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We study several structural properties including the shortestlgatween two sites separated by a Euclid-
ean distance of invasion percolation with trappin@1P) and without trappingNIP). For the trapping case we
find that the mas# scales withl asM ~1% with d,=1.510+0.005 and scales withr as|~r%min with d,;,
=1.213+0.005, whereas in the nontrapping cake 1.671+0.006 andd,,,=1.133-0.005. These values
further support previous results that NIP and TIP are in distinct universality classes. We also study numerically
using scaling approaches the distributid(l,r) of the lengths of the shortest paths connecting two sites at
distancer in NIP and TIP. We find that it obeys a scaling fo{l,r)~rd~1~dminf(|/r9min). The scaling
function has a power-law tail for largevalues,f(x)~x"", with a universal value ofi~2 for both models
within our numerical accuracyS1063-651X99)12603-3

PACS numbeg(s): 61.43.Hv, 05.60-k, 82.20.Wt

[. INTRODUCTION Therefore, the possibility that finite-size or crossover ef-
fects are responsible for the differen@e 2D) or the agree-

Invasion percolation has been introduced by Wilkinsonment(in 3D) of the cluster fractal dimensions canropriori
and Willemsen 1] as a model to describe the evolution of be excluded. Furthermore, there exist only heuristic but no
the front between two immiscible liquids in a random me-rigorous arguments that NIP falls into the universality class
dium when one liquid is displaced by injection of the other.of regular percolation, i.e., that; exactly equals 91/48. To
This process occurs, for example, when water is injected inttest these questions, we believe that it is important to search
oil reservoirs in order to produce oil. Two model variantsfor properties in which the two models differ more signifi-
have been proposed. The first, nontrapping invasion percolaantly than in the fractal dimension, and at the same time to
tion (NIP), applies for compressible liquids in which the in- collect more evidence that two-dimensiorfdD) NIP falls
vading liquid always enters the largest available pore on théto the regular percolation class.
replaced side of the advancing front. The other, invasion per- In this paper we study, apart from the fractal dimension
colation with trapping(TIP), finds application for incom- (Sec. IIB), several other structural properties of NIP and
pressible liquids where the invasion of a pore is forbidden byTIP. Among those are the lengttof the shortest patfalso
the incompressibility constraint when the replaced liquid iscalled chemical distange€onnecting two sites of a cluster at
completely surrounded by the intruder—this variant is calledEuclidean distance (Sec. Il B) and the cluster masdl (1)
invasion percolation with trapping. Apart from the possible contained within a chemical distant&om a given sitgSec.
applications, interest in the NIP and TIP models arises beHl). The chemical distance is useful to understand transport
cause both are parameter-free models and self-organize inproperties in disordered medig).
critical state42,3]. As an applied example let us mention the problem of oil

In two dimensions(2D) as well as in three dimensions recovery, where water or steam is injected into one borehole
(3D), numerical studies of NIP and convincing heuristic ar-in order to recover oil from another. Here, the chemical dis-
guments indicate that NIP falls into the same universalitytance between the two boreholes is directly related to the
class as regular percolatigi]. This finding is believed to time of breakthrough of the injected medium at the second
hold for all dimensions. hole[9].

The situation for TIP is more complicated. Numerical We also study the distributioM(l,r) of the number of
studies have found that the fractal dimensiqrin 2D of the  cluster sites with chemical distantand Euclidean distance
NIP (d;~1.90) and TIP {;~1.82) [4—6] models differs r from the cluster center. This distribution has been studied
only by about 4%. This difference is small and heuristicin a variety of contextSsee, e.g.[8]). For example, for
arguments suggest that in three and higher dimensions treelf-avoiding walk (SAW) chains, it provides insight into
trapping becomes irrelevant so that NIP and TIP are in thelynamical properties such as the propagation of excitations
same universality class. Only recently it has been argdgd along the chain which can perform “jumps” at the positions
using a mapping from optimal paths to shortest paths, that avhere chain elements come close. De Gennes conjectured
least in three dimensions TIP is in a different universalitythe form of this distribution for SAW10]. Since his argu-
class from that of regular percolation. Earlier numerical re-ments possibly apply in a broader contgkf], we test nu-
sults for the fractal dimension of the clusters had suggestetherically their validity in the NIP and TIP caséSec. I\).
that NIP and TIP in 3D fall into the same universality classWe  find there a scaling form of N(l,r)
as regular percolatioftl]. ~ r 9= 1= dminf (| /9min) - with
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the property thaf(x)~x~" with h=2 for largex, indepen-
dentof the model(NIP or TIP).

