests. These discrepancies disappear forN5300,
where even statistical tests do not detect significant dif
ences.

As mentioned previously, one of the advantages of
description of the pooled spike train by a periodically mod
lated IPP is that all relevant quantities for the study of
input-output relation of the system can be obtained from
estimate of the ratel, which is directly related to the char
acteristics of the response of a single unit through the n
malized cycle histogramh, and the mean interspike interva
^t&. For example, the power normC0 and the normalized
power normC1 are given by

C05max
t

$Asin~Vt !l~ t1t!%5Aua1u5
2ANua1u

^t&
,

~3.3!
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C15
C0

AA2sin2~Vt !„l~ t !2l~ t !…2
5

ua1u

A(
q>1

uaqu2

5
ua1u

A(
q>1

uaqu2

, ~3.4!

where overbar is time average over one cycle, that is,x(t )̄
51/T*0

Tx(t)dt, and aq and aq are the coefficients of the
Fourier expansion ofl(t) andh(u), respectively, given by

aq5
1

TE0

T

l~ t !e2q jVtdt, ~3.5!

aq5
1

2pE0

2p

h~u!e2q judu. ~3.6!

For the study of SR, an important measure is the signal
noise ratio~SNR!, which for an IPP is defined as@19#

FIG. 1. Normalized interspike interval histograms before~left
column! and after~right column! demodulation forN51 ~upper
panels!, N530 ~middle panels!, andN5300 units~lower panels!.
Left column: abscissas: interspike interval duration in millisecon
ordinates: probability density in kilohertz. Right column: absciss
normalized interspike interval~dimensionless!; ordinates: prob-
ability density ~dimensionless!. Model parameters:t55 ms,
T540 ms, Vr510 mV, V050 mV, S515 mV, and D
50.5 mV/~ms!1/2.



flu

d
d
th

es
tic

th
o

-
a

a
,
n

th
i
f

is
cle
ni
e

en
e-
lik
es
ing

er
su
he
a

of

t
tu-

re-

ed

; or-

s

-

de

3464 PRE 59T. SHIMOKAWA, A. ROGEL, K. PAKDAMAN, AND S. SATO
S510 log10S 2ua1u2

a0
D510 log10S 8Nua1u2

^t& D .

The expressions of the above quantities clarify the in
ence ofN for large ensembles:C0 and S increase linearly
with N and logN, respectively, whileC1 is independent from
the size of the ensemble. These dependencies are vali
large ensembles for which the discharge train can be
scribed by an IPP. They indicate that the properties of
system are mainly determined byh and^t&. For example, in
order to investigate the influence of noise amplitude on th
quantities, and see whether they are maximized at a par
lar noise level, we can as well consider the dependence
the noise amplitude ofc05C0 /(AN) and s5S2 logN,
which do not depend explicitly on the sizeN of the en-
semble. Section IV A deals with the influence of noise onC1
and the other measures of the input-output fidelity.

In the temporal coding scheme, the key assumption is
units in the ensemble fire reliably close to a given phase
the input signal. The shape ofl(t) reflects such a preferen
tial phasewp , in that this function presents marked peaks
wp1kT. The firing precision, denotedP, is then the ratio of
the peak height, defined as the difference between the m
mal and the minimal values ofl during one stimulus cycle
to the widthw at half peak. This is similar to the precisio
used in@5#. Thus we have

P5
lM2lm

w
, ~3.7!

where lM5max$l(t):0<t,T%, lm5min$l(t):0<t,T%, and
w5t22t1 , with l(t2)5l(t1)5(lM1lm)/2 and 0<t1,t2
<T. Using Eq.~3.1!, and the fact thatL(T)5NT/^t& we
can define

p5
T

4p2N
P5

1

^t&

hM2hm

W
, ~3.8!

where hM5max$h(u):0<u,2p%,hm5min$h(u):0<u,2p%,
andW52pw/T. The quantityp is proportional to the preci-
sion, yet it does not depend on the number of units in
ensemble, showing that the precision increases linearly w
the number of units once the ensemble is large enough
the IPP assumption to hold. Besides the fact thatp is inde-
pendent fromN, another advantage of using this quantity
that it can be computed directly from the normalized cy
histogram and the mean interspike interval of a single u
In Sec. IV B we describe how this quantity varies with nois

IV. INFLUENCE OF NOISE

In this section, we examine how changing the noise int
sity modifies input-output fidelity and discharge timing pr
cision in the response of the ensemble of LIFMs to a sine
periodic signal. In this way, we link the optimal noise valu
which maximize the various criteria to the correspond
discharge patterns through the normalized cycle histogramh.
At first, in Sec. IV A, we consider how the normalized pow
norm varies with the noise amplitude, for both sub and
prathreshold stimulations. We also mention how the ot
two measures, namely the power norm and the SNR, v
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with noise. Next, in Sec. IV B, we examine the influence
noise on firing precision.

