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Free energy landscape of a dense hard-sphere system
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The topography of the free energy landscape in phase space of a dense hard-sphere system characterized by
a discretized free energy functional of the Ramakrishnan-Yussouff form is investigated numerically using a
specially devised Monte Carlo procedure. We locate a considerable number of glassy local minima of the free
energy and analyze the distributions of the free energy at a minimum and an appropriately defined phase-space
“distance” between different minima. We find evidence for the existence of pairs of closely related glassy
minima(“two-level systems’). We also investigate the way the system makes transitions as it moves from the
basin of attraction of a minimum to that of another one after a start under nonequilibrium conditions. This
allows us to determine the effective height of free energy barriers that separate a glassy minimum from the
others. The dependence of the height of free energy barriers on the density is investigated in detail. The general
appearance of the free energy landscape resembles that of a putting green: relatively deep minima separated by
a fairly flat structure. We discuss the connection of our results with the Vogel-Fulcher law and relate our
observations to other work on the glass transit{@1063-651X99)00903-4

PACS numbe(s): 64.70.Pf, 64.60.Ak, 64.60.Cn

[. INTRODUCTION crystallization temperature. If the system gets trapped in one
of these glassy local minima as it is cooled rapidly from a
When a liquid is cooled to temperatures below the equihigh temperature, crystallization does not occur and the sub-
librium freezing temperature at a sufficiently fast rate to pre-sequent dynamics of the system is governed by thermally
vent crystallization, it enters a metastable supercooled statactivated transitions among a subset of the large number of
As the temperature is lowered further, the supercooled liquignetastable glassy minima. If the system visits a large num-
undergoes a glass transition to a state in which it behaves iper of these minima during its evolution over a relatively
most ways like a disordered solid. The dynamic behavior olong observation time, it behaves like a liquid over such time
supercooled liquids near the glass transition exhibits mangcales, in the sense that the time-averaged local density re-
peculiar feature$1—3], such as multistage, nonexponential mains uniform. However, the dynamic behavior in this re-
decay of fluctuations and a rapid growth of relaxation timesgime, being governed by thermally activated transitions over
which are not fully understood theoretically. free energy barriers of varying height, is expected to be slow
An intuitively appealing description that is often used and complex. In this picture, the glass transition occurs when
[4,5] for qualitative explanations of the observed behaviorthe time scale of transitions among the glassy minima be-
near the glass transition is based on the so-called “free ereomes so long that the system remains confined in a single
ergy landscape” paradigm. The starting point of this descrip+‘valley” of the landscape over experimentally accessible
tion is a free energy functional that expresses the free energjme scales.
of a liquid as a functional of the time-averaged local number The general features of the free energy landscape posited
density. At high temperaturdsr at low densities in systems in this picture would be quite similar to those found in ana-
such as those consisting of hard spheres, where the densityljgic studies[6—8] of certain generalized spin glass models
the control parametgrthis free energy functional is believed with infinite-range interactions, and also in recent studies
to have only one minimum that represents the uniform liquid9,10] of spin models with complicated infinite-range inter-
state. As the temperature is decreased to values near thetions, but no quenched disorder. The equilibrium and
equilibrium crystallization temperatur@r mutatis mutandi  dynamic behavior of these mean-field models exhibit a strik-
the density is increasgda new minimum representing the ing similarity with the phenomenology of the glass transi-
crystalline solid, characterized by a periodic modulation oftion. These results suggest that the free energy landscape
the local density, should also develop. In the “free energyparadigm may indeed provide a fitting framework for the
landscape” paradigm, it is assumed that a large number adevelopment of a theoretical understanding of the behavior
“glassy” local minima of the free energy, characterized by of supercooled liquids near the glass transition. The develop-
inhomogeneous but aperiodic density distributions, alsanent of such a description would obviously require detailed
come into existence at temperatures close to the equilibriurmformation about the topography of the free energy land-
scape of dense supercooled liquids. Since the analytic meth-
ods used in the aforementioned studies of mean-field models
*Also at the Condensed Matter Theory Unit, Jawaharlal Nehruwith infinite-range interactions cannot be readily generalized
Center for Advanced Scientific Research, Bangalore 560064, Indido study physical systems with short-range interactions, in-
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vestigations of the properties of the free energy landscape dfom a particular glassy minimum to any other as a function
simple glass-forming liquids require the use of appropriateof the free energy incremerithe excess free energy mea-
numerical methods. sured from that at the original minimymwe find that the
We have carried out a number of numerical studies aimedalue of the free energy at which transitions to other minima
at elucidating the relation between the dynamic behavior obegin to occur with a high probability is nearly the same for
simple model liquids and the structure of the free energydifferent glassy minima. This suggests that the free energy
surface in phase space. These studies, carried out for a derm@face in phase space has a “putting green like” topogra-
hard-sphere system, are based on a model free energy funghy in which the glassy minima are like “holes” of varying
tional proposed by Ramakrishnan and Yuss¢Rf) [11]. A depth embedded in a relatively flat background. The total
discretized version of this free energy functional was founchumber of glassy minima is a sensitive function of the dis-
[12,13 to exhibit a large number of glassy local minima at cretization scale and the sample size. For “commensurate”
densities close to or higher than the value at which equilib{as defined beloyvalues of these quantities, which allow
rium crystallization occurs[The control parameter for a the existence of a crystalline minimurtwhich, when
hard-sphere system is the dimensionless demsitg pyo°, present, is the global minimum of the free energy at high
where p is the average number density in the fluid phasedensitie$, the number of glassy minima is relatively large.