From the scaling form oN(l,r) we then compute the
average value dfi (r)) for fixed values of, e.g., close to the
origin r=0. The value oth=2 causes the divergence with
system size of all moments éfgreater than or equal to 1
(Sec. IV Q. We conclude and summarize our results in Sec.
V.

Il. STRUCTURAL PROPERTIES
A. The models

To generate invasion percolation clustéP) in 2D, we
perform the following stepgi) We first assign random num-
bers on a 2D square array of siz&X L. Then(ii) we initiate
the growth by occupying the center site of the latt{start
the injection of water into the oil reservainn step(iii) we
search along the perimeter of the cluster for the site with the
largest random numbecorresponding to the largest pare
This perimeter site is thefiv) added to the aggregatee-
placing the oil in the pore by waterThe last two stepS§ii )
and (iv) are then repeated to grow larger and larger clusters
[12].

In TIP one checks at each step of the growth process
whether the occupied site has closed a IGogpped replaced
liquid). The rules are such that liquid cannot escape through
necks created by next-nearest-neighbor occupied sites on the
lattice. The liquid can escape only through a free path at least
one lattice unit wide. If a loop has been closed, then we
forbid the invasion on all enclosed internal perimeter sites of

the aggregate, i.e., we restrict the search of the next largest (b)

random number to only the external perimeter sites of the

cluster[13]. FIG. 1. Snapshots of a NIR) and a TIP(b) cluster of mass
M =50 000.

B. Fractal dimensions quite sensitive to the correct value df, which we have

We grow the clusters in steps, stopping at logarithmicallyobtained by consideration of the local fractal dimensions
spaced cluster masses of up Nb=500000. In Fig. 1 we d¢(M)=AInM/Alnry. These values converge to the fractal
show two typical clusters of the two invasion percolationdimensiond; of the clusters in the limiM —oo. Finite-size
models of massv =50000. It is apparent from the figure scaling suggests that;—d;(M)|~M ™2, wherea is ana
that TIP has larger trapped regions on all scales, therefongriori unknown model-dependent correction-to-scaling ex-
suggesting a smaller fractal dimensidnthan NIP. ponent[14,15. Demanding thad;—d;(M) vs M ™2 should

To obtain the fractal dimension quantitatively, we mea-be linear for largeM, we estimate values af=0.80+0.15
sure the radius of gyrationg of the clusters versus their for NIP and 0.6& 0.15 for TIP and obtain the corresponding
massM and display the results in Fig(&@ for NIP and TIP.  plots in Fig. Zb). A straight line fit to the data in the dis-
For both models we average data from two enembles, onglayed range intersects the abscissd;at
with 25000 and 50000 clusters of masse<0000, the We obtain intersections ak;=1.899+0.003 for NIP and
other with ~5000 clusters of mass 500 000. For algorith- d;=1.831+0.003 for TIP. The measured fractal dimension
mic reasons the cluster growth has been terminated at spafi NIP is in very good agreement with the exact value
L =3300. Although we have chosen the largest feasible val91/48~1.896 of regular 2D percolatidri6]. The dimension
ues ofL, we could not avoid a slight finite-size effect in the of TIP is larger than the value 1.82 often found in the litera-
data point corresponding to the largest mass: a fraction diure[5,6], but is also more precise. The fractal dimensions of
about 0.01 of all the generated clusters have had a span tddP and TIP differ by about 20 standard deviations and thus
large to fit on the simulation array. The average span is apwe confirm that in 2D the two models belong to different
proximately 2450. Since the missing configurations are veryniversality classes.
elongatedy 4 is rendered slightly too small & =500 000.

