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Steady shear behavior of polymerically stabilized suspensions:
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Flow curve measurements are presented of a suspension of polymerically stabilized monodisperse spheres,
with a polymer layer thickness of 0.7 times the core radius. At low shear rates a drastic change in behavior
occurs at a criticaleffective volume fractioneg,,,. Below ¢, the curves show a low shear Newtonian plateau.

The concentration dependence of these plateaus togethergyith0.60 indicate that the particles can be
modeled as Brownian hard spheres. Above thisthe flow curves indicate plastic behavior, due to the direct
contact between polymer layers of different spheres. At high shear rates the onset of Newtonian plateaus is
observed with a gradual concentration dependence. The experimental high shear data are compared with model
calculations, based on the dissipation due to lubrication forces treating the polymer layer as a Brinkman
medium. The model we used was adapted to give a better description of the polymer layer. Fitting the
experiments to obtain the permeability of the polymer layer, we found a value in the range of values expected
from polymer theory. Our adapted lubrication model was also used to reanalyze experimental data for other
polymerically stabilized suspensio§1063-651X99)02703-§

PACS numbegp): 82.70.Kj, 36.20-r

[. INTRODUCTION size distribution for the silica cores can be kept narrow. The

grafting is performed in a separate procedure, which allows a

To understand the rheology of suspensions of stericallynore elaborate characterization of the particles. The polymer

stabilized spheres, it is in many cases a justified first apchains are chemically attached to the cores, which prevents
proach to describe the particles @dfective hard spheres changes in layer properties. The molecular weight of the
[1]. However, the properties of the stabilizing layer on thePolymer chains is high, which results in a thick stabilizing
surface of the particles will eventually manifest themselvedayer where the individual chains still have polymeric prop-

under the proper conditions like, e.g., particle concentratiof#'ti€s- These properties make it a well-defined system to in-
or shear rate. Due to the finite thickness of the stabilizing’€Stigate the influence of the polymer layer on the rheology
layer, deviations from hard-sphere rheology can be expectedf 1€ particles. In this paper we concentrate on the flow

since the stabilizing layer is deformable and the solvent Ca@;rsveesso(f)flg\?vlsaﬁgsrt\?m lvr:t(:]ars?aet(gat!eirg\?i:?s::so??htehEi hhmglr?(?ar
penetrate into this layer. 9 : g9

i . . : . rate regime we modified the model of Potanin and Russel
Sterically stabilized suspensions were studied experimen-

tally for these deviations by D’Haeng], Jonest al.[3] and gr,ﬁagﬂ?g?]:jeil;L;;lgru;nleg?ég?;?;gl data and those of
Neuhausler and Richtering4]. The stabilizing layers in these :

. ) ) i This paper is organized as follows: In the next section the
studies are, however, either relatively thih3] or consist of modifications of the model of Potanin and Rusggiwill be

adsorbed polymers that allow changes in the number of polygiscussed. In Sec. 11l the suspension characterization and the
mers in the layer so the layer properties can change duringetails of the rheological measurements are treated. The dis-
measuremer{t]. cussion in Sec. IV has been split up in three parts based on

On the theoretical side only recently the first attemptsthe range of shear rate. In the low shear rate part and the
were reported, which give a description for steady shear beshear thinning part our results are compared to other systems
havior that really focus on the properties of the stabilizingand to empirical relations. In the last part, results of calcula-
layer. Such models were reported by Fredrickson and Pincutons based on the model described in Sec. Il are compared
[5] and Potanin and Rusgd]. The last model describes the to the measured high shear viscosities of our systems as well
dominant hydrodynamic interaction of sterically stabilizedas other systems. In Sec. V conclusions will be drawn.
particles over a range of particle separations. It takes into
account that the solvent can penetrate into the stabilizing Il. LUBRICATION THEORY
layer but it does not describe the limiting behavior for dense
brushes in the proper way.

This paper comprises a contribution to the mentioned field Our description of lubrication forces between hairy
of interest, experimentally as well as theoretically. Wespheres is based on the work of Potanin and Rulgkl
present the results and modeling of steady shear rate viscodhereafter referred to as PRn this section the key equa-
ity measurements on suspensions consisting of silica cord®ns are repeated for the convenience of the reader. We will
coated with a brush of end-grafted p@imethylsiloxang  also discuss some modifications.