and o is the hard-sphere diameter; increasiioigcreasing  Systems with incommensurate values of the discretization
n* has the same effect as decreasimgreasing the tem-  scale and the sample size exhibit no crystalline minimum and
perature of systems for which the temperature is the relevarg substantially smaller number of glassy minima. For this
control parametef.From numerical studiefsl4—16 of a set  reason, we have carried out all our studies of the statistical
of Langevin equations appropriate for this system, we foungroperties of glassy minima for a commensurate system. We
that the nature of the dynamics changes qualitatively at &ind that the total number of glassy minima for such a system
“crossover” density neany =0.95. The dynamics of a sys- remains nearly constant as the density is varied in the range
tem initially prepared in the uniform liquid state continues t00.94<n* <1.06. The free energies of the glassy minima are
be governed by small fluctuations near the uniform liquiddistributed over a wide range between the free energy of the
minimum of the free energy as long as the density is lowewrniform liquid and that of the crystalline solid. The width of
than this crossover value. For valuesrsf higher than the this range increases as the density is increased. This obser-
crossover density, the dynamic behavior is governed by transation, together with the result that the number of minima is
sitions among the glassy minima. The time scales for suchearly independent of the density, implies that the number of
transitions were estimated from a standard Monte Carlaninima per unit interval of the free energthe “density of
(MC) method in Ref[17] and found to increase rapidly with states” of glassy minimedecreases with increasing density.
increasing density. A suitably defined “phase space distance” between two dif-
In this paper, we present the results of a numerical studferent glassy minima also shows a broad distribution. Our
in which a new approach is used for further investigations ofstudy shows the existence of pairs of glassy minima that
the properties of the free energy landscape of a dense hardiffer from each other in the rearrangement of a very small
sphere system. This study is based on the discretized fresumber of particles. The height of the free energy barrier that
energy functional11] used in our previous work. The devel- separates two minima belonging to such a pair is found to be
opment of an understanding of the dynamics of the system iquite small. Such pairs may be identified as “two-level sys-
the regime where it is governed by transitions among théems” which are believe@18] to exist in all glassy systems.
glassy minima of the free energy requires information aboufhe qualitative features of the free energy landscape found in
properties of the free energy landscape such as the number ofir study are similar to those of the generalized spin glass
glassy minima, the distribution of their free energies andmodels mentioned above. However, some of the details of
overlaps, the heights of the saddle points that connect differeur resultgsuch as the form of the distribution of the overlap
ent glassy minima, and how the system evolves from ondetween different glassy minimappear to be different from
minimum to another through these saddle points. One alsthe predictions of spin-glass-like theories.
needs to determine the dependence of these quantities on theOur study of the probability of transition from a particular
average density which, as mentioned above, is the relevagiassy minimum to the others as a function of the free energy
control parameter for the hard-sphere system. In the preseirntcrement and the MC “time’t allows us to define an ef-
study, we have developed and used a MC procedure to olfective barrier height that depends rather weaklyt.o8ome
tain quantitative information about some of these features odf our results for the dependence of this barrier height on the
the free energy landscape. As described in Sec. Il below, thidensity have been briefly reportgtd] in a recent paper. As
MC procedure enables us to study in detail the process alescribed there, we found that the growth of this effective
transition between different glassy minima of the free energyarrier height with increasing density is consistent with a
and thus provides valuable information about the topography/ogel-Fulcher form[20] appropriate for a hard-sphere sys-
of the free energy surface in phase space. We have aldem[21]. From our numerical results about how the depen-
located a large number of glassy minima of the free energglence of the effective barrier height dnchanges as the
in the course of this study. This gives us useful informationdensity is increased, we were able to conclude that the
about some of the relevant statistical properties of the collecgrowth of the barrier heightand the consequent growth of
tion of glassy minima and the dependence of these propertidhe relaxation timgis primarily due to entropic effects aris-
on the density. The main results obtained from this study aréng from an increase in the difficulty of finding low-free-
summarized below. energy pathgsaddle pointsthat connect one glassy local
By performing a study of the probability of transition minimum with the others. Some of the details not included in
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Ref. [19] are provided in the present paper. We also relate B. The Monte Carlo method

the new results described above with the conclusions reached

in Ref.[19].
'the hard-sphere system described by the discretized form of

The rest of this paper is organized as follows. In Sec. Il
we define the model system studied and describe the numett - ¢ o energy functional defined in Bd). Basically, what
ne would like to do is to start the system in a known free

cal methods used. Section Ill contains a detailed description
gnergy statge.g., a glassy local minimum of the free en-

Our main objective in this work is to find an efficient way
to investigate the topography of the free energy landscape of

of the results obtained in our study. Finally, in Sec. IV, we®
summarize the main conclusions and discuss them in th

context of other related work on the glass transition.

IIl. MODEL AND METHODS

ergy), and then investigate the topography of the free energy
surface near the starting point by allowing the system to
evolve in time and finding out which configurations it sub-

sequently visits and where it ends up. A conventional Me-

In this section we define the model free energy used irfropolis algorithm MC procedure, as performed at lower den-
our study, and define the MC method that we have developesities in our previous workl7], is not the most efficient way
as a means of studying the topography of the free energgf doing this: From a computational point of view, a certain
surface of the model in phase space. We also discuss in det@imount of computer time is spent at every step of a conven-

the initial conditions and parameters used.

