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Fitting partial differential equations to space-time dynamics
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(Received 24 June 1998

The partial differential equationd®DE9 governing the dynamics of reaction-diffusion systems are recon-
structed from data representing the spatially extended systems. The fitted equations are validated by a com-
parison of their numerical solutions and the input data and by computation of the isoclines of the fitted PDEs.
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Nonlinearities in equations of motion often result in com- forming chemical reactiond 4] and biological systemsl5].
plex dynamical behavior such as bifurcations under param©Often models for these systems are only of qualitative nature
eter variation and chaos. The experimental observation adue to the complexity of the processes involved and because
such phenomena relies on the analysis of time sgtie©ne  of a lack of knowledge of the basic mechanisms. Thus it
of the most interesting goals of nonlinear time series analysigould be desirable to verify such models by extracting equa-
is the reconstruction of equations of motion based only orions governing the dynamics in space and time from data.
observed data. This issue is well studied for systems with ¥Ve restrict the analysis of this paper exclusively to numeri-
few active degrees of freedom. In pioneering works localcally generated data, including a discussion on measurement
linear models[2], global models consisting of radial basis noise. The purposes of this paper are to prove the feasibility
functions[3], neural net$4], and polynomialg§5] have been of this goal and to stimulate similar analysis of experimental
successfully used to construct forecast maps. Since oftetiata. Estimates on the necessary spatial and temporal resolu-
only a single observable is recorded, these maps act ontion of data are given. We chose three models with increas-
reconstructed state space, usually the delay embedding spaiog complexity that are known to exhibit periodic waves as
[6,7]. Once such a map is reconstructed from the observewell as spatiotemporal chagd6—2Q and created data by
data, it allows, e.g., for short time predictions and for thenumerical integration of these equations. The method re-
construction of new time series through iteratitnootstrap-  quires either simultaneous measurement of all dynamical
ping), but also for the estimation of Lyapunov speci8].  variables as in one-variable systems encountered in nonlinear
Meanwhile there exists a well established knowledge aboueptics[21] or reconstruction of the unmeasured quantities by
fitting model equations to maplike data, i.e., to data with aadditional assumptions about the dynanies., the validity
discrete time index. of amplitude equations near the onset of an instability or

In cases where all variables of physical interest are obsymmetries between the variables as in the method of com-
served simultaneously, i.e., where the state space of the syglex demodulatior{22]). Under the constraint that all rel-
tem is experimentally accessible, it makes sense to recomvant variables are observed simultaneously, we address the
struct ordinary differential equatiof®DES underlying the  problem of identifying PDEs from these data. In comparison
dynamics. This has been done for many numerically simuto ODEs, additionally spatial derivatives have to be esti-
lated systems. For an example with experimental data from gnated and more independent terms potentially enter the
driven nonlinear electric resonance circuit see R8f. In  equations. We do not want to conceal that these are more
comparison to fitting forecast maps in the delay embeddingechnical than conceptual problems. Fitting PDEs to spa-
space, fitting ODEs additionally contains the difficulty of tiotemporal dynamics can have implications on the under-
determining temporal derivatives from data that are recordegtanding of systems, in particular in order to obtain correc-
with a given sampling rate and are contaminated with a certions to model equations that are derived involving
tain amount of measurement noise. It is technically possibl@pproximations and heuristic arguments and in order to fix
to fit ODEs also to noninvariate time series, but since chaotigparameters in model equations.
motion requires(in the autonomous casa scalar equation We model the unknown PDEs as polynomials of
of at least third order in time, this is usually not consideredthe independent variables. In the case of a two-component
as a reasonable physical approach. field in one space dimension these variables are the