(PDMYS) chains. This particle system was made in our own In this description two particles with core radiis and
laboratory and was selected for a number of reasons. Theolymer layer thicknesk and core-core surface separattén

A. Lubrication force between two spheres
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By applying these scaling relations a more simple form

for Eq. (4) is found,
\N\Z =S o S
-- L 9 HZ
\_‘2_ v o_ g =
hl,(r)I h(r) —> H! =il 1. (7)
/7 D The boundary conditions atg =0 atz=h/2 (no slip condi-

tion at the core surfageanddv,/dz=0 atz=0 due to sym-
metry. Since the permeability? is very different in and
outside the polymer layer it is straightforward to solve Eq.
(7) separately in these regions and link the solutions together
with the extra boundary conditions that bathand dv, /dz

move to each other with a velocity=—dH/dt, see Fig. 1. are continuous at the polymer-solvent interface (
It is convenient to describe the resulting flow problem in=h,/2H). The local gap thickneds and the position of the
cylindrical coordinates with the origin in the middle of the interfaceh, /2 as a function of are given by

gap between the particles. When they are close together, the

FIG. 1. Hydrodynamically interacting particles surrounded by a
permeable layer.

hydrodynamic force on the particles is dominated by the h(r)=H+2RC—2\/R§—r2, (8a)

pressure difference in and outside the gap and can be calcu-

lated by integrating the pressure field over the symmetry r2 4

planez=0 [6]: ~H+ R—C+O(f )s (8b)
© ® élp

F=27rf r[p(r)—pm]dr=—7-rf r2—dr. (1) hL(r)=H+2RC—2\/(RC+L)2—r7,
0 o or (93
The pressure gradient is caused by the particles when r2
squeezing the solvent out of the gap. By modeling the poly- ~H-2L+ +0(r%. (9b)

mer layer as a Brinkman medium with permeabilis; the RetL

squeezing flow field can be calculated, where the magnitud
of &2 reflects properties of the polymer layer like the mono-
mer density.

The Brinkman equations can be simplified when the ga
thicknessH is much smaller thai, :

Rlere the core surface and the interface are described as two
concentric spheres with radii, respectivelRg, andR.+ L. It
differs from the description PR used, in which the core sur-
Race and the interface are defined by two spheres with same
radius but with the centers shifted over a distahcd.e.,
19 g h_=h—2L. In their description the size of the polymer layer
= —(rv,)+—v,=0, (2)  is underestimated for nonzerpwhich tends to be an under-
ror 9z estimation of the lubrication force.
The permeability in Eq(7) depends on the monomer den-
d sity, which for polymers attached to spherical surfaces, is a

aZp—O, @ function ofz andr. Following PR we assume a step profile
for the monomer density making the permeability constant
52 1 1 9 (6= 6p) in uncompressed areas and a function of the ratio
Evr— Ev;; Ep, 4 compressed and uncompressed layer thickness in com-

pressed areas,

where u is the solvent viscosityy, andv, are the velocity n

in, respectively, the radial and axial direction. To calculate 6=bo| )+ <O, (10

the hydrodynamic forcél) first gp/dr has to be calculated L

from Eq. (4). In the limit H/R.<1, the pressure is indepen- \\heren reflects the solvent qualityy=2 for good solvents

dent ofz. Therefore, the velocity, is made dimensionless 5,qn=1 for theta solvents.

by Solving Eq.(7) with Eq. (10) as a substitution fos and
Egs.(8) and(9) in the boundary conditions, the dimension-

()= vr(rz,z) (5) less velocityv,(r,z) is known. This result is used to obtain
Y _ H< gp’ an expression fofp/Jr by integrating Eq(5) overz on both
woar sides, which results in
while r andz are scaled according to J’h(f>/2v dz
B__p (11)
= =2 ®) ZENTE fﬁrw—d; 4H3 Q(n)’
VHR,' H Ur
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where conservation of magse. Eq.(2)] is used to find By using ¢ in Eg. (18) we have anticipated that at low
h(r)/2 Vv concentrations the penetration of the solvent into the poly-
r r .
f v, dz= T (12) mer layer can be ignored.

anda is defined as IIl. EXPERIMENTAL SECTION

A. Materials

Q(r)= Jh(r)/zv(r,z)dz. (13 All measurements were performed with a suspension of
0 particles that consist of a silica core coated with a layer of

end-grafted PDMS. The solvent was heptane that is a good

solvent for PDMS at the temperature where all measure-

ments were performed, 25 °C. Both synthesis and character-

ization results are elaborately reported by Nommeretead.