A. Free energy

tional MC simulation in evaluating the exponential of the
free energy change. More important, in a conventional MC
simulation carried out at the rather high densities we will
consider here, it would take a very long time for the system

As explained in the Introduction, our system is characteryy move out of the basin of attraction of the minimum in

ized by a free energy function&l p] which is of the follow-
ing form [11]:

Flpl=Fi(po) +kgT f dr{p(r)In(p(r)/po)— p(r)}

—(1/2)Jdt‘fdI"C(|I‘—I"|)5p(I‘)5p(I") , (D

where F|(po) is the free energy of the uniform liquid at
densitypg, anddp(r)=p(r) — pg is the deviation of the den-
sity p at pointr from p,. We take our zero of the free energy
at the uniform liquid value; i.e., we s&{(pg) equal to zero.
In Eq. (1), T is the temperature and the functi@{r) the
direct pair correlation functioh22] of the uniform liquid at

densitypq, which we express in terms of the dimensionless

densityn* =pyo® by making use of the Percus-YevigR2]

approximation. This approximation is known to be quite ac-

curate if the value ofpy is not very high, and should be
adequate for all the densities{<1.06) considered in this
study. It is well known[22] that the direct pair correlation

function of simple model liquids characterized by an isotro-

pic, short-range pair potential with a strongly repulsive cor
(such as the Lennard-Jones liguid very similar to that of
the hard-sphere system at high densities. Therefore, we e

gualitatively, to other dense model liquids.

To perform the numerical calculations, we discretize ou
system by introducing a three-dimensional cubic lattice o
sizeL® and mesh constait in which a discrete set of vari-
ables,p;, i=1.L3, are defined ag;=p(r;)h, wherep(r;)
is the density at mesh point It is often convenient, in per-
forming and describing the calculations, to deal with a di-
mensionless, normalized free energy per partigle] de-
fined as

flp]=BF[p]IN, )

whereN=py(Lh)3=n*L3a3 is the total number of particles
in the simulation boxB=1/(kgT), anda is the ratioh/o-.

which it is initially placed. This makes a conventional MC
study of the process of transitions among free energy minima
prohibitively expensive in the density range we consider.

In order to overcome these difficulties of a standard MC
simulation, we have devised another MC procedure that gen-
erates a random sampling of configurations for which the
total free energyF defined in Eq.(1) is constrained to be
lower than a specified value. This procedure works as fol-
lows: we choose a trial value of what we call the free energy
increment, which we denote byF or, alternatively, byA f
if we are dealing with the dimensionless version of ER).
Then, starting with initial conditions which, as discussed be-
low, correspond to a configuration where the free energy is at
a local minimum, we sweep the lattice sitesequentially. At
each step and site, we pick another gitat random from
among the ones that lie within a distanedrom the sitei.

We then attempt to change the valuesppfand p; to p(p;
+pj) and (1-p)(pi+pj), wherep is a random number
distributed uniformly in[0,1]. The attempted change is ac-
cepted, and this is the crucial point, if and only if the free
energy after the change is less thap,,=F,+AF whereF

is the initial value, that is, the value of the free energy at the

Cminimum where we start the computation. The simulation

roceeds up to a maximum “timet;,, measured in MC steps

er site(MCS).
pect the results obtained from this study to apply, at Ieasger site( )

P

In implementing this procedure, the key point is that we
erform a sweep over a range of valuesAdf, with the
ame initial conditions. The objective here is to find the
alue of AF at which the system begins to exhibit transitions
to the basins of attraction of other local minima. To find out
which basin of attraction the system is in at a certain time
we save the configuratior(se., the values of the variables
pi) at suitable, relatively frequent, time intervals. These
configurations are then used as the inputs in a minimization
procedurg 12] that determines which basin of attraction the
system is in. The entire procedure, that is, running the simu-
lation up to a certain time, for a set of values ofAF,
saving the configurations at intervalst, and analyzing
them, is repeated a certain number of tinttgpically 10—15
and averaged over. This yields values of the probability



3126 CHANDAN DASGUPTA AND ORIOL T. VALLS PRE 59

L=15.n" =0.99 kinds of initial conditions were used for such systems. The

0.8 S 5000 first kind is the same as that used in Rgf7]. These are
A s 10000 configurations obtained by first allowing the system to
15000 evolve from a uniform initial state under Langevin dynamics

0.6 [14,19 until its free energy(which, we recall, includes a

current-dependent term in the Langevin mgaebches zero
(indicating the departure of the system from the basin of
attraction of the uniform liquid minimum of the free eneygy
and then using the minimization procedure to reach the mini-
mum whose basin of attraction the system is in at that point.
That minimum configuration is then the starting point of the
present work. All the minima found this way exhibit glassy
ol Lo Lo b Lo structure, as determined by the form of the two-point corre-
12 18 4 15 e 17 18 lation function(see below of the local density variables; .