A. Input-output fidelity

The two upper panels in Fig. 2 show howC1 changes
with the noise amplitudeD, for subthreshold~left panel! and
suprathreshold~right panel! modulations with three differen
periods. All six curves increase with the noise level and sa
rate at one. This effect is similar to the no-tuning effect
ported in the case of weak aperiodic input signals@7–9#. It
can be explained in terms of the ‘‘shape’’ of the normaliz

FIG. 2. Upper row: abscissae: noise intensityD in ~millivolt !
over ~millisecond!1/2; ordinates: normalized power normC1 ~di-
mensionless! for period T510 ms ~thick solid line!, T550 ms
~dashed line!, and T5100 ms~thin solid line!. Second to fourth
rows from top: abscissae: input phase at a discharge in radian
dinates: normalized cycle histogramsh ~dimensionless! of a single
neuron for a periodT550 ms and three different noise intensitie
D50.5 mV/~ms!1/2 ~second row!, D51.5 mV/~ms!1/2 ~third row!,
and D52.5 mV/~ms!1/2 ~fourth row!. The histograms were com
puted using both numerical resolution of Eq.~2.1! ~box graph! and
the method described in Appendix A~solid line graph!. Left col-
umn: subthreshold modulation amplitudeA85At/A11(Vt)2

53.5 mV. Right column: suprathreshold modulation amplitu
A856 mV. Model parameters t55 ms, Vr510 mV, V0

50 mV, andS515 mV.
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cycle histogramh. Indeed,C1 measures the relative impo
tance ofua1u, that is the first coefficient in the Fourier ex
pansion ofh. When C1 tends to one, it indicates that th
Fourier coefficients of order higher than one tend to ze
which in turn implies thath takes on progressively a sine
like shape. This is illustrated in the six lower panels in Fig.
which showh for a fixed period (T550 ms), at three dif-
ferent noise levels, for the subthreshold~left column! and
suprathreshold~right column! periodic modulations. At low
noise levels,h displays a sharp peak~second row from top!,
which broadens as the noise amplitude is increased~third
row from top!, and eventually becomes sinelike~lower row!
at higher noise levels. As the nonlinearities are reduced,
higher order coefficients of the Fourier expansion vani
Thus, the no-tuning effect reflects the fact that as the no
amplitude increases, the ensemble firing rate becomes
gressively like a sine wave. For suprathreshold perio
stimulation, these results are in agreement with the exp
mental data reported by Frenchet al. @21# who evaluated the
Fourier coefficients of the cycle histogram of a periodica
modulated sensory neuron in the presence of noise, as
as other studies who reported that nonlinear distortions
cycle histograms decrease with the noise level~for a review
see@1#!.

The progressive linearization of the shape ofh occurs
jointly with the decrease of its amplitude given byua1u. This
is of importance for the determination ofC0 and the SNR.
For a fixed number of neurons and a given input amplitu
C0 is proportional to the ratio betweenua1u and ^t&, while
SNR evolves in the same way as the ratio betweenua1u2 and
^t&. Both ua1u and^t& tend to zero as the noise amplitude
increased. The former because the cycle histogram beco
flat, and the latter because shorter interspike intervals
come more probable. The relative speed with which th
two quantities decrease determines the behavior of the po
norm C0 and the SNR. For the parameter range conside
for both subthreshold~left column! and suprathreshold
modulation~right column!, c0 , and thereforeC0 , increases
and stabilizes at a plateau~upper row!, while s ~and hence
the SNR! is hump shaped~second row from top!, i.e., it is
maximized at an intermediate noise level~Fig. 3!. The hump
is more pronounced for the subthreshold input. The co
sponding values ofua1u and ^t& are shown in lower four
panels of Fig. 3.