[8]. Here we summarize these results briefly.

h is the local gap thickness scaled by Substituting Eq.
(11) in Eq. (1) gives a representation for the hydrodynamic
force with one integration less than the one given by PR:

w 13
F= F = Re _r_dr. (14) The particles were synthesized in two steps. First, bare
6muRNV  24H Jo Q(r) silica cores were prepared according to the method dfe3to
et al. [9]. PDMS molecules withM,=8x%10* g/mol and
B. Suspension viscosity as a function of concentration M., /M,=1.4 were grafted in a separate step to the bare

particles using the method of Aur@f al.[10]. This two-step

The lubrication force can be used to obtain the high-method allows the characterization of the silica cores before
frequency viscosity. Frankel and Acrivg3] calculated the 1o PDMS is grafted to them.

contribution of lubrication to the viscosity under the assump-  The radius of the silica coresR() was obtained using
tions that the particle pair distribution function is character-pq, transmission electron microscopy and static light scat-
ized by the mean intercenter distan@®,,) between neigh- ering giving, respectively, 80 nm with a polydispersity of
boring particles and that the motion of the spheres is affinegos 504 825 nm. The hydrodynamic radius of the grafted
They derived the expression, particles(in dilute solution$ R, was determined using dy-

“ oOR. namic light scattering. Its magnitude was 149 nm indicat-
Tlub =9—CF(H ) (15 ing a polymer layer thickneds of 587 nm.
2R.+H av ; i i i :
H ¢ Hav The hydrodynamic specific volumg@n dilute solution$

with Ho=(Ry)— 2R, the mean separation between corefn Was determined via intrinsic viscosity measurements us-
av— 1 C P

surfaces. It can be related to the volume fraction of the corel'd & automated_Schot? Ul_)belo_hde capillary viscometer
: . where we set the intrinsic viscosity to that of a hard sphere.
¢ using a geometrical argument,

Comparinggy, with the specific volume of the bare particles
core| 1/3 (determined by mass-density measuremettte ratioR;, /R,
(ia:) - 1}, (16)  can be calculated. We obtained the value oft1081 in good
Peor agreement with the 170.1 found with light scattering.
core

where ¢ is the maximum volume fraction of the cores We estimated the area per PDMS molecule at the silica

corresponding to a particle configuration with=0 for all surfa}ce to be 16 nF_nby combining results for the mass-
core fraction polymer/particle, the number averaged polymer mo-

neighboring parf[icle _pa_1irs¢max can be identified Wit.h ran- Jecular weight, the specific volume of the core, and the ra-
dom close packing giving a value of 0.63. When d|scussmgjius of the core. The area per polymer molecule at the

?ur expe_nrr:en(tjal fresultsr,] we use tr:jeft_eﬁedct|veﬂ\]/olunl1e fraCic)eriphery can be obtained from this by using the ratio
f'ont¢eﬁ |r}stﬁa 0 ?CI’ wr erle(g?ﬁ Isth N med ?S edvo lfme R /R., which gives 49 nrh The lateral distanceg—7 nm
raction of the particles including the undetormed polymery, ., yeen polymer chains are much smaller than the layer

Ha=2R.

layer thickness, which indicates that the molecules are strongly
R.4L\3 stretched, and hence form a brushlike structure.
Pefi= CR— Peore- 17 All sample suspensions were made from a single stock.
C

Concentrated samples were made by centrifuging a weighed
amount of stock, pipetting off the calculated weight of hep-
tane, and subsequently vigorously shaking the suspension.
From the particle weight fractions, weight concentrations
were calculated according tocH (v, —vs) +vs/w with v,

The method for calculatingu,, has been used to model and v the gravimetrical specific volumes of, respectively
. . . , s , ,
the high shear viscosity for concentrated suspeng@hsve the particles and the solvent. The effective volume fraction is

added the solvent viscosity and single-particle contribution . . : :
t0 11,5 t0 Obtain az..(dey) description, which satisfies the calcijlated from the weight concentration using the relation
expected behavior at low and high concentrations. The exeit= AnC.

pression for the high shear viscosity .. then becomes

Note that for particle configurations witH,,<2L the poly-
mer layers are deformed; seé.; overestimates the volume
fraction for those configurations.