Af At higher densities, where the Langevin computation is in-
appropriate, the minima found at lower densities were scaled

Af., defined as the value of the free energy incremehat which up by .runn;]nglthe mlnlmllza'uon fPrOQ“"_‘m ﬁt ;he Plgher den-
the transition probability® is 1/2. The solid circles mark the inter- SItY USing the lower-density configuratiéwhich, of course,
sections of the plots with the linB=0.5 (see text for a complete 1S NOt & minimum at the higher densitgs the starting point.

discussioh The data shown are for a sample of size 15. The other portion of the computations was performed for
systems withL=12 andh=0.25r. These values are com-

) , mensurate with a close-packédc) structure, so that a crys-
P(Af,t) that at timet the system has moved to the basin c_)ftalline minimum is found at sufficiently high densities. Start-

attraction of a free energy minimum distinct from the one inj, o oo nfigurations used for simulations carried out for such

which it was started. We defirfa9] a “critical” value Af. o0 5165 were obtained by using the minimization procedure
of the free energy increment as the value\dffor which the i< 1ssed above on randomly inhomogeneous initial con-

transition probability reaches the value 0.5. As an iIIUStrationfigurations. Out of several glassy minima found this way, we
of our numerical procedure, we show in Fig. 1 the results for, ’

" e . selected a few with structures similar to that of the minima
the transition probabilityP(Af,t) as a function of the free

. o _ used in simulations of thé =15 sample. Because of the
energy incremend\ f for a minimum obtained for a sample gjier size of these samples, we were able to explore more

with L=15 atn*=0.99. The data for three different values gytensively several aspects of the problem under consider-
of t are shown, and the corresponding estimated values Qfjjon.
Af, are indicated in the figure. Our computations for the =15 sample were carried out

We have carried out the numerical procedure outlinedty, 5 time range;,,= 15000 MCS. Computations for the sys-
above at a number of densities in the range €8% . with L=12 were usually carried out tot
m

<1.06. We did not consider densities lower than 0.94 be— gyooMCS. In both cases the density range &84
cause our earlier workl5,16 has shown that the dynamics <1 gg was covered. For the larger size and longer maximum
of the system is governed by transitions among glassy 10Cq| e - an intervalAt=5000 MCS was used, while a closer
minima only at higher densities. Since, as mentioned abov pac'ing At=2000MCS. was chosen fdr= 1’2.

the Percus-Yevick approximation used for the direct correla- The s,tructure of a Io’cal minimum of the free energy may
tion function C(r) appearing in Eq(1) becomes less accu- o characterized by the two-point correlation functig(m)

rate at relatively high densiti¢22], values ofn*>1.06 were of the frozen local density variablgs at the minimum. This

not considered. function is defined as

C. Initial states and system parameters 2
. . g(r)=2 pipjfij(r) Pavz fi;(r) |, 3
Our computations were performed for two different sets i>] i>]

of the two computational system parameters—the sample

sizeL and the mesh sizb. In one case we took these two

parameters to be commensurate with a close-packed lattiosghere p,,==;p;/L* is the average value of thg, at the
and in the other incommensurate. This was done chiefly iminimum (values ofp,, vary from one glassy minimum to
order to study the dependence of the structure of the freanother, but are always slightly higher thagh®, the value
energy landscape on the commensurability properties of thef p; at the uniform liquid minimum andf;;(r)=1 if the
computational system parameters, as well as on their valueseparation between mesh pointand | lies betweerr and
We also considered two different kinds of initial conditions, r + Ar (Ar is a suitably chosen bin sizeandf;;(r)=0 oth-

so that we could investigate the topography of the free enerwise. In Fig. 2, we have shown the pair correlation func-
ergy surface in different regions of phase space. The compuions for two typical minima used as initial states in our
tationally more intensive part of our simulations was carriedsimulations. From the structure g{r) shown in this figure,
out for systems of size =15 with periodic boundary condi- it is clear that both these minima are glassy. It is also appar-
tions and mesh sizb=¢/4.6. These values df ando are  ent that the structure of the=12 minimum is quite similar
incommensurate with a close-packed lattice, and as a resu that of theL =15 one. Other minima used in our simula-
no crystalline minimum was found for these samples. Twations have a similar structure.

0.4

0.2

4

FIG. 1. Example of the determination of the “critical” value
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FIG. 2. The density correlation functiag(r), as defined in Eq. FIG. 3. The quantityd®(t), which characterizes the “phase-

(3), plotted as a function of distan¢@ hard-sphere unijfor two  space distance” between two poifigee Eq(4)], plotted as a func-
typical initial configurations. Note the glassy character of the cor-tion of Monte Carlo time for three values of the free energy incre-
relations for both lattice sizes. ment. The regions of sharp changes in the curves are discussed in
the text.
lll. RESULTS . . L
which d(t) levels off increases aAF is increased. For val-

In this section, we describe in detail the numerical resultsies of AF that are sufficiently large for the system to be able
obtained from our study, and present our analysis of the nuto move to the basins of attraction of other minima, the tran-
merical data. sitions to other basins of attraction are usudtyt not al-

ways indicated by sudden increases in the valued(f).
A. Monte Carlo dynamics Typical results for the time dependence af(t) for three
i _ L ) different values ofAF are shown in Fig. 3. The data shown