These results indicate that the no-tuning effect obser
for the noise versus the normalized power norm, does
necessarily hold for other measures of the input-output fid
ity which take into account the fact that the amplitude of t
output rate decays down to zero as the noise is increa
Such measures, as for instance the SNR, may be maxim
at intermediate noise amplitudes reflecting a compromise
tween the increase inC1 and the decrease inua1u ~left panel
of the second row from top in Fig. 3!.

To our knowledge, no general results on the speed
which the two quantitiesua1u and ^t& tend to zero with
increasing noise levels is available. Our numerical
vestigations ~not shown! indicate that the variations o
C0 and the SNR with the noise amplitude can depend
other model parameters. As the main concern of
present section was to determine the range of no
where the no-tuning effect forC1 takes place, we will
,
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not detail this point any further. This issue togeth
with a detailed description of the dependence of the sh
of C1 and C0 on model parameters will be address
elsewhere.

B. Firing precision

In the previous section, we were mainly concerned w
the relation between the discharge rate of the ensemble
the input signal. The measures of transmission fidelity t
were used were related to this aspect. Consequently,
noise-induced enhancement in signal transmission occur
noise levels such that the normalized cycle histogram

FIG. 3. Upper row: abscissas: noise intensityD in mV/~ms!1/2;
ordinates: power normc05C0 /(AN)5ua1u32/̂ t& in kilohertz.
Second row from top: abscissas: noise intensityD in millivolt; or-
dinates:s5S2 log N ~decibel!, whereS is the SNR. Third row from
top: abscissas: noise intensityD in mV/~ms!1/2; ordinates: Fourier
coefficienta0 /N52/̂ t& in kilohertz for h. Lower row: abscissas
noise intensityD in mV/~ms!1/2; ordinates: Fourier coefficienta1

~dimensionless! for l. Left panels: subthreshold stimulationsA8
5At/A11(Vt)253.5 mV. Right panels: suprathreshold stimul
tions A856 mV. For all the panels, modulation period isT
510 ms ~thick solid line!, T550 ms ~thick dashed line!, and T
5100 ms ~thin solid line!. Model parameters:t55 ms, Vr510
mV, V050 mV, andS515 mV.
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3466 PRE 59T. SHIMOKAWA, A. ROGEL, K. PAKDAMAN, AND S. SATO
sembles the input waveform. In this section, we consider
influence of noise on the discharge time precision defined
Eq. ~3.7!.

Figure 4 shows the evolution ofp ~Eq.~3.8!! for sub-
threshold periodic modulations with periodsT510 ms
~thick solid line!, T550 ms ~thick dashed line! and T
5100 ms~thin solid line!. The amplitudes of the input sig
nals were adjusted so as to have the same membrane p
tial oscillation amplitudes. These values are the same a
upper left panel in Fig. 2 and upper two panels of left colum
in Fig. 3 where the various measures of the input out
fidelity were represented. For all three subthreshold perio
signals, the precision increases at low noise levels, g
through a maximum, and then decays progressively as
noise amplitude increases.

The behavior of the precision as function of the no
level can be understood in terms of the relative contributi
of the two terms that compose it, namely 1/^t& and (hM
2hm)/W. The former is the inverse of the mean interspi
interval duration. For subthreshold modulation, this quan
is zero in the deterministic limit whenD50. As the noise
level is increased, 1/^t& grows and tends to infinity at th
limit of large noise intensities. The second term has the c
verse behavior i.e., it decays progressively from infinity
zero as the noise level is increased. Indeed, it measure
sharpness of the peak ofh. At low noise levels, this quantity
tends to infinity, as the neurons mainly fire when the me
brane potential oscillations reach their maximal value. T
strong affinity to discharge at a preferential phase is reflec
as a marked narrow peak in the normalized cycle histog
~e.g., second panel from top in left column of Fig. 2!. As the
noise intensity is increased, the height of the peak decre
and its base widens~left panels in two lower rows of Fig. 2!.
This leads to a progressive decrease in (hM2hm)/W. Fi-
nally, in the limit of large noise,h flattens, i.e.,hM.hm ,
while W tends to 2p. As a result, (hM2hm)/W tends to
zero. Thus the unimodal shape of the precision is the re
of the interplay between two factors with opposite tendenc
as the noise level is increased.