B. Rheological measurements

—1+34 +:“Iub (18) Flow curves were measured with a Contraves Low Shear
kit 2l 40 using a Couette geometry with inner and outer radii of,
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respectively, 5.5 and 6.0 mm. The shear ratevas varied T T A
from 2x10°* to 80 s . Prior to the measurements, the . +012¢e“.059 ]
sample was presheared at a shear rate of 80far several L SRR A 034 +060
minutes. It was checked that steady-state conditions were s AN 0 :gg‘;
reached by monitoring the viscosity at constant shear rate | [ * ’ RN V053 00074
versus time. For concentrated suspensions this could take uj e v, ~. 0053 AO079 3
to 20 minutes at low shear rates. . i LR Vo8 vosl

More flow curves together with linear viscoelastic moduli g o
were measured with a Bohlin VOR rheometer using a cone- : ——
plate geometry of diameter 60 mm and angle 1°. The
samples were presheared at 8% svith short test measure- voven SETESE
ments in between to monitor the time dependence of the e e
elastic modulusG’ at 1 Hz. Measurements were started as OE
soon as this quantity became stable. The shear rate was var 10 7= 3 o 3 4
ied from 0.01 to 6<10° s 1. Frequency sweeps were car- 10 10 . li)/ 10 10
ried out from 0.001 to 10 Hz after the critical shear ampli- TIs]

tude, marking the end of the linear regime, had been piG 2. Flow curves of the silica/PDMS system in the effective

determined at 1 Hz. volume range 0.12-0.81 measured with a Contrdeksed sym-
Both the Contraves and the Bohlin were equipped with &ols) and with a Bohlin(open symbols The lines represent the fits

homemade vapor lock to prevent a change in concentratiof Egs.(19) and (20).

during measurements. Especially concentrated suspensions

are sensitive to solvent evaporation. Using the vapor IOCI(S’lhdicating that no discontinuity in the obtainegl, can be
no change in concentration was detected even after mo

than 12 hours r(gxpected due to the chgnge over between the fit equations.
Three types of rheological behavior are typically observedThIS was ch_e cke_d by fitting flow curves that show a low
. . . . -Shear viscosity with both Eq$21) and(20) in the shear rate

in our suspensions. Dilute suspensions show a constant vis- ~~ ." ~ X )

cosity and are referred to as Newtonian liquids. At moderaté@19€y/ vei>10. The magnitude found foy.. was virtually

and high concentrations the viscosity becomes shear rate diéentical in both fits. The value obtained foy, which fitted
pendent. A constant viscosity at low shear rdie., a low these curves, deviated not significantlyithin the. error
shear plateauy), is followed by a shear thinning region and range from zero. From this we conclude that the high shear
a high shear rate plateag, . For highly concentrated sus- I|_m|t|ng behavior is equally well described by both equa-
pensions, the low shear plateau is no longer observable. THEENS: _ _

shear rate dependence of the viscosity at low shear rates can 11 accuracy of the fitted high shear plateaus depends
then be described with a power law, with a power of approxi-StrO“gly on the upper limit of the measured range in shear

mately minus 1 indicating the presence of an apparent yieI&ate- The highest accessible shear rate on the Bohlin was

[

stress. sufficient for a satisfactory accuracy but the upper limit in
Flow curves, which show a low shear rate viscosity pla-S"€ar rate range of the Contraves is too small. Hence, only
teau, were fitted with the Cross relation results of the Bohlin are considered in the discussion about
the high shear viscosity.
. Results for the zero frequency elastic moduBfsand for
N=Net—F——m (190 the high frequency elastic modulu3. were obtained by
1+(L> taking the value foiG’ at the lowest and highest measured
Verit frequency(0.001 Hz, 20 Hz This method underestimates