A widely studied class of more complex systems are spafield u=(u,v) itself and its spatial derivatives, denoted
tially extended nonequilibrium systems; their dynamics arédy Uy, vy, Uy €tc., in the following. We want
routinely described by partial differential equatiof®DEY.  to derive expressionsi=f(U,v,Uy, vy, Uxy, Uyx--.) and
A lot of activity has focused on the emergence of spatiotem-v=g(U,v,Uy, vy, Uyx Uxx --.). Forf andg we choose
poral patterng10]. These patterns are mostly periodic in multivariate polynomials of sufficiently high order that can
space and stationary or periodic in time. Only recently, exbe considered as Taylor expansions of the unknown nonlin-
amples for spatiotemporal chaos have been discovered mar functions. For a recent approach to this problem using a
convection experiment§11] and in chemical reactions different method see Ref23].
[12,13. Here we constrain ourselves to the study of reaction- We assume that the data are taken with a spaeirig
diffusion processes that are often encountered in patterspace and in time, u, ;=u(t=nd,x=i7). The data set can
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consist of either a few successive snapshots or a long series 800
of multichannel measurements at neighboring sites. How :
many successive images or how many adjacent positions
have to be measured depends on the order of the highest
derivatives and on the desired accuracy. Approximations of
the derivatives in different order are possible. Additional fil-
tering can be used to suppress noise. Suitable estimators and
the influence of noise are described in the last part of this
paper. Due to the minimum of three independent observa-
tions for symmetric derivative estimators of the first and sec-
ond derivatives, we need either at least three successive &= sl T8 10 18
snapshots or a time series of three neighboring spatial posi-
tions if we assume that no higher than second derivatives FIG. 1. Typical spatiotemporal patterm (component of the
occur. PDE fitted to data from Eq2) starting from random initial condi-
For the determination of we solve the minimization tions. The parameters age=2.08, 4 =0.2, andx=1.0, the system
problem length is 100, and the integration time 78.32. All units are dimen-
sionless.

2_ L . Ik . . -
7 2} (u‘?”" E Cikimoptn,iUn,i spatial and temporal discretization have been checked for

o . convergence. Spatiotemporal patterns created by(Bqe-
I m-o,° p =mi semble the pattern in Fig. 1.
Xux;n"vx;n"uxx;n"vxx;n") min @ For the f?t of the PDgE we compile a list of about 20

with respect to the parametesmop (@ corresponding prob- combinations of powers af, v, Uy, vy, Ux, anduv,y and
lem is solved independently fay). The first sum extends look for the best of all combinations of subsets of them. The
over a reasonably large set of tuples Minimum value of Eq(1) as a function of the subset sine
(Utni »Uni Onis Ugni»Uxenis UxniUxcni)- 1IN order to decreases im anpl saturates at an error around 1% when
keep the number of fit parameters .. small, we consider Seéven terms are included in the expressiongand only a
only a physically meaningful set of terms in the polynomial, Single term is used fof. These terms are in fact those of Eq.
e.g., we choose a highest powerdrand v, consider only (2 above. The nuliclines of these fitted equations are in per-
even powers ofi, andv, of the spatiotemporal patterns, and fect agreement with those of E(p) in those regions of the
exclude combinations of first and second derivatives becaugév Plane that are represented by the input data. Outside this
of symmetry propertiesi— —x). The minimization requires aréa, the nuliclines of _the fit cannot be expect_ed t(_) be |d§n—
one to solve a set of coupled linear equations by matrix infical to those of the original system, although in this special
version or, if many parameters are involved, employing sincase they arésee below. As a final check of the model, we
gular value decomposition. Since this can be done extremelike a random initial condition and integrate the fitted PDE.
fast, we explicitly look for the best of all possible combina- he spatiotemporal patterns generated by the fitted equations
tions of a subset of these terms. When the number of term@'® shown in Fig. 1. They are qualitatively indistinguishable
does not exceed 20, we can compare all possible combin&0m patterns generated by the original PDE. _
tions, whereas for more terms, we employ a backward elimi- Since we fitted noise free data generated by a PDE with
nation scheme. We perform a fit including all terms, thenPolynomials on the right-hand side by polynomials, it is not
search for the term that when being excluded leads to th&UrPrising that the resulting PDE is of the same structure as
smallest increase of the error, and thus reduce step by stégfl- (2) with almost exactly the correct coefficients, such that
the model. When we speak here and in the following aboutt Passes the test for model validation. Due to the fact that
the error we mean the value of from Eq. (1) at the mini- u=v, we could here rely on the sole measurement of the
mum, normalized to the standard deviation of the temporat-field component and fit a PDE of second order in time.
derivative. This approach is in fact similarly successful.