FIG. 4. The evolution ofp @Eq. ~3.8!# for different modulation
period,T510 ms~thick solid line!, T550 ms~thick dashed line!
and T5100 ms ~thin solid line!. Abscissa: noise intensityD in
mV/~ms!1/2; ordinate:p5(T/4p2N)P in kilohertz per radian, where
P is the spike timing precision. Model parameters:t55 ms, Vr

510 mV, V050 mV, S515 mV, andA853.5 mV ~subthresh-
old modulation!.
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For suprathreshold stimulation, the situation is differe
The precision decays monotonously as the noise level is
creased~data not shown!. Indeed, whereas (hM2hm)/W has
the same noise dependency as in the case of subthres
stimulation, that is, decreasing from infinity to zero as t
noise is increased, the quantity 1/^t& tends to a finite non-
zero value asD tends to zero.

Thus, as in the case for a single stimulation@5#, noise of
appropriate amplitude can enhance the precision for s
threshold periodic stimulation, however, it only deteriora
the precision for suprathreshold input signals. In the n
section, we compare the discharge characteristics of si
units and ensembles in regimes of high precision with th
in regimes of high-fidelity, in order to better shed light on t
similarities and differences between them.

C. Comparison between high-fidelity
and high precision regimes

On the one hand, Sec. IV A confirmed that, in agreem
with previous studies@7–9#, noise of appropriate amplitud
can enhance the input-output fidelity in an ensemble
LIFMs receiving subthreshold periodic stimulation. On t
other hand, Sec. IV B extended the work in@5# by showing
that tuning noise can enhance discharge precision in
sponse to subthreshold period stimulation. The purpose
the present section is to compare the regimes that lea
optimal behavior in each situation.

Comparison of Fig. 4 with upper left panel in Fig. 2 an
upper two panels of left column in Fig. 3 reveals that t
noise intensities that maximize the firing precision are low
than those that saturateC1 and C0 or maximize the SNR.
This is consistent with our interpretation of the relationsh
between the noise-induced changes and the shape of the
malized cycle histogramh, and their implication for the vari-
ous criteria used to assess input-output fidelity and discha
timing precision. Indeed, the former reach their optimal v
ues when the cycle histogram takes on a sinelike sha
whereas the latter is maximal whenh has a marked peak.

In order to clarify the implications of this difference in th
shape ofh on the discharge characteristics of the units with
the ensemble, we have represented~from top to bottom in
upper panels of Fig. 5! the input current, the spike train emi
ted by four neurons, the pooled trains of one thousand un
and the discharge rate of the same ensemble for three di
ent noise levels@D50.9 ~left column!, D52 ~middle col-
umn! and D53.5 ~right column!#. The two lower panels in
each column represent the corresponding normalized c
histogram and the ISIH of a single neuron. The first tw
noise intensities represent the optimal values for the pr
sion (D50.9) and the SNR (D52.0). At the third one (D
53.5), C1 is larger than 0.95. Visual inspection of the spi
trains of the individual units reveals that for none of t
noise levels, do the units discharge at all input cycle. This
due to the fact that the input periodT510 ms is relatively
short. Besides this similarity, the main difference that sta
out is that, as expected, the number of discharge within
observation window increases with the noise level. Howev
mere visual inspection of these spike trains does not cla
the origin of the differences between them. The differen
between the three noise levels are more striking at the le
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FIG. 5. Upper row: we depict input current, the spike train emitted by four neurons, the pooled spike train forN51000, and instanta-
neous discharge ratel(t). From the pooled spike train, we calculate histogram and adjust the height to satisfy the area at one cycle
one. Then we superimpose it tol(t). Abscissas in upper row: time in millisecond; ordinates in upper row: unitless except for the last
l(t) in kilohertz. Horizontal mark in upper middle panel corresponds to the length of modulation periodT510 ms. Vertical mark in upper
middle panel corresponds to the size ofl50.1 in kilohertz. Middle row: abscissas: input phase at a discharge in radian; ordin
normalized cycle histogramh ~dimensionless! of a single neuron. Lower row: abscissas: interspike interval in millisecond; ordin
interspike interval histogram of a single neuron in kilohertz. Left column: noise intensity isD50.9 mV/~ms!1/2, which gives the hump of
the precision~Fig. 4!. Middle column: noise intensity isD52.0 mV/~ms!1/2, which gives the hump of SNR~left panel in the middle row of
Fig. 3!. Right column: noise intensity isD53.5 mV/~ms!1/2, at whichC1 is larger than 0.9~upper left panel in Fig. 2!. Model parameters:
T510 ms, t55 ms, Vr510 mV, V050 mV, S515 mV, andA853.5 mV ~subthreshold modulation!.
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of the pooled trains. AtD50.9, this train is clearly formed
by a periodic succession of bursts occurring around a p
erential input phase. AtD52, bursts are still visible, how
ever the distinction between successive bursts is less ma
than for D50.9. Finally, for D53.5, the pooled train is
densely packed, and the input periodicity is less visible. T
discharge rates of the ensembles for the three noise level
represented under the corresponding spike trains. That o
lowest noise level is a succession of sharp peaks separate
the modulation period. For the intermediate noise level,
peaks are still present, albeit they are wider, and finally at
highest noise level, the rate resembles a sine function.
progressive change in the shape of the firing is also prese
the level of the normalized cycle histograms of individu
units. To clarify the origin of the difference between the
regimes, we provide a heuristic description of the discha
f-
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characteristics of the neurons that would maximize the p
cision, the SNR orC1 .