G., since the measured frequency sweeps showed a small
to obtain the magnitude of, and 7., . slope even at the highest concentration.
At concentrations where the apparent yield behavior was
observed at low shear rates, the flow curves were fitted with
the following empirical relation to find the magnitude f IV. RESULTS AND DISCUSSION

and the apparent yield stresg A. Flow curves

The relative steady shear viscosity is shown in Fig. 2

7=+ ﬂ + b'y—m, (20 as a function of shear rat}efor effective volume fractions in
the range of 0.12 to 0.81. A drastic change over in rheologi-
cal behavior occurs aroung.¢=0.60. Below 0.60 a low
This relation is the Herschel-Bulkley model to which a high shear viscosity plateau is observed, followed by a shear thin-

shear viscosity has been added. ning region and the onset of a high shear viscosity plateau.
For shear rates larger than.;, Eq.(19) can be simplified  1hese flow curves could be fitted well with EG.9). Above
(sincem>0) to ¢e=0.60 the flow curves indicate the presence of an appar-

ent yield stress. An onset of a high shear viscosity is also

m—m o observed. EquatiofR0) fits these flow curves with excellent
N~ 0t (70~ 72) YertY = Mtby™™ (2D accuracy.
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— 10’ TABLE I. Experimental results for the apparent yield stress and
] elastic modulus with their corresponding effective volume fraction.
i“a e 7, (P8 G. (Pa
& 142 0.61 0.20 16
I 0.63 0.47 23
. & at 16 1, 0.74 1.6 53
Al Hz quo 0.78 25 66
1 0.81 3.8 1. 10

much smaller than any of the particles used in the studies
FIG. 3. When the relative low shear viscositircles and the ~mentioned abovdésmallest ratio is 4.72]). Our result for

elastic modulus at the lowest measurable frequency’ 18z (tri- $m, however, does not fit in these observations since it is

angles are plotted versus the effective volume fraction, the transi-much smaller than the magnitude féy,, found for the sys-

tion from liquid to solidlike behavior is clearly seen. The solid line tem with ratio 4.7.

represents the fit to Eq22). At volume fractions larger thag,, our flow curves indi-

cate the existence of an apparent yield strigss, a stress

This qualitative behavior of the flow curves appears to beplateau at low shear ratesThe apparent yield stress as ob-

typical for suspensions consisting of colloidal particles thattained from fitting to Eq(20) strongly depends on the effec-

interact repulsively due to their steric stabilization layerstive volume fraction: see Table I. It could be fitted well with

[2,3,1]. The effective volume fractiopoz= ¢, where the  the power law function

transition occurs, differs from system to system. Although all

dei'S are defined in the same way, reported valuesdgr ry=b¢2}f (23
range from about 0.5 up to 0.71.
The effective volume fraction as defined in Sec. Il is with an exponentn of 10+ 1. This magnitude ofn is still

based on experiments with dilute suspensions. The use @aller then any of the exponents found by D’Haene for his
this definition at high concentrations may result in effectiverange of PMMA/PHS systemdR(/L from 4.7 to 175.
volume fractions higher than corresponding to the maximum \when 7, is plotted versuss., (Table | also contain§/,
packing for hard spheres, in the case the particles can hgatg, a linear dependence is obtained with a slope 0.041
deformed. Indeed we were able to measure samplesdith  +0.006. This linear dependence is also seen in other steri-
up to 0.81 showing the deformability or softness of the parcally stabilized suspensions. D’Haene observed a slope
ticles. 0.03+0.01 for his suspensions. This slope was estimated
theoretically by Buscal[14] to be 0.02 for suspensions of
B. Rheological behavior at low shear rates soft repulsive spheres where bathand G/, are dominated
The low shear viscosity is plotted versus the effectivePy the interparticle potential. Considering the crudity of the
volume fraction in Fig. 3 together with the elastic modulustheoretical approach and the error in extrapola@i§w) to
GJ. The low shear viscosity diverges dtq=0.60 and at infinite w, the agreement of the various results.wnhln the
that volume fraction the elastic modulus becomes nonzerg3@me order of magnitude leads to the conclusion that the
This demonstrates clearly the transition from liquid to solid-"eSults corroborate each other.
like behavior.
The low shear viscosity, observed f@r up to 0.60, can C. Shear thinning

be fitted well with Quemada’s expressipie], In suspensions Withbe larger than 0.4, shear thinning
bo) 2 has been observed. With increasing volume fractions, the

1- —eﬁ) (22)  shear thinning is more pronounced and starts at lower shear
bm rates. This last phenomenon can be monitored using the criti-
cal shear ratey;;, which is the shear rate where the viscos-
ity equals3( 7o+ 7.).