However, we find that this bias is well within the statistical IIl. CHEMICAL DISTANCE
error of our data.

In Fig. 2@ we do not plotr directly, but the rescaled
valuer /M, which asymptotically approaches a constant Next we study the chemical distance in the generated
value. A horizontal line is plotted for comparison. The plot is clusters. To this end, we consider the cluster connectivity at

A. Total mass
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FIG. 3. (a) Plot of the average chemical distancdivided by

FIG. 2. (3) Plot of the radius of gyratiomy divided by M \Yd with d,=1.671 (NIP) and d,=1.510 (TIP) vs the cluster
with dy=1.899(NIP) andd;= 1.831(TIP) vs the number of site¥  mass. The symbols and the statistical ensembles correspond to those
in the cluster. For NIP we have averaged over 25000 systems af Fig. 2. For largeM, the curves approach a constant value, indi-
massM=<40000 (+) and 5050 systems dfl<500000 (*) and cating that the dimensiod, is very close to the chosen rescaling
for TIP over 50 000 systems & <40 000 @) and 5750 systems exponents. A finite-size analysis of our data is displayed in (mrt
of massM=500000 (). For largeM, the graphs become hori- of the figure. The values akInM/Alnl are plotted as functions of
zontal, indicating that the fractal dimensions equal the chosen resy/MP, whereb= 0.45 for NIP ancb=0.7 for TIP. The straight lines
caling exponents. A finite-size analysis of the same data is disare fits to the data in the rang®, . . .,0.0Z. The intersect with the
played in part(b) of the figure. The values oAInM/Alnry are  abscissa is the fractal dimension which from these plots eqlials
plotted as functions of M2, wherea=0.8 for NIP anda=0.6 for =1.671+0.006 for NIP andd,;=1.510+0.005 for TIP.
TIP. The straight lines are fits to the data in the raj@e . . 0.05].

The intersect with the abscissa is the fractal dimension which fro . .
these plots equalsd,=1.899-0.003 for NIP and d,=1.831 ".70+0.15 f0.r TIP dlﬁgr from the correction exponerdf
+0.003 for TIP. the asymptotic behavior af;.

Performing a straight line fit, we find the chemical dimen-
. . .. sion from the extrapolatioM —oo to be d;=1.671+0.006
d|ﬁer§nt grovyth steps, characterlzed. by the same .Iogarlthr.nlf-or NIP andd,=1.510+0.005 for TIP. The error bars ac-
cally increasing cluster masses as in the preceding section

For each stage, we determine the chemical distarafeall pount for the statistical errors and allow for systematic errors

cluster sites to the site closest to the center of mass. We fin| b (estimated by performing fits for @ffergnt dat'a ranges of

the value(l) by averaging over all the sites in one cluster and values o_fo)._ Thus, the chemical dimension Of_ TIP

over different realizations of the cluster turns out to be significantly lower than that of NIP. As in the
' case of the fractal dimension of TIP, this is caused by the

Thg asymptotip scaling behavior & ~(1)® defines'the presence of trapped regions in which no further growth oc-
chemical dimensionl, of the cluster. In the same fashion as curs (see the next section