If all discharges occur exactly at the same input phase
all input cycles, then the spike timing precision is maxim
This ideal situation is possible when individual units pha
lock to a suprathreshold periodic input, in the absence
noise. When the input signal is subthreshold, however, so
noise is necessary to elicit discharges. At low noise lev
discharges are possible only when the membrane pote
reaches its maximal value within each cycle. Thus, spi
occur narrowly spread around a given phase, the lower
noise level and the smaller the width of this distributio
However, in this regime, especially when the input modu
tion is fast compared to the membrane charge-discharge
constant, single units do not fire at every input cycle, b
rather, unreliably once every several cycles, with a la
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variation in the number of cycles separating two succes
discharges. Tateno et al.@22# have coined the term stochast
phase locking to describe this form of firing pattern~see also
@23#!: spikes display a strong preferential phase leading
cycle histogram with a marked peak, while, in contrast w
deterministic phase-locking the spike train is not periodic.
other words, in stochastic phase locking, a neuron fires
averager spikes per cycle, with the discharges occurri
near the preferential phase. At low noise levels, and for
signals,r is smaller than one. This can be seen in the d
charge trains of the four neuron models in the upper
panels of Fig. 5. The ISIH of any of these units resembles
one represented in the bottom left panel of the same fig
The ISIH has peaks at multiples of the modulation period
signature of skipping. Interestingly the peak height at
modulation period itself is the lowest among those visible
other words, at this noise level, the individual units do n
transmit reliably the input period. The effect of pooling th
response of a large number of units is that a proportionr of
them will fire at every input cycle. Due to the central lim
theorem, there will be little variability in the proportion o
units firing at each cycle, when the ensemble is large eno
At low noise level, the proportionr is small, so that despite
the fact that the normalized cycle histogram has a sh
peak, the discharge timing precision is low: there are
enough units responding at each cycle. Increasing the n
level improves the response amplituder, at the same time a
it widens the normalized cycle histogram. The optimal no
level that maximizes the precision represents a balance
tween these two effects.

The situation for the SNR is different in that this quant
is not sensitive directly to the peak height of the normaliz
cycle histogram as the precision, but rather to the first co
ficient of its Fourier expansion@Eq. ~3.6!#. In this way, the
change of the SNR with the noise level is more subtle th
that of the precision. Nevertheless, at low noise levels,
SNR is small because in this regime the mean ISI^t& is very
large, and 1/̂t& dominates the evolution of the SNR. Whe
the noise level is large enough, however,ua1u2 becomes pre-
ponderant. The value ofua1u2 depends on two factors, on
the dynamical range of the response, that is the amplitud
h ~i.e., hM2hm), the other is the similarity between th
shape ofh and a sine function. However, in contrast with t
precision, the SNR does not depend on the width ofh. This
is the main reason why the SNR is maximal at a larger no
intensity than the precision. Nevertheless, at this noise le
the individual units still display skipping, i.e., the ISIH ha
marked peaks at the multiples of the modulation period.
terestingly, the peak height at the modulation period is
largest, and significantly larger than forD50.9. There is also
a small hump appearing at ISIs shorter than the modula
period, due to the spread inh.