First, we discuss the qualitative behavior of the system a§,ere obtained for a =12 system am*=1.02. ForAf
it evolves in “time” under our MC “dynamics” from the  _1 g andAf=1.4, the system was found to remain in the
initial state at=0 tot=t, as described in Sec. I|B. During p4gjn of attraction of the initial minimum during the time
the evolution of the system, we monitor the dlmen5|onles§0a|e (8000 MCS of the simulation. In the run with f
free energysF and the maximum and minimum values of _1 g the system was found to have moved to the basin of
the discretized density variablgs, i=1L" The maximum  auaction of a different minimum at= 2000 MCS. It moved
value is useful for detecting possible transitions to the neight, the hasin of attraction of the crystalline minimum between
borhood of the uniform liquid minimum. If the system fluc- tiest=2000 MCS and =4000 MCS. and stayed there for
tuates near one of the inhomogeneous minima of the frégq remaining part of the run. While any signature of the first
energy, then the maxmumgva]uequwould be much higher  yansition from the initial minimum to the intermediate one is
than the valugclose topgh”) it would have if the system o clearly visible in the time dependencedit) [possibly
were in the vicinity of the uniform liquid minimum. We find ;e to the overlap of any such signature with the initial rapid

that the system does not move to the neighborhood of thirease ofi(t)], the subsequent transition to the crystalline
liquid minimum for the values oAF considered here. The L inimum is clearly indicated by a rapid rigend eventual

total free energy is found to remain nearly constant at a Valugaturatiom of d(t).

slightly lower than the maximum allowed valuBma=Fo As mentioned in Sec. I B, the determination of the prob-
+AF. ) ability of transition as a function oAf requires repeating
~ In some of the runs, we have also monitored at frequengr nymerical procedure a number of times for a fixed set of
time intervals a quantityd(t) that measures the “phase- \51yes ofAf. We find that the minima to which the system
space distance” of the system point at titnom the start-  5yes for values oA f close to or higher tha f, are, in
ing point att=0. This quantity is defined as general, different for different runs. This is more obvious for
L=12 samples which, as discussed below, exhibit a larger
d2(t)=> [pi(t)—pi(0)]?, (4)  number of distinct glassy minima. This observation suggests
‘ that Af. represents a measure of the free energy increment
for which a relatively large region of phase space becomes
where p;(0) are the values of the density variables at theaccessible to the system. Another observation that supports
minimum from where the simulation is started. By monitor- this interpretation is that the system almost never returns to
ing the time dependence of this quantity, we obtain usefuthe basin of attraction of the initial minimum after making a
information about how the system explores the free energyransition to the basin of attraction of a different one: after
landscape as it evolves in time. We find that if the value othaving left the initial minimum, the system cannot find its
the free energy incrememtF is small enough so that the way back. In a few runs, we found transitions at relatively
system remains confined in the basin of attraction of thesmall values ofAf which arealwaysto the basin of attrac-
original minimum over the duration of the simulation, then tion of the same minimum. In most of these cases, the new
the phase space distandét) saturategor continues to in- minimum was found to be very ‘“close” in phase space
crease very slowlyafter a rapid initial increase. The value at [as measured by the quantity defined in ] to the initial



3128 CHANDAN DASGUPTA AND ORIOL T. VALLS PRE 59

one. These are examples of so-called “two-level systems” 0.15
discussed in more detail in the next subsection. In a few L=12
cases, we found that the new minimum to which all the tran- =
sitions occur at low values akf is not close to the initial I n"-0.96
one. These are examples of “special” paths with low barrier

heights which connect the initial minimum with another spe- a
cific minimum. Since such transitions and the ones between

minima which are very close to each other do not correspond 0.05 -
to the opening up of large regions of phase space, we did not H

0.1 -

include such transitions in the calculation of the transition
probability.

Finally, we note that although our model and numerical -100 -80 -60 -40
procedure are different from those used in most existing nu- BF
merical studies of dense liquidsuch studies use conven-
tional MC or molecular dynamics to simulate the behavior of ~FIG. 4. The “density of states” for glassy free energy minima,
models defined by a microscopic Hamiltoniasome of the defined_as the probability of finding a glassy minimum with free
general features found in existing simulatiof@d also in  €Nergy in a given rangesee text Results forl. = 12 samples at two
experimentsare reproduced in our work. We find that if the densities are shown.

value of AF is such thaBF ., exceeds an upper threshold, of n* ensures that, fok =12 at least, we did locate a large
then the system moves within a few hundred MC steps to thgction of the local free energy minima of the system. So the
vicinity of the uniform liquid minimum. The value of this gtatistical information obtained from our study can be ex-

upper threshold is found to be close#& =5.0. This isthe pected to be representative of the full collection of local
“microcanonical” analog of the melting transition. As men- minima.

tioned above, this threshold value is not crossed in the simu- The total number of local minima of the=12 system