for the determination of the fractal dimension in the preced-
ing section, we plot1)/M vs M for NIP and TIP in Fig.
3(@). As in the case of 5, here also slight finite-size effects B. Shortest path
are present at the largelst value, because some very elon-  The scaling of the length of the shortest path with the
gated “linear” clusters with span larger thdr=3300 are  Euclidean distance between two sited 4sr9min, which de-
not sampled. As in the preceding section, we see no signififines the shortest path exponehy;, and is reflected in the
cant effect on our analysis. scaling of the averagel) as a function ofr,. We have
Since the chemical dimensiod, corresponds to the therefore plottedl) vsr for different values of the magdd.
asymptotic slope of the log-log plot ¢f) vs M, we find the  Figure 4 displays our data for the NIP and the TIP models.
local slopesAInM/AIn{l) and plot them in Fig. ®) as a Just as in the previous cases we rescale our data by dividing
function of M P, The values ob=0.45+0.15 for NIP and by known (or tentative valuesof d,,. For NIP we use
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1.6 ; ; the number of sites with in the intervall - - - +dI and si-
15t ] multaneously in r---r+dr for clusters of spath. It is our
PR goal to establish scaling properties and, if possible, a func-
s M ' tional form of this distribution, as has been outlined and
1{‘ 1.3 T motivated in the Introduction.
1ol ) | To this end we make the commonly used assumption that
' . X ver N_ may be written in the scaling form
1A = e 1
1 ° . . N, r)~ref(1/r#), (1)
1 10 100 1000 "
7y where we have suppressed the dependende tonindicate

o that we are interested only in the asymptotic behavior
FIG. 4. Plot ofl/r ™, wheredp,=d;/d, vs rg both for NIP. o Sincel ~r9min, we expect thaB=d,,. An integration

(O) and TIP (*), using interpolated data from the measurement of gygr| yields the radial densiti(r) of sites at distance,
I 'andr4 vs M. The fractal and topological dimensions are equal to

the values in the preceding figures and yiejg,=1.133+0.005 for @
NIP and 1.213 0.005 for TIP. N(r)Nlr"f0 dIf(1/r%min) 2
dmin=1.133, which is about 1.5 standard deviations larger, N
but probably still consistent with the best known value for =r fo dxrfminf (x) ©)
regular percolation ofl,;,=1.130+ 0.002 reported if17].

For TIP we use a value of 1.213. We find that the plot ~patdmin @)

reacts rather sensitively to the exact valuedgf, and we

estimate the error to be about 0.005. The horizontal Solid\since the numbeN(r) of sites in a(fracta' or Euc”deah
lines have been added as guides to the eye. radial shell of radiusr is asymptotically proportional to
We have verified these values O, also by measure- (di—1 e find by comparison that satifies the relation
ments ofl vsr in ensembles of configurations grown up to a =g, —1—d,,,,,. Knowing « and 8, we are in a position to
these “static” measurements we have recorded the averagfotting N(I,r)/rd% 1~ %min as a function of/r%min. Figures 5

value ofl and the average minimum valueldor the cluster  ang 6 show the resulting data collapse both for the NIP and
sites at distance from the center of mass. These measurethe TIP model. In these plots, we consideas a parameter

ments are consistent with the above values, but they are afmd | as a variable, so that different curves correspond to
fected by large systematic finite-size effects. In particular gitferent values of.

the averagel(r)) at distancer displays approximate loga-  The data that have not collapsed onto the master curve
rithmic dependence oh, which we will address in detail correspond to large values of where the finiteness of the
later (Sec. IV Q. system limits the range dfvalues severely when compared

on a substrate with the same disorder. The clusters will beayse it has only asymptotical validity.
exactly equal up to the moment when the first trapped \ye jike to note here that a second, equivalent scaling

growth sites appear. This is the reason that the accessibjgm for N(I,r) can be written in analogy to E¢L), but with
perimeter{ 18] exponents of NIP and TIP are the saf6el9  jnterchanged roles dfandr,

and thus both very likely equal t§ [19]. Then, NIP will

continue to grow in the “trapped” region while TIP cannot N(I ,r)~|7*T(r/IZg). (5)
grow there any further. Thus, in NIP additional connections

will be present which tend to lower the average chemicalyg above, sincé~rmin we haveZ%=1/dmin. Similarly, by

distance at fixed Euclidean distance. Consequently, thﬁ]tegration ofN(I,r) with respect ta,, we find the number of

che.micgl distances in NIP must be shorter than in TIP, regjiaq in the chemical shelIN(1)~19~1. We omit the details
sulting in NIP’s lowerdp .