Finally, the situation represented in the right panels wh
C1 takes a large value is different from the two previo
cases in that, as already explained in Sec. IV A, this quan
is independent from the dynamical range, and measures
relative importance ofua1u in comparison with the other co
efficients. Therefore,C1 tends to one, soh becomes flat.
Despite the fact thath strongly resembles a sine function
this noise level, the discharges of the individual units s
display some skipping, as attested by the sparse disch
e
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trains of the four units~upper right panels Fig. 5! and the
peaks at multiples of the modulation period in the ISI
However, in contrast with the two previous cases, a giv
unit can now discharge several times during a single in
cycle.

In summary, the three measures of the input-output tra
formation in the ensemble reach their optimal level for no
levels that correspond to different discharge characteristic
the level of individual units. Furthermore, our results illu
trate the beneficial effect of pooling the response of un
with the ensemble to improve both input-output fidelity a
spike timing precision in the case of fast periodic signa
that can be below the resolution limit of the individual unit

V. DISCUSSION

We studied the response of an ensemble of LIFMs t
sinelike periodic signal in the presence of noise. The m
conclusions of our study can be summarized as follows.

~i! The spike train generated by large ensembles of LIF
receiving a common periodic sine-like input and independ
noise can be accurately modeled by a periodically modula
IPP. This approach is advantageous for the description of
response of the system, in that all relevant quantities can
computed from the intensity of the IPP. Previous stud
have used a similar assumption for the description of
discharge times of single units. As argued in@20#, in the case
of single units, this hypothesis approximately holds for lo
noise levels, but breaks down for other parameter values.
ensembles, however, the range of validity of the statist
model is wider than that for single units, and this allowed
to describe the response of the system to both sub and
prathreshold stimulations, for a wide range of noise am
tudes.

In @24#, the event times of a periodically modulated sy
tem in the presence of noise have also been modeled b
IPP. However, in@24#, the assumption is that the response
the system is determineda priori by an IPP so that the func
tion giving the instantaneous rate is an exponential and d
not change with the noise level, whereas in our analy
once the output of the system is known, we show,a poste-
riori , that it can be statistically modeled by an IPP, so tha
is the very shape of the rate function that depends on
noise.

~ii ! The intensity of the IPP can be estimated from t
response of a single unit in the ensemble, and we develo
a method for the description of the response of a sin
LIFM in response to periodic modulation with noise. Th
method follows@22#, and relies on the iterations of a stocha
tic phase transition operator, which generalizes the conc
of phase transition curve used to describe the respons
oscillators to periodic stimulation, to the case of stochas
systems. In this way, the normalized cycle histogram of
system is the invariant density of this operator@25,26#. In a
companion publication, we will present a study of the infl
ence of noise on this operator.

~iii ! There is a direct link between the normalized cyc
histogramh and the mean ISÎt& of any single unit within
the ensemble and measures of the input-output fidelity s
as C0 ,C1 and the SNR, as well as spike timing precisio
This relation clarifies the discharge characteristics that m
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mize each of these quantities.~a! The ‘‘no-tuning effect,’’
that is, the steady increase ofC1 and progressive saturatio
at a maximal level as the noise intensity is increased@7#
results from the reduction of nonlinear distortions inh. This
phenomenon had been first observed in@21# for suprathresh-
old modulation~see also@1# for a review and@8,9# for more
recent discussions!. ~b! Other measures of input-output fide
ity such as SNR do not necessarily display the no-tun
phenomenon. Instead, they are maximized at intermed
noise levels that represent a compromise between the lin
ization of h and the dynamical range in the response.~c!
Discharge-timing precision to subthreshold modulation c
be enhanced by noise. This extends the results in@5#, where
this phenomenon was first reported in the response o
ensemble to a single post-synaptic potential. The poss
biological implication of this phenomenon is that ev
highly specialized neuronal assemblies known to de
minute differences below the temporal resolution of in
vidual units that compose them, can actually benefit from
presence of some noise. In other words, noise does not
essarily disrupt temporal coding, rather, if tuned properly
can improve the reliability of ensembles. Whether such
tuning is actually present in nervous systems remains to
elucidated.~d! Comparison of discharge characteristics
noise levels that maximized input-output fidelity and spik
timing precision clearly showed that these correspond to
tinct regimes. In the former, discharges occur at all in
phases, whereas in the latter, spikes display a strong pr
ential phase. In both cases pooling the spike trains of
units within the ensemble balances the variability in the
sponse of individual units.