lations from which the results described here were obtainedemains nearly constant as the density is varied in the range
We also find that in runs witl8F ., close to, but lower than, g gs<n*<1.06. This number is close to 25. The numbers
the upper threshold, the system moves to the basin of attragy gifferent values oh* show small variations, but there is
tion of the crystalline minimum(for L=12) with a high g clear systematic trend in the dependence of this number
probability. This is nothing but the process of annealing: it isgp, the density. In most cases, a minimum found at a particu-
we[l known from experiments a_nd simulations that crystalli- |5, density may be “followed” to higher or lower densities
zation may be induced by heating a glassy system to a tenky ysing the values gf; at the minimum at the first density
perature close ttbut lower thanits melting temperature and 55 inputs to the minimization program at the new density. In
then cooling it down. a few cases, we find that a minimum disappears as the den-
sity is increased or lowered, but such occurrences are rare.
From these observations, we conclude that the total number
of glassy minima does not exhibit any strong dependence on
In the course of our computations, we have located manyhe density. Our limited investigation of the variation of the
of the glassy minima of the free energy. As mentionedfree energies of the glassy minima with density suggests that
above, for the “incommensuratel’ =15 sample used in our the ordering of the free energies remains the séreg free
work, the number of minima we have located at each densitgnergies of different minima do not crosss the density is
is not large. The total number of minima found for this changed.
sample varies in the range of 4—6, with some tendency to The free energies of these minima are distributed in a
higher values in the lower part of th& range considered band that lies between the free energy of the uniform liquid
here. The “commensuratel. =12 sample exhibits, as we (which, we recall, is taken to be the zero of the free energy
shall see below, a substantially larger number of minima, onscalg and that of the crystalline solid. The width of this band
of which is crystalline(fcc). For this reason, we consider increases with increasing*. Since the number of minima is
chiefly the results obtained fdr=12, for which we can approximately independent of the density, this implies that
produce significant statistics, in this subsection. A similarthe “density of states” of the glassy minima decreases’as
sensitivity of the number of local minima to the sample sizeis increased. Specifically, lgi(B8F)é be the probability of
and boundary conditions has been found in numerical studiefinding a glassy minimum with dimensionless free energy
[23,24 of the potential energy landscape of model liquidsbetweeng8F — 6/2 and BF + 6/2. We have calculated this
described by simple Hamiltonians. The reason for the relaguantity from our data at different values of . Represen-
tively strong dependence of the number of minima on theative results at two densities* =0.96 andn*=1.02, are
computational system parameters is not clear at present. shown in Fig. 4. The values of used are 4.0 and 8.0 for
While studying the process of transitions among then* =0.96 andn* =1.02, respectively. While the distribu-
minima, we carried out a large number of minimization runstions for the two densities are qualitatively similar, the range
with many different initial states. The total number of suchof BF over whichp(BF) is nonzero is clearly wider at the
runs is of the order of f0for each of the values oh* higher density. The consequent decrease in the values of
studied. While our procedure does not correspond to an exs(8F) with increasing density is also clearly seen. Both dis-
haustive search for all the local minima of the system, theributions show peaks near the upper end and tails extending
fairly large number of initial states considered for each valueto substantially lower values. However, the lowest free en-

B. Properties of glassy minima
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ergy of the glassy minima is substantially higher than the 0.15
free energy of the crystalline minimuitfor the crystalline
minimum, 8F = —102.4 forn* =0.96 andBF = —167.4 for
n* =1.02. If the probability of finding the system in a glassy
minimum is assumed to be proportional to the Boltzmann
factore™ #F, then only those minima with free energies lying
near the lower end of the band would be relevant in deter-
mining the equilibrium and dynamic properties of the sys- 0.05
tem. Our results indicate that the number of such “relevant”
minima decreases with increasing.

In the present study, we find certain correlations between

0.1 -

Probability

il IR RTIN BT I
the free energy of a glassy minimum and its structure. Simi- 0 5 10 15 20
lar correlations were also found and described in some detalil dm
in Ref. [15]. Specifically, we find that minima with lower
free energies have more “structurds indicated by, e.g., FIG. 5. Histogram representing the fraction of pairs of free en-

the heights of the first and second peaks of the correlatioff9y minima found to differ in their real-space density configura-
function g(r) defined in Eq.(3)] and higher density than tions by an amound, as defined in Eq(S). Results forL. =12
those with lower free energies. samples are shown at two different densities.
We have also studied how the distributions of the local
density variables in two distinct glassy minima differ from €ach value ofn*, we find a small numbe(3-9 of such
one another. To do this, we need a measure of the differend@irs of minima. To take an example, fiof =0.96, we have
between the distributions gf; in two glassy minima. This found two minima, with free energiegF=—47.7 and
measure should satisfy the requirement that it yield a zero-47.0, for which the value ofi,, is 2.4. A detailed exami-
value for the difference between two configurations if one ofnation of the density distributions at these two minima re-
them can be mapped to the other by a symmetry operation ofeals that the main difference between their structures comes
the computational mesh. The symmetries of the cubic mesffom small displacements of just two particles. Of course,
used in our computation include the 48 symmetry operationghese displacements also produce small changes in the values
of a simple cubic lattice and all translations, taking into ac-Of p; at neighboring mesh points. We believe that these pairs
count the periodic boundary conditions. The quantityof minima are examples of “two-level systems” whose ex-
dm(1,2) that we have used to measure the difference in thistence in glassy materials was postulaféfl] many years
density distributions at two minima labeled “1” and “2” is ago in order to account for some of the experimentally ob-
defined as follows: served low-temperature properties. The height of the free
energy barrier that separates two members of a two-level
1 system is expected to be low. Our observations are consistent
dm(1,2)=§m|n{R}2i Lot =Py 2, 5 w)i/th this exgectation. For the pair of minima mentioned
above, we find that if we start the system from the minimum
where p» and p® are the discretized densities at two With BFo=—47.7 and carry out our numerical procedure for
minima, R represents one of the symmetry operations menfinding transitions to other minima, the system begins to
tioned aboveR(i) is the mesh point to which mesh poins ~ SNOW transitions to the minimum witBF,=—47.0 as the
transformed undeR, and mifR} means that theR that valug (_)fAf is increased above 0.7. For &Af<1.4,all the
minimizes the quantity on the right is to be taken. Since thdransitions are to the other member of the two-level system.
variablesp; in an inhomogeneous minimum are close to one!ransitions to other minima begin to appear only for higher

at the mesh points corresponding to the locations of th&alues ofAf. (As noted above, we did notinclude transitions
“particles” and close to zero at the other mesh points, the?&tween the members of a two-level system in our calcula-

quantity d,, basically measures the number of particlestion of Afc.) o _ .