Anticipating a correlation with the long time diffusion and
r}he low shear viscosity, D’Haene scaleg;; using

=

with ¢,,=0.60+0.02. Despite the softness of our particles
this result is within the range of values obtained for hard-
sphere systems fitted with E2) [13]. In a previous study

[8], the linear viscoelastic behavior was also found to be i

agreement with that of hard spheres, upfg~ ¢, . . y (R+L)3
- 0 Yerit\ e

These findings indicate that our hairy sphere suspensions (24)
behave like a hard-sphere suspension until the average dis- ' KT
tance between the particle centers becomes close to twice the _
outer radius of the particles. Plotting y, as a function of the volume fraction, the data of

In previous studies on monodisperse soft sphere suspeseveral of their systems with differeR; collapsed to a re-
sions by D'Haend?2] and Jonet al. [3], it was found that gion between 0.1 and 1. When plotting ou,;;, obtained
¢n shifts to higher values when the ratiR,/L decreases. from the fit to Eq.(19); in this fashion the scaled data fall in
This ratio is 1.4 for our silica/PDMS particles, which is the same region.
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S ——— g 400 T T T T T T ™

SJ18 silica [15]
SJ14 silica [15]
PMMA in decaline 20°C [13]
PMMA in decaline 25°C [13]
PMMA in mixture 20°C [13]
PMMA in mixture 25°C [13]

100 F

1A [8]

S <« > » + 0O

Moo

FIG. 4. Reciprocal critical shear rate versus the relative low
shear viscosity. The solid line is a power law fit, the dotted line 4
represents the best linear fit. 0 0.10 020 0.30 0.40 0.50 0.60

¢

FIG. 5. Experimental relative high shear viscosity for hard-

Scaling with Eq.(24) indicates a linear relation between

illiécr;ittlyarr:gn7l7i(r)1.ezla:rok;u?z:rsggiloﬁr?a'?gﬁoﬂagflce:n Vt\)lg nggz?ne:hsphere suspensions compiled from literatik®,15. The lines are

. ! galculations with a gap geometry description up to quadratic term

plot Of 1/’ycrit VS 1o in F|g 4. An exce”ent f|t was Obtained (dasheqj and using higher-order tern@so“d).

with a power law function with powetr=1.23+0.04. Fit-

ting to a linear functiorfalso plotted in Fig. #results in poor  Using this, instead of Eq8b), the results of the calculations

fit. describe the hard-sphere reference data excellently if the

value for ¢Sor is set to 0.63. Obviously, using this descrip-

D. Rheological behavior at high shear rate tion is also attractive for hairy spheres. To be consistent in

In this range of shear rate we obtained experimental dat@"" approach, Eq9b) also has to be replaced,

for the viscosity, which will be compared to the model cal- 2 4
culations of Sec. II. In the first subsection we give the algo- h (r)~H-2L+ + .
rithm used in the viscosity calculations after which we test RetL  4(R.+L)

the model by comparing to results for hard-sphere suspen- ) )
sions. In the second subsection the experimental data /€ used Eqs(25) and(26) in all further calculations.

given together with the comparison to the viscosity calcula- The calculations for the hairy spheres can now be tested
tions. by comparing them to known cases. When the permeability

5° is very large, the disturbance of the solvent flow due to
1. Viscosity calculations the polymer layer can be neglected so the behavior of the

. . . .. hairy particles should approach the behavior of hard spheres
The viscosity 7..) calculations were performed by first with radiusR;. In the other limit, very smalb?, the solvent

solving @'(7) and Integrating Ec£13) analytically to obtain flow can penetrate the polymer layer only up to negligible