In summary, our results show that not only rate codi
but also temporal coding can be improved by the presenc
noise. However, the noise levels that maximize input-out
fidelity are significantly different from those that enhan
spike timing precision. Our study was concerned withpos-
sible beneficial effects of noise in signal processing a
transmission in nervous systems. At this point, experime
measurements of the variability of individual units di
charges would be necessary to determine whether the n
in neuronal ensembles is indeed close to optimal levels
maximize either the spike-timing precision or the inpu
output fidelity.
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APPENDIX A: THE RESPONSE OF A SINGLE UNIT

When the periodic signal is exogenous, the membr
potential and the threshold are reset after the discharge
not the phase of the external input@15#. Hence, the phase o
the signal at the firing is a random variable with probabil
density functionh. For the calculation ofh for a single noisy
LIFM, we follow the approach introduced in@22,25,26#. This
method relies on the numerical evaluation of the intersp
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interval distribution from the first passage times of
Ornstein-Uhlenbeck process through a time-depend
boundary rather than the numerical resolution of Eq.~2.1!.
Let thenth interspike interval, i.e., the time interval betwee
(n21)th andnth firing of an LIFM described by Eq.~2.1!,
be tn , and let thenth phase, i.e., the phase of input sin
soidal current atnth firing, beun . Then the first firing occurs
at t5t1 and it follows u15Vt11u0(mod 2p). Similarly,
the second firing occurs att5t11t2 and u25V(t11t2)
1u0(mod 2p). We are interested in the sequencestn and
un . Since both of these are random variables, we comp
their respective probability density function~pdf! denoted by
i n(t) and hn(u). Assuming thatV(0)5V0 , we havei 1(t)
5g(tuu0) and h1(u)5 f (uuu0). g(tuu)du is the probabil-
ity that a discharge occurs in (t,t1dt). f (fuu)df is the
conditional probability that the firing phase is in (f,f
1df) given the previous firing phaseu, and f is described
as

f ~fuu!5
1

V(
k50

`

gS kT1
f2u

V Uu D .

Similarly, for n52, i 2(t)5*0
2pg(tuu)h1(u)du and h2(f)

5*0
2p f (fuu)h1(u)du. In general,

i n~ t !5E
0

2p

g~ tuu!hn21~u!du, n51,2, . . . ,

hn~f!5E
0

2p

f ~fuu!hn21~u!du, n51,2, . . . .

When n→`, i n and hn converge to invariant distribution
i ` andh` . Let us define the stochastic phase transition
eratorP ashn(f)[Phn21(f). It is a Markov operator with
kernel f (fuu). Applying the Markov operator iteratively to
the pdf h0 of the initial phase, we can obtainhn as hn
5Phn215•••5P nh0 . As n goes to infinity, we get invari-
ant distributionh` i.e., h uniquely, and this function corre
sponds to the eigenfunction ofP belonging to the eigenvalue
1.

The scheme described above provides a method for
numerical computation ofh` . Indeed,g(tuu) corresponds to
the first passage time pdf of an Ornstein-Uhlenbeck proc
through an appropriate time varying boundary and can
numerically evaluated using the algorithm in@27#. Then
g(tuu) can be used to compute iterativelyhn and i n until
reaching the invariant densities. Finally, let us remark t
h` is the normalized cycle histogramh, so thatl can be
derived fromh` using Eq.~3.1! together with the fact tha
L(T)5TN/^t& where ^t&5*0

`t i `(t)dt is the mean inter-
spike interval.

In Fig. 3, we have comparedh obtained using our method
~solid line! explained in this appendix with numerical simu
lation ~Euler scheme! of corresponded stochastic differenti
equation Eq.~2.1! ~histogram!. The histogram ofh is made
by 30 000 data of the firing time. We have tested whether
null hypothesis, which, in these two histograms is the sa
is rejected or not. For all parameter sets in Fig. 3, chi-squ
test did not reject the null hypothesis, that is to say, the s
line of h obtained by our method fit the histogram by th
numerical simulation.
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APPENDIX B: STATISTICAL TESTS

Let random variablesXt , t51,•••,n denote a series o
events, i.e.,Xt51 if an event occurs at timet, and 0 other-
wise. We denote byI t the time interval between eventsXt
andXt11 .