It is clear that only two of the three quantitids,d,;, and of the computation here, but simply state the resaiid,

dmi, are independent, because, for instance, by combining ngl_ L/diin- Moreover, the two scaling functions are related

M~rgf andM~1% one obtains thalt~rgf "4 and thusd i
=ds/d,. This equality is satisfied for our results within the £(x) = x~ 9+ 1 Ui (5~ i) (6)
limits given by the error bars, although the result for NIP

points to a slightly larger value afj~1.673 compared to the The above formulas can be used to easily switch between the
value 1.671 reported in the preceding section. two representations or to calculate scaling exponents, when

f(x) andf(x~Ydmin) display singular behavior.
IV. DISTRIBUTIONS ) ( ) pay g
A. Joint distribution of | and r B. Functional form of the scaling function

A possible step beyond the above scaling analysis is to In Figs. 5a) and 5b) we also observe that the scaling
consider the joint distributioh, (I,r), whereN, (I,r)dldris  functionf(x) has a long power-law tafl(x) ~x~". By com-



3266 STEFAN SCHWARZER, SHLOMO HAVLIN, AND ARMIN BUNDE PRE 59

10
g 1 !
= =
+ 0.1 . 0.1
L L
‘i 0.01 ‘; 0.01
= — =~ _
E“: 10 3 § 3:: 10 3
= 104 S =10
10_5 ) 1075
10~ - . . 10-6 .
10 100 0.01 0.1 1
¢/ £V
(a) (a)
10 T 10
E 1 é 1
¥ =
1 0.1 i 01
E 0.01 3
= —=  0.01
5 07 <
= 4 = 107
210 N
10—5 10_4
10_6 . + L 103
1 10 100
Z/Tdmin
(b) (b)

FIG. 5. Data collapse fof@ NIP and(b) TIP of the scaled joint FIG. 6. Data collapse faoa) NIP and(b) TIP of the scaled joint
distribution functionN(l,r)/r% =1~ %min ys |/rdmin. The data are av- distribution functionN(l,r)/1% =1~ dmin ys r/|Y4min, The data are
eraged over 25000NIP) and 50000 (TIP) systems of M averaged over(NIP) 5050 and (TIP) 5750 systems ofM

=40000. The curve parameter is(right to lef) r =500000. The curve parameter igtop to bottom |
=15,25,35,45,65,85,105,145,185,245 (NIP) and r =75,125,175,275,425,625,875,1325,1975,2975,4826°) and |
=7.5,12.5,17.5,22.5,32.5,42.5,57.5,82.5,117.5,167.5,23255. =75,125,175,275,425,625,875,1325,1975,2975,4425,66P.

parison to the solid line with a slope ef2 we see that the To find the exponeng,, Ref.[11] has applied an argument
characteristic exponent is very close hie=-2.0+0.02 both  originally used by de Gennes for self-avoiding wal&§)] to
for NIP and TIP. The value of the exponelnt=2 is thus Leath percolation with the resuly; =d+dg,—d. How-
independent of the specific percolation model. ever, Leath percolation grows one chemical shell after the
Insight into the reasons whigz=2 has been gained in other and is thus topologically different from NIP such that it
previous work[11,20 has focused on the conditional prob- is nota priori clear thaty, is the same as in NIP. Since TIP’s
ability @(r|l) [8,21] to find a value ofr within a fixed d; appears to differ from NIP’s, at least in 2D, the validity of
chemical shell. The normalization ofb(r|l) is such thatit this equation for TIP would be surprising.
can be interpreted as a regular density in space of sites with Let us try to find the value of; from the scaling relations
characteristic chemical shell numbeii.e., for the distributions. If we integratdl(l,r) overr, we find
the number of sites in shdll)

f drrd=1P(r|l)=const. 7 .
0 N(I)=f drN(l,r)~19-1, (10)
0
The constant depends on the spatial dimension but ndt on
and is, e.g., equal to 142in 2D. The functional form of Since Eqgs.7) and (10) are valid for alll, we obtain that