As a first example, we treat a model recently suggested to The good results reported for mod@) can be rational-
capture dynamics of an extended system near éed from the fact that the functiorisandg are polynomials
codimension-2 bifurcatiofiTakens-Bogdanov-poinf16],

au B
at 8

2 2 (2) E.)_
&—v=(,u—u2)v—u—au2—u3+a—u+xa—v, 5
ot X% ox? 5

with ©=1/5,a=2.08, andk=1. A random initial condition
was numerically integrated with time steps that were more
than a factor 10 finer than the sampling of the data used for
the fits. For the numerical solution of these equations and the FIG. 2. Minimum error of the optimal polynomial consisting of
other examples that follow, periodic boundary conditions aren out of 22 terms in the polynomial ansatz foandg of the model
employed and simple explicit Euler schemes are used. The). The parameters used are-0.15,a=0.84, andb=0.20.

1 2 3 4 5 6 7 8 9 10
number of terms
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approach can be successful only for aperiodic data with spa-
tiotemporal disorder or for transient motion. If, on the con-
trary, only a single periodic orbit is observed, this is thus
insufficient to fixf andg at least as soon as the ansatz chosen
for the fit is not of exactly the form of the true model equa-
tion. In general, there is an extended region in parameter
space where spatiotemporal chaos is observed. Thus it is
possible to study also the parameter dependence of the fitted
model equations. In a similar fashion, one can explore the
domain where periodic patterns are observed by employing
! . . . . suitable perturbations or forcing to the system. Here we will
0 02 04 06 08 1 restrict ourselves to model verification for selected parameter
u values.
FIG. 3. Nullclines of the PDE fitted to time series data from Eq. | n€ €xperimental measurement of transient spatiotempo-
(3), to be compared to Eq3). The projections of the input data into '@l dynamics caused by external perturbations is a possible

theu-v plane are shown in gray. The parameters are the same as #Hre in systems where the final patterns exhibit periodic or
Fig. 2. stationary temporal dynamidfor an experimental example

in a chemical reaction perturbed by laser illumination see
themselves. Therefore, we study a simplified model of CORef.[24]). We simulate numerically such a transient for Eq.

oxidation on PtL10[17] where this is not the case: (3) (with slightly different parameters, where stable periodic
5 solutions exist by subsequently shortening the system size
(?_u_ B E N b+v N 3_“ and consequently the wavelength of the pattern during inte-
ot éu(u )\ ax2’ gration. Performing the minimization for these transient data
leads to the nullclines shown in Fig. 5, where also the tran-
v sient solution is shown in gray. Due to the fact that this
E_h(u)_v’ 3 particular solution covers a considerable part of the
plane, we can again successfully determine the dynamics.
0, O<u<1/3 As a third and considerably more complicated example
h(uy={ 1—-6.75u(u— 1)2, 1/3<u<1 we have studied data generated from a model of the catalytic
1 1<y NO reduction with CO on Pt suggested by Imbihl and co-
’ ' workers[18,19:
Again we compare all possible models based on selec- U 24
t!ons out of 22 terms. The sa}turatlon qf th(_a error as a func- — =Kypeo(1—u—0v)—ky(u,0)u—kguw+ —,
tion of the number of terma is shown in Fig. 2. Whereas at
there exists a clear signature for thequationfand we find
exactly the six terms in Eq3)], there is a smooth transition P
for thev equation. The polynomial can reproduce the piece- — =k;pno(1—u—v)—Kky(u,v)v—ksp f(U+v,W)+ —,
wise defined functiom better with more terms included. For % ax?
a model consisting of ten terms we repeat the analysis for 4
model validation: nullclinegFig. 3) and numerical integra-
tion (Fig. 4). Since here the fitted PDE is of a different struc- ﬁ_W —kevf (Ut K
ture than the original onéglobal polynomial versus piece- ar — Kevf(utv,w)—ksuw.
wise polynomial we show in Fig 4 a comparison of model
and fit. The equations describe the dynamics of the concentrations of

The functions andg can be determined only in ranges of CO (u), NO (v) and O () on the surface. The control
their arguments that are sampled by the data. Therefore, thmarameters are the partial pressupgg, and pyo and the

0 250 500 750 1000 1250 0 250 500 750 1000 1250
time time

FIG. 4. Typical spatiotemporal patterns ¢componentof Eq. (3) (left) and of the PDE fitted to data from E€®) (right), starting from
random initial conditions. The parameters are the same as in Fig. 2. The system length is 50 and the integration time shown is 122.37, both
in dimensionless units.
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FIG. 6. Increase of the errors when applying the backward
u elimination technique to obtain the best model witterms for data

) ] ) from Eqg. (4). The parameters used in Ed4) are pco=8.5
FIG. 5. Nullclines of the fitted PDE obtained from the almost X 10~ "mbar, pyo=9.25x 10~ mbar, andT =424 K. The diffusion

periodic data shown in gray, to be compared to ). The param-  .gnstants of CO and NO are set tgske Eq(4)].
eters aree=0.05,a=0.84, andb=0.1.