$Xt% form a Poisson Process with intensityl if I t is inde-
pendently exponentially distributed with parameterl. Thus
when given a series of events, to test whether the co
sponding point process is Poisson, we need to test whe
~i! intervals are independent, and~ii ! they are exponentially
distributed.

The statistical test of the independence ofI t that we used
is based on serial correlation coefficient. An estimation
these coefficients from a sample, whenE(I ) is not known, is

r̂k5

(
t51

n2k

~ I t2 Ĩ k8!~ I t1k2 Ĩ k9!

A(
t51

n2k

~ I t2 Ĩ k8!2(
t51

n2k

~ I t1k2 Ĩ k9!2

,

where
-

on

.

e-
er

f

Ĩ k85
1

n2k(t51

n2k

I t , Ĩ k95
1

n2k(t51

n2k

I t1k .

r̂kAn21 is asymptotically normally distributed so indepe
dence, i.e., null-hypothesisH0 :r150, is rejected at levela if
ur 1̂u.ca /An21 whereca is read in a standardized norm
table. To insure that there is no correlation of higher ord
we also test whetherrk is significantly different from 0 for
k51, . . . ,5.

The statistical test of the exponential distribution, i.
with null-hypothesis H0 :F(x)5F0(X), where F(x)51
2e2l̂x, with l̂5( i /n and F0(X) is the sample repartition
of I t , that we used is based on Cramer Von Mises Statis

nv25
1

12
1(

t51

n F2t21

2n
2F~ i t!G2

,

where i 1, i 2,•••, i n . The null-hypothesisH0 is rejected
with level a50,05 if (110.16/n)nv2.0.224~empirical re-
sults obtained by simulation. See Biometrika tables@28#!.
f

ys.

.
r
into

d,
@1# J.P. Segundoet al., in Origins: Brain and Self Organization,
edited by K. Pribram~Lawrence Erlbaum Associates, Hills
dale, NJ, 1994!; K. Douglass,et al., Nature~London! 365, 337
~1993!; J.E. Levin and J.P. Miller,ibid. 380, 165 ~1996!; J.J.
Collins, T.T. Imhoff, and P. Grigg, J. Neurophysiol.76, 642
~1996!.

@2# H. Spekreijse, and H. Oosting, Kybernetik7, 22 ~1970!; A.
Longtin, A. Bulsara, and F. Moss, Phys. Rev. Lett.67, 656
~1991!; D.R. Chialvo and A.V. Apkarian, J. Stat. Phys.70, 375
~1993!; A. Longtin, ibid. 70, 309 ~1993!; X. Pei, K. Bachman,
and F. Moss, Phys. Lett. A206, 61 ~1995!; J.J. Collins, C.C.
Chow, and T.T. Imhoff, Phys. Rev. E52, 3321 ~1995!; J.J.
Collins et al., ibid. 54, 5575~1996!; M. Stemmler, Network7,
687 ~1996!.

@3# A.R. Bulsaraet al., Phys. Rev. E53, 3958~1996!.
@4# A.R. Bulsara and L. Gammaitoni, Phys. Today49„3…, 39

~1996!; L. Gammaitoniet al., Rev. Mod. Phys.70, 223~1998!;
F. Moss, D. Pierson, and D. O’Gorman, Int. J. Bifurcati
Chaos Appl. Sci. Eng.4, 1383~1994!.

@5# X. Pei, L. Wilkens, and F. Moss, Phys. Rev. Lett.77, 4679
~1996!.

@6# B.W. Knight, J. Gen. Physiol.59, 734 ~1972!.
@7# J.J. Collins, C.C. Carson, and T.T. Imhoff, Nature~London!

376, 236 ~1995!.
@8# D.R. Chialvo, A. Longtin, and J. Mu¨ller-Gerking, Phys. Rev. E

55, 1798~1997!.
@9# A. Neiman, L. Schimansky-Geier, and F. Moss, Phys. Rev

56, 9 ~1997!.
@10# G. Rose and W. Heiligenberg, Nature~London! 318, 178

~1985!.
@11# H. Agmon-Snir, C.E. Carr, and J. Rinzel, Nature~London!

393, 268 ~1998!.
E

@12# H.A. Braunet al., Nature~London! 367, 270 ~1994!.
@13# J.J. Hopfield, Nature~London! 376, 33 ~1995!.
@14# W. Gerstneret al., Nature~London! 383, 76 ~1996!.
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