P(r|l) is accepted to be of the scaling foifi®] N(r,l) andP(r|l) are related by
1 " N(l,r)~19=1rd=1p(r|l). (11
PN~ 509\ e | ®
| & Emin = | *Emin We now use the expressig8) for P(r|l) to write
where r
N(I,r)~|d'_1rd_1l‘d’dm”‘g< i ) (12
x91, x<1, | #Fwin
~ i is ex-
g(x) x%exd —ax?], =" 1. (9 If we rearrange factors dfandr, we can compare this ex

dmin—1’ pression with the scaling forr{l) for N(I,r),
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N(I,r)~rd71 = Ydmin(d=di+dmin)g r (13
|1/dmin

d—d¢+dy
r 7 Ymin r
=r di—1—dmin g
| 1/dmin | lldmin

| (— Udmiry) (d—d¢ +dppir) | = Udmin
r dmin 9 rdmin '

(19

(14

= df_l_dmin(

and find howf(x) must be expressed in terms @fx):

f(x):X*d/dminflerlg(x*l/dmin)_ (16)

Now we expand this relation for largesuch that we can use

the asymptotic forms for botiy(x(~min)) and f(x). One
obtains
th:de/dmin71+dleglldmin_

17
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FIG. 8. Scaling plots of Il (r<10))¥9)— (1/q)In(A/g—h+1)
vs (g—h+1/q)InL for 9100 NIP(a) and TIP(b) clusters of linear
span up toL =2048. Different symbols correspond to differemt
=1.5(+),2.0(x),2.5(*),3.5(),3.5(@). From Eq.(23) we ex-
pect forg>h—1 asymptotically straight lines with slogk,;,. For
comparison, the solid lines indicate these values for the respective
case. For TIP, the asymptotic slope appears to be slightly smaller
than the value expected frody,,, which could be due to finite-size
effects. The values ok andh are chosen such that the best possible

Here we read off that the different exponents are not indeeollapse resultsA=8.0,h=2.0 for NIP,A=8.0,h=2.05 for TIP.

pendent, but thalh andg, satisfy the equation

h=(g,;+d)/dn,+1—d, (18
or, conversely, expressimg, in terms ofh,
g;=(h—1)dy,+ds—d, (19

where we have applied the identity,,=d:/d,. Thus, our
numerical finding thath=2 implies g;=d;+d,,—d, for
both NIP and TIP, supporting the arguments in Ré&l] for

Leath percolation. Although it is not very surprising that the
formula holds both for NIP and Leath percolation—since
both are conjectured to be in the same universality class—t
possibility that it also holds for TIP suggests a more gener

validity.

C. Behavior of moments

stance, if we fixr =0 and consider the averagf(r =0)),
we obtain the mean chemical length of the paths returning to
the origin, which gives some insight into transport properties
of systems that can be described by NIP or TIP models.
Higher moments oN(l,r) tell us about the fluctuations that
have to be expected in transport phenomena—say, the distri-
bution of times that it takes water injected at one oil borehole
to reach a second borehole at distance

The valueh=2 indicates that the distribution df for
fixed r has a Lorentzian tail. The well-known fact that such a

h((;;istribution does not have a well defined average implies
ailn'[eresting properties for the averagé§)) or, more gener-

ally, for (1(r)9)19, where we take the momeqts a positive
real parameter.