_ S Starting from random initial conditions, the integration leads
catalyst temperaturg that enters via Arrhenius-like terms to diverging solutions since such an initial condition is gen-
into the desorption rate constarktsandk,, the reaction rate  erally too far from the attractor and thus outside the range in

of CO oxidationks, and the rate of NO dissociatidg. The  phase space where we can expect the fitted equations to be
desorption rates of NO and CO also contain an exponentig}glid.

dependence on the coverage of CO and NO, namely, It has been suggested to eliminate one variable of(#q.
CONO 5 adiabatically. Fitting PDEs of only two variables to the time
k4= vz 4eXP—[Egy ™ —Ke(u+v)l/kgTh. (5  evolution of different components of the field, we can in fact

confirm that the dynamics of the variable is well deter-

This dependence is crucial for the occurrence of dynamignined by only theu andv fields (2% erroy, but that they
instability and has been termed surface explosion, since aglynamics is less well determined by that at least with a poly-
increase in the coverage leads to a very rapid increase iflomial ansatdabout 7% error, and that, finally, thev dy-
desorption of NO and CQL9]. The functionf(u+v,w) in-  namics is badly predicted by andw (13% erroy and even
dicates the amount of empty surface sites and has the empitirorse byu andw (19% erroy. Thus an adiabatic elimination
cally determined form f(u+v,w)=max{1-(u+v)/0.61  of w seems possible when accepting some error.
—w/0.4,0] [19]. The dynamics of reaction-diffusion waves  We want to conclude with a discussion of a crucial aspect,
in this model has been investigated recently by Christoplhamely, the estimation of the temporal and spatial deriva-
[20]. He found that the model exhibits stable pulses at lowtives. Apart from being sufficiently noise free, measurements
Pco. Which upon an increase gfco develop modulations have to be performed with sufficient temporal and spatial
and finally lead to complex periodic patterns with spontaneresolution. The simplegsymmetri¢ estimators are exact in
ous creation of excitation pulses. We have generated data ivder 5% and »?, respectively:
the complex periodic regime in parameter space subject to
constant external perturbations that lead to transient spa-
tiotemporally chaotic motion. Utni =55 (Un+1j = Un-1),

Because we have to deal with more independent variables
and the exponential term requires a polynomial of higher
order for a reasonable fit, we compose the right-hand side of Uy:n.i =2—(un,i+1— Uni-1), (6)
the PDE of about 100 terms, which are then reduced by K
backward elimination. Thus we perform a first fit with all

terms included and then eliminate term by term, each step 800

skipping the term whose omission leads to the least increase 640

of the error. We find reasonable errors of about 2% with o 480

models as small as about 20 ter(sse Fig. 6. g 420
2]

Since data from this model fill the three-dimensional
phase spaceu( v, w) only sparsely, the equations of motion 160
thus obtained are valid only in close vicinity to the observed

data(on the “attractor”), whereas outside they are consider- 0
ably wrong(in particular, due to the polynomial structure of 0 140 280 420 560 700
our fit, the fitted functions diverge for large arguménts time

Therefore, we cannot present a reasonable comparison be- kG, 7. spatiotemporal pattern created by the polynomial PDE
tween the nuliclines of the fitted PDE and of Bd). Under fitted to data from Eq(4) (u field). The parameters are the same as
iteration, however, the fitted equations are stable and yieléh Fig. 6. The system length and the time are given in dimensionless
periodic space-time patterns that are qualitatively the same agits obtained by a proper scaling of Ed). In rescaled physical
those of Eq.(4) reported in Ref[20] (Fig. 7), when we units the time of integration shown corresponds to approximately
choose a spatial pattern from Edg) as an initial condition. 980 s and the length shown is 2 mm.
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0.5