whose positions are different in the two minima being com- 1he degree of similarity between two different minima

pared. In Fig. 5, we display in histogram form the results forMy @lso be quantified in terms of their overlaj8]. For

the distribution ofd,, at two values of the density. The two the discretized system conS|d_e_red here, the dimensionless

distributions are qualitatively similar. Both are small at small®verapa(1,2) between two minima labeled “1” and “2”

values ofd,, and exhibit peaks neat, =15, which corre- May be defined in the following way:

sponds to about half of the total number of particles having

different locations in the two minima. From these results, we 1

conclude that most of the glassy minima are rather different  q(1,2= 3max{R}2 (oY = pall Py~ Pavl, (6)

from one another. The arrangement of the particles in the Pat !

glassy minima is also very different from that in a crystalline

minimum, as indicated by the observation that the value ofvherep,, is the average value of thg, which is assumed to

d,, almost always lies above 15 if one of the two minimabe the same in the two minima, and i@k means that the

being compared is glassy and the other one is crystalline. R that maximizes the quantity on the right is to be taken.
The distributions shown in Fig. 5 extend down to valuesUsing the aforementioned fact that at the glassy minima

of d,, as small as 2 or 3, indicating that there are a few pair§ound in the density range considered here the valugs of

of glassy minima which are very similar to each other. Forare close to one at a small number of mesh points and close
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FIG. 6. The valug=. of the free energy at which transitions to n
other minima begin to occur with a high probability, plotted as a . )
function of F, the free energy at the starting minimum. Results are /G- 7. Vogel-Fulcher fits of the data farf. obtained for a
shown forL =12 at two densities. One can see that, at a given ~ — 1> Minimum at three different valu&S000, 10 000, and 15000
the dependence &, on the starting value is quite weak. MCS) of t. The solid lines are the best fits of the data to the form of
Eq. (8) with b=0. The parameter values for the best fits are given in
ﬁhe text.
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to zero at others, the following approximate relation betwee

g andd,, may be derived easily:
the accuracy of our results. In Fig. 7, we show the data for

q(1,2=1-d(1,2/N—pgay. (7)  Af,foraL=15 minimum at times 5000, 10 000, and 15000
MCS, and also the best fits of the data to the form of [By.
whereN=p, L ? is the total number of particles in the simu- with b=0. The parameter values for the best fits are
lation box. The observation that the distributiondyf has a  =0.31, n§ =1.19 for t=5000; a=0.30, n} =1.22 for t
peak neard,,=N/2 then implies that the distribution af =10000;a=0.27,n% =1.23 fort=15000. The form of Eq.
peaks near the value 0.5. (8) leads at once to the Vogel-Fulcher law appropriate for a
We have also looked at how the quantify,.=F,  hard-sphere systef21] since the characteristic time should

+AF, which measures the value of the total free energy abe proportional to the exponential gfAF.. The values of
which transitions to other minima begin to occur with a highn* obtained from the fits, particularly at later times, are very
probability, varies from one minimum to another. As exem-jose to the random close packing densitf,~1.23. This
plified by Fig. 6, where we present the results B¢ for s in agreement with the results of molecular dynamics simu-
four minima atn*=0.96 and for three minima ah®  |ations[21]. TheL =12 data yield similar values af* , but
=1.02, the value of this quantity is nearly constant for each;ih p~1.0.
value ofn*. While the values of8F vary over a range of The weak dependence dff, ont was also analyzed in

about 15 an*=0.96, and over a range of about 40r8t  etail in Ref.[19] where it was found that this dependence
=1.02, the calculated values ¢F. are nearly the same o 5| yalues ofn* and all the minima studied is well de-
(within the error barsfor the different minima at both den- scribed by the form

sities. This observation suggests a “putting-green-like” free

energy landscape in which the local minima are like “holes”

of varying depth in a nearly flat background. This structure Afe(n*,t)=c(n*)t™*+Af,, 9
also implies that there is a strong correlation between the

depth of a minimum and the height of the barriers that sepa- . _ .
rate it from the other minima: the barriers are higher forW'th*a in the range 0'24_9'40’ ankify nearly independent
deeper minima. of n*. The coefficientc(n*) was found to increase with

increasingn*. Fits of the data to the form of Eq9) are
shown in Fig. 2 of Ref[19]. [This form agrees with E(8)
if a(t)ect™* andc(n*)ec1/(ng —n*); our data are consistent
The dependence ohf. on n* andt was analyzed in with these condition$.This result suggests a physical inter-
detail in Ref.[19], where it was first pointed out that there is pretation of the observed Vogel-Fulcher behavior. The quan-
a direct connection between our results and the Vogeliity Af, (the value ofAf. in the t—co limit) provides a
Fulcher law[20]. We summarize this connection here. The measure of /N times the height of the lowest-free-energy
basic point is that the results fa&rf, are consistent with the barriers that must be crossed in order to reach some of the