Let us consider ensembles of clusters grown up to fixed
spanL. Typically, in such clusters, the longest chemical path

Specific moments of the distributions discussed abovéias lengthL%in. When we now use the scaling form for
have important physical meaning in applications. For in-N(r,l) to compute{I(r)9), we will extend the integrals to
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TABLE I. Summary of the various exponent values in NIP, regular 2D percolation, and TIP.

d; d, dmmin h a b
2D NIP 1.899-0.003 1.6710.006 1.13%0.005 2.0:0.10 0.8G:0.15 0.45-0.15
2D percolation 91/48 1.6780.003 1.13@0.002[17] 2.0[11]
2D TIP 1.8310.003 1.516:-0.005 1.2130.005 2.050.10 0.66-0.15 0.76:0.15

L9min which introduces effectively a cutoff function multi-
plying N(r.1),

(I(r)q>=LLdmmdlqu(r,I). (20

If L is sufficiently large, then the integral will be dominated
by the tail contributions and(l),I>1 will be close to its
asymptotic form~Al~", with A being the constant of pro-
portionality. We will concentrate on the case thdg a small
positive constant, say 1. Then, for sufficiently largehe
relation

<lq(1)>~AflLdm‘"d||qrh 1)

holds. Forg=h—1, the integral diverges logarithmically, for
g>h—1 in a power-law fashion, but foq<h—1 the inte-
gral converges to a constant independent.ofn summary,
we obtain for(l(1)d)d

const, g<h-1,
[AdminIn(L)]Y, q=h-1,
(I q(1)>1/q~ " 1/q
(22)

Sinceh=2, we expect that the regular averaggl)) for
g=h—1=1 diverges logarithmically. Averages derived
from smaller moments become independent.aind those
for larger moments diverge as powerd.ofThese predictions

Thus, plotting I§(I(1)9)*)— (1/q)In(A/g—h+1) vs (@—h
+1/g)InL as an independent variable on the abscissa, the
graph becomes a straight line with slogg;,. Such a plot
constitutes an independent way to deternmirendd,,;,. We
find the value ofh by demanding that the graph should be
straight for largel. and determinal,;;, from its slope.

Our data for NIP[Fig. 8@a)] support nicelyh=2 and
dimin=1.133 as shown in Fig.(8).

The TIP datdFig. 8b)], however, are slightly less con-
vincing. We obtain the best straight line for=2.05, buth
has only a precision of 0.1. Likewise, the corresponding
asymptotic slope is about 1.18, smaller than the expected
value ofd,;;,=1.213, which is indicated by the straight line
added in the figure.

V. DISCUSSION AND SUMMARY

In this paper we have studied, along with the fractal di-
mensiond;, several structural exponents of NIP and TIP,
which are summarized in Table I. We find strong evidence
that NIP and TIP in 2D fall into different universality
classes: we find that; for the two models differs by more
then about 20 standard deviations. In addition, the shortest
path exponent in TIP is larger than for NIP by about 16
standard deviations, reflecting the additional constraints im-
posed on the topology by the trapped regions in the TIP
interior. Consequently, the chemical dimension of NIP is
larger than that of TIP. However, all measured structural
exponents of NIP are within the error bars equal to those of
regular percolation, thus providing convincing numerical
evidence for the conjecture that NIP and regular percolation
fall into the same universality class.

We have also studied the distributidi{!l,r) of the num-
ber of cluster sites with chemical distant@and Euclidean
distancer from the cluster center. We find a scaling form of
N(r,1)~r% 1= dminf (| /rdmin) - with the interesting property
that f(x) ~x 2 for largex, independenbf the modelNIP or

are supported by the simulation as shown in Fig. 7, where we|P). The very large exponent of«(2) gives rise to a loga-

display (19(1))¥@ as a function of cluster size foq

rithmic behavior with system size, if average values afe

=0.75,1,1.5 both for NIP and TIP. The abscissa scale igalculated as functions af, more generally allqth-order

logarithmic, so that the two central curves =1 should

moments(1%) of N(I,r) will diverge with system size foq

be linear for large.. We see clearly the convergence for the =1 and converge foq<1.

moments belowg=1 and the divergence for larger mo-
ments.