- resolutions is possible with experimental techniques and thus
20d order ——— sufficient for a determination of the spatial derivatives.
6th order - ] To conclude, we have shown that one can successfully
/ model PDEs from data if the relevant components of the
T fields are experimentally observed. Our polynomial approach
can be replaced by other nonlinear functions, where it is
advantageous when the fit parameters are contained linearly
(which is not the case for neural ngts
Space and time in PDEs can be rescaled independently. If
Lzt . . . . for simplicity § and » are set to unity, the integration of the
2 4 6 g 10 12 14 resulting PDE reproduces the observed data when sampled in
spatial distance k the same way. Independent of this, the nullclines of the fitted
equations represent the nullclines of the system, without us-
FIG. 8. Errors of the estimated second derivativgs for the  jng information about the sampling in space and time. The
pattern of Fig. 1 as a function of the spatial resolutidistancek of variablesu andv can be rescaled and shifted and in experi-
the given samplingfor noise free datéconverging towards zero for ments are rescaled and shifted in order to exploit the full
smallk) and data with measurement noitgrge errors at smak).  ranges of analog-to-digital converters. Altogether this leads
For largek (low spatial resolutionthe systematic errors are domi- tg the phenomenon that every single PDE is representative of
nant. a whole family of equations. This has to be taken into ac-
count when PDEs fitted to experimental data and model
1 equations are to be compared. An unknown offset in the
Ugscn | =—2(un,i+1+ Uni—1—2Up i), variables makes the situation quite complicated since under a
7 shift of u or v even new combinations of powers may occur.

] ] ] The best strategy is thus to use all these operations to reduce
and forv correspondingly. One can easily use estimators ofne number of terms and to replace as many as possible non-
fourth or sixth order where, however, five or seven succestrivial coefficients by unity.
sive images or neighboring time series are required. For The fitting of PDEs with polynomials has been tested for
rough samplings the use of higher-order estimators is advaneaction-diffusion—type models. Thus only first and second
tageous, as well as for noise contamination. In Fig. 8 wederivatives have been included in the ansatz. Some pattern
show the average error when estimating the second spatifdrming systems are governed by spatially nonlocal coupling
derivativesu,, from the pattern shown in Fig. 1, as a func- terms, e.g., in nonlinear optid21] and electrochemistry
tion of the spatial resolutiofreplacing, e.g.i=1 byi=kin  [27]. Models of these systems contain either integral terms or
Eqg. (6)], for noise free data and data with 0.5% white mea-derivatives in exponentials. Both types of coupling terms can
surement noise. The three line types represent Taylor estimQe expanded in Taylor series of the local derivativese,
tors of second, fourth, and sixth order. For high spatial reso€-9-» Ref.[15], Chap. 9. Thus an extended polynomial ap-
lution and thus high degeneracy of the variables entering thBroach is also applicable to these systems. Moreover, the
differences, noise introduces large errors, whereas bad respifing approach introduced can be used to estimate the qual-
lution (largek) introduces large systematic errors but almost'y Of reduced models such as amplitude equatidios an
eliminates the errors due to noise. On a noise-level-(':'xample see Ref$28] and[29]). The method is useful in

dependent intermediatethe total error is lowest, where the €35€3 where all observables are known, but no information
can be given on the physical model. It is suitable especially

higher-order estimators are superior. The situation is simila,l,rOr dynamical systems with high attractor dimensiapa-

for first order derivatives, but errors due to noise are muc'?iotemporal chads Thus it supplements model reduction ap-
smaller. The use of SaVItzky-GoIay_fllteEQS] can reduc_e proaches using Galerkin projections or empirical eigenfunc-
errors due to noise by about one-third, but noise remains gons[30], which are often used to reconstruct spatiotemporal

crucial problem. Nonlinear noise reduction techniques mayynamics if the attractor has only a few degrees of dynamical
help [26]. As for the required spatial resolution, in typical freedom.

reaction-diffusion systems, the length scale on which con-

centrations change considerably lies between millimeters for We are grateful to Jan Christoph and Markus Eiswirth for
reactions in solution and micrometers for surface reactionsommunicating their unpublished results on the NO-CO
and biological systems. Sampling a grid in space with thesenodel[see Eq.(4)].
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