the flux Q as a function oh andh, . Equations(8) and(9)  gepth so the hairy spheres should show behavior like that of
were used to mak® a function ofr after which the lubri-  hard spheres with radiug,+ L. When Eqs(25) and(26) are
cation force was calculated by integrating Ef4) numeri-  used for the gap geometry, the calculations indeed show the
cally. Finally the viscosity was obtained using Eq$5—  expected behavior. This is illustrated in Fig. 6 where the
(18). lubrication forces of hairy sphere systems with very large
Our algorithm to calculate the viscosity makes it possibleand very smalls and of the appropriate hard-sphere systems
to investigate the influence of adding higher-order terms irare plotted versus the gap thickness. A hairy particle system
the description of the gap geometry in E¢g8b) and (9b).
The introduction of the next term increases the local gap
thickness for >0 causing a lowering of the pressure gradi-
ent needed for the squeezing flow. Hence, the calculated lu-
brication force decreases and, therefore, also the viscosity.
As a test case we calculated the viscosity for hard spheres
using both gap geometries and compared it to experimental
high shear data for hard-sphere particles compiled from lit-
erature[13,15. Expanding only up to the quadratic term in
Eq. (8b), the calculated viscosities are much larger than the :
reference data, especially at moderate concentrations: see ol
Fig. 5. By incorporating the next term, Eb) becomes

+0(r%. (26)

H/L
r2 r4 FIG. 6. The lubrication force vs gap thickness for our hairy
h(ry~H+ R + R+O(r6). (25 particles R./L=1.4) for severals (solid lineg together with re-
C

c sults for hard spheres with radi, andR.+L (dashed lines
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¢eff . . A ‘ ‘ q)eff

FIG. 7. Experimental relative high shear viscoditircles com- FIG. 8. Experimental data of the D’'Haene fgr, compared to
pared to calculationgdashed lingsfor §=4, 5, and 6 nimrespec-  our model calculations with./6=5.5 (dashed lines R,/L=4.7
tively, the top, middle, and bottom set of curyemd several sol- (squarel 7.2 (crossey 21 (circles, and 26(triangles. The open
vent qualities:n=13,2,1. Solid lines represent hard-sphere boundssymbols represent the original data before volume fraction rescal-
for our hairy particles. Effects of the solvent quality appear only ating. Solid lines represent the hard-sphere bounds.

very largedes -

mental data were not within our hard-sphere boufudsre-

with moderates is also plotted. For large gap thicknesses;,?ponding to particles with a fully permeable respectively to-

Fhe lubrication force of this last syste_m has a magnitude thatally impermeable polymer laygrAssuming that the errors

1! ] the Viscosty mesurements were sl and tht tne
with R, . ' rBMMA/PHS_ particles can be described as purely repulsive
The influence of the solvent quality in the cqlcu!ations?rgzzgiss:. this would suggest a rescaling of the volume
was also tested. In our model the solvent quality is only A suitable criterion for such a rescaling can be obtained

incorporated as parametarin the description of the com- : . X
pressed polymer brush. Three values of n have been given {ﬁom the fact that for low concentrations the viscosity does
: ot depend on the penetration defdls was observed in our

Fig. 7. For slightly compressed brushes, almost no influencé

is seen. Only when the brushes are strongly compressed tﬁglculatiom Therefore, we multiplied all volume fractions
' ' \glth a scale factor that causes the calculatdeb.¢) curves

solvent quality becomes an important parameter. In the rangto coincide with the experimental curve in the concentration