If we plot the logarithm of the diverging generalized av-
erages I1(1)%9), we expect asymptotically

g—h+1

+dmin q

Il (1)q)1’q)~lln<—
g \g—h+1

ACKNOWLEDGMENTS

We kindly acknowledge financial support by the German
Israeli FoundatiofGIF) and benefits from computational re-
sources at the Institut for Computer Applications, Univétsita
Stuttgart, Germany. S.S. is grateful to the scientific council
of NATO for financial aid (granted through the DAAD,
Bonn).



PRE 59 STRUCTURAL PROPERTIES OF INVASION ... 3269

[1] D. Wilkinson and J. F. Willemsen, J. Phys.1&, 3365(1983.

[2] C. P. Stark, Natur¢London 352, 423 (19912).

[3] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. L&%.381
(1987).

[4] R. Chandler, J. Koplik, K. Lerman, and J. Willemsen, J. Fluid
Mech. 119 249 (1982.

[5] L. Furuberg, J. Feder, A. Aharony, and 7sdang, Phys. Rev.
Lett. 61, 2117(1988.

[6] P. Meakin, Physica A73 305 (199).

[7] M. Porto, S. Havlin, S. Schwarzer, and A. Bunde, Phys. Rev
Lett. 79, 4060(1997).

[8] S. Havlin and D. Ben-Avraham, Adv. Phy36, 695 (1987).

[9] N. V. Dokholyan, Y. Lee, S. V. Buldyrev, S. Havlin, H. E.
Stanley, and P. King, J. Stat. Phy® be publishef P. King
et al, Physica A(to be publishef

[10] P. G. de Gennesscaling Concepts in Polymer Physi@Sor-
nell University Press, Ithaca, 1979

[11] M. Porto, S. Havlin, H. E. Roman, and A. Bunde, Phys. Rev. E
58, 5205(1998.

emptysites(i.e., neither cluster nor growth sijesThe walks
continue until all but one of them have again reached the site
of origin. The growth sites visited by these walks are then
eliminated from the list of active sites. This latter technique
has been suggested in RE#) and we use it here in conjunc-
tion with the tree structure to maintain our list of active sites.
Although due to the accessibility constraint the resulting algo-
rithm scales less favorably than the NIP technique, clusters
with M =500 000 need about 25Q@0 grow.

{14] A. Aharony, inDirections in Condensed Matter Physijad-
ited by G. Grinstein and G. Mazenk®Vorld Scientific, Sin-
gapore, 198K Chap. 1.

[15] D. Stauffer and A. Aharony,ntroduction to Percolation
Theory 2nd ed.(Taylor & Francis, London, 1992

[16] We have also performed a “sandbox” measurement of the
fractal dimension. To this end we grow clusters up to sban
and then counting the numbéd(r) of cluster sites within
circles of radiug. In a plot of InM(r) vs Inr for NIP and TIP,

[12] Our NIP algorithm maintains a list of th@ctive perimeter

growth sites of the cluster using a binary tree structure that
allows us to find the site with the largest random number in
O(1) time and to insert new perimeter sites@¢InN) time.
Thus, we can grow NIP clusters witB(NInN) effort, typi-
cally about 20000 sites per secodEC ALPHA 255/233
workstations.

we find a slope equalind; within the error bars. However, the
results of the sandbox method are affected by pronounced
finite-size effects, which are more difficult to control than
those in the constad ensembles.

[17] H. J. Herrmann and H. E. Stanley, J. Phys2 A 1L829(1988.
[18] T. Grossman and A. Aharony, J. Phys18, L745(1986); 20,

L1193(198%).

[13] To implement the trapping condition, we check whether the[19] S. Schwarzer, S. Havlin, and H. E. Stanley, Phys. Red9E
most recently added site has at least two next nearest neigh-

1182(1994.

bors, so that growth sites could have been trapped in the clu§20] Fractals and Disordered Systen#nd ed., edited by A. Bunde

ter interior. If so, oriented walk&t most thregare started on

and S. Havlin(Springer, New York, 1996

the just added site, pointing away from it to the neighboring[21] A. U. Neumann and S. Havlin, J. Stat. Ph$&, 203(1988.