of experimentally accessible.s's, the brushes are only
slightly compressed so any influence of the solvent qualit;}"ﬂ’mge Where_ softness effects do not_show up ye.t. Alter sepa-
can be ignored. rately rescaling the Qata sets Bg/L—Zl and_ 26 in such a
manner, the calculations describe the experimental data well.
Phanet al. [13] also rescaled the volume fraction of ex-
perimental data of D'Haene’s hard-sphere systeiRg/I(
Many of our flow curves show the onset of a high shear=26 and 68. The criterion they used for scaling was that the
viscosity plateau. The magnitude gf. was obtained by ex- relative high shear viscosity at a volume fraction of 0.5
trapolating the flow curves using Ed49) or (20). In Fig. 7, should be equal to 11.5. After rescaling, the volume fraction
7. iS plotted versusp .. The calculations for hard-sphere dependence ofy.. is similar to data of other hard-sphere
systems with radiiR, and R;+L are also plotted in this systems. The scale factor they used is slightly smaller then
figure. At low concentrations, the silica/PDMS system be-our scale factor that can be expected since we modeled the
haves like a hard-sphere system with radids-L. In Fig. 7 PMMA/PHS particles as soft spheres instead of hard spheres.
the experimental data are also compared to calculations us- In Fig. 8 the results of the calculations are plotted together
ing Eq. (18) with R,/L=1.4 andé=4, 5, and 6 nm. The with the experimental data. The hard-sphere bounding curves
calculation with §=5 nm describes the experimental dataare also plotted. The inset shows the original data. All the
fairly well at both low and high volume fraction. calculated curves that describe the data well have a magni-
The magnitude of can be identified with the character- tude of the penetration depth in the order of 1 nm, which is
istic “mesh size” of the polymer$6] that can be related to roughly 10% of the layer thickness.
average distance between grafting sites equivalently the Calculations were also performed for the PS/PVA sys-
average area per molecyie the case that the polymers are tems of Neuhasler and Richtering withR./L of 1.52 and
stretched 16]. Based on our particle characterization, we ex-1.75. The results of these calculations give a poor descrip-
pect ad in the range from 4 to 7 nm, which agrees well with tion. They are plotted in Fig. 9 where we transformed the
the 5 nm obtained from the fit. core volume fraction to an effective volume fraction using
With the improved description for the gap geometry, it isEq. (17). In their article, Neuhasler and Richtering reported
interesting to reanalyze the high shear viscosities obtainethat there might be a concentration dependence of the layer
for other hairy sphere dispersiof,4. thickness. If we use a larger but constant ra®g/L, the
We calculated ther.. /¢ curve for various monodis- calculations describe the experimental data surprisingly well.
perse PMMA/PHS systems of D’Haene. The systems withA possible explanation is that the number of polymers per
R./L of 4.7 and 7.2 could be fitted fairly well. It turned out particle is smaller at high volume fractions than at low vol-
that for the particles with largeR. /L, 21 and 26, the experi- ume fractions, where the layer thicknesses were determined.

2. Comparison of experimental data to the viscosity calculations
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L ISP shear viscosityy, indicates that the silica/PDMS patrticles
o' :f‘/ R can be modeled as hard spheres ugtg where the magni-
4 N ] tude of , diverges.
& /,_’ D s ] The concentration dependence of the high shear viscosity
1 /' - - 7. could be described well with a hydrodynamic model con-
10 s E sisting of a summation over the solvent viscosity, the single
A . . A . ; A
‘67 a particle contribution, and the viscosity due to lubrication.
L A% 0 This last contribution is based on the lubrication model of
: Potanin and Russel to which we added some modifications.
10 First, the lubrication contribution for hard spheres was cal-
ot culated with an improved description for the gap geometry,

) resulting in a excellent description of compiled literature
FIG. 9. Experimental data of Neuksier and Richtering to- data for hard spheres. Second, the differences in curvature
gether with our calculations foRc/L 1.52 (triangles and 1.75 petween the core surface and the polymer layer were taken
(squares The solid symbols represent the data after rescalingnto account. Comparing our experimental data to the calcu-
Re/L:1.52-2.3 and 1.75-2.4. See text for details. lations, we used only one fit parameter, the penetration depth
V. CONCLUSIONS d. The best fit was found fo§=5 nm, which is in the range
of theoretical estimates faf. Using this model, experimen-
The rheological behavior of a suspension of monodispersgy| data for other hairy sphere suspensions could also be de-
spheres coated with a polymer brush was investigated eXcribed quantitatively after small adjustments in the particle
perimentally with an emphasis on the steady shear rate Visnodel parameters for some of these systems. The description

cosity measurements. Both the particle core and the polymejt some of these systems improved after small adjustments
layer could be characterized well since the polymers wergf the experimental data.

grafted to the particles after the synthesis of the cores. The
chemical bonding of the polymer molecules to the core sur-
face prevents changes in polymer layer properties in time.
These together make this suspension to a good model system
for studying the influence of the polymer brush on the rhe- This work is part of the research program of the Founda-
ology. tion for Chemical ResearchSON) with financial support

The rheological data show a liquid to solidlike transition from the Netherlands Organization for Scientific Research
at an effective volume fractiow,,=0.60. Below¢,,, low  (NWO). We thank J.S. Lopulissa for synthesizing the silica/
shear viscosity plateaus were observed. These plateaus we?®MS particles, J. Mewis, S.-E. Phan, and W. Richtering for
no longer observable abowg,,; instead, an apparent yield providing us with their data, and W.B. Russel for valuable
stress was seen. The concentration dependence of the laliscussions.
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