C. Vogel-Fulcher law and entropic effects

form other local minima of the free energy from the one under
consideration. As discussed in detail in Ref9], the coeffi-
* 1) a(t) cientc(n*) may be interpreted as a measure of the difficulty
AfC(n 1t) * * +b1 (8) . - P
ng —n of finding low-free-energy paths to other minima. The obser-

vation thatc(n*) increases withn* while Af, is nearly
wherea(t) is a weak function of, b is a constant, and the independent oh* then implies that the increase of the ef-
“critical” density ng is found to be independent bfwithin  fective barrier height with increasing® is primarily due to
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“entropic” effects associated with the difficulty of finding minimum—the “paramagnetic” one at which all the site
low-lying saddle points that connect a minimum with the magnetizations are zero. As the temperature is lowered, an
others. exponentially large number of nontrivial local minima come

Therefore, a picture emerges from our work as to thento existence, and a “dynamic transition” characterized by
origin of the Vogel-Fulcher divergence. As the systema preaking of ergodicity occurs at a temperatlige At this
evolves over longer and longer times, the probability that it«transition,” the system gets trapped in the basin of attrac-
will find paths to other minima involving jumps over lower- tion of one of the newly developed local minima and remains
and lower-free-energy barriers increases. At early times, thggnfined in this basin for all subsequent times because the
system can only explore nearby paths and must then jUMBee energy barriers between different local minima diverge
over whatever barrier is available in that region. At longerin the thermodynamic limit in these models. This “dynamic
times, a wider region is explored and the chances of findingransition” does not have any signature in the equilibrium
a path with a lower barrier increase. What our argumenpehayior of the system. A thermodynamic phase transition
shows is that the Vogel-Fulcher law follows from the fact occyrs at a lower temperatufe at which the configurational
that the_ d_|ff|Cl_JIty of fmdm_g s_uch Iow—free—energy paths to entropy associated with the exponentially large number of
other minima increases with increasing. free energy minima becomes nonextensive.

In the suggested analogy between these models and the
structural glass transition, the paramagnetic minimum of the
free energy is identified with the one that represents the uni-

We have developed and used in this work a numericaform liquid, and the role of the nontrivial local minima of the
method to study the topography of the free energy surface dfee energy is played by the glassy local minima of the liquid
a dense hard-sphere system characterized by a model fré€e energy. The “dynamic transition” found &ty in the
energy functional. At the relatively high densities considerednean-field spin models is thought to be smeared out in lig-
in this study, this system exhibits a complex free energyids. This is because the free energy barriers between differ-
landscape characterized by the presence of many glassy logiit minima are expected to remain finite in physical systems
minima. The number of accessed glassy local minima igvith finite-range interactions. It has been sugge$#8,29
found to depend strongly on the commensurability propertieghat the temperaturgy should be identified with the “ideal
of the discretization scale and the sample size used. For  glass transition” temperature of mode-coupling theofzg
fixed values of these parameters, the number of minima i§f the dynamics of dense liquids. This temperature is sup-
nearly independent of the density in the range studied. In theosed to signal the onset of activated processes in the dy-
case wherd. andh are commensurate, a crystalline mini- namics. The temperatuf is interpreted as the “Kauzmann
mum is found and the number of glassy minima accessed &mperature”[28] at which the difference in entropy be-
large enough to allow for statistical study. The free energytween the supercooled liquid and the crystalline solid ex-
values at its minima are distributed over a broadband whos#apolates to zero. The relaxation time of the supercooled
width increases with increasing density. The phase-space difiquid is supposed to diverge at the same temperature. Heu-
tance between different minima shows a broad distributiorfistic arguments that suggest that this divergence is of the
with a peak near the high end. However, there are a few pairgogel-Fulcher form have been propodéi25|. These argu-
of minima which are very close to each other in phase spaceents are based on an entropic mechanism associated with
and are separated by low-free-energy barriers. These, we bihe vanishing of the configurational entropyTat.
lieve, are examples of “two-level systems” which are ex- The behavior found in our numerical study is in qualita-
pected to be present in all glassy materials. We have found itive agreement with this scenario. We find a characteristic
all cases a strong correlation between the depth of a minidensity(we recall once more that the density plays the role
mum and the effective height of free energy barriers thapf the temperature in the hard-sphere system we consatler
separate it from the other minima: deeper minima havevhich a large number of glassy minima of the free energy
higher barriers. The observed density dependence of the efome into existence. We do not yet know whether the num-
fective barrier height is consistent with the Vogel-Fulcherber of glassy minima depends exponentially on the sample
law. Our results indicate that this Vogel-Fulcher growth isvolume—a study of this question is difficult due to the de-
primarily due to an increase in the difficulty of finding low- pendence of the number of minima on the commensurability
free-energy paths to other minima as the density is increasedf h andL. While the number of glassy minima for fixéd

Our results have close connections with those of a numbeandL remains nearly constant as the density is increased, the
of recent studies of the equilibrium and dynamic propertiesonfigurational entropy associated with these minima de-
of dense supercooled liquids. We first discuss the relation ofreases with increasing density because the width of the band
our observations with spin-glass-like theori@s8,29 of the  over which the free energy of these minima is distributed
structural glass transition. These theories are based on tliecreases with density. As discussed above, we have also
similarity between the phenomenology of the structural glasgound evidence for a Vogel-Fulcher-type growth of relax-
transition in so-called “fragile”[3] liquids and the behavior ation times driven by an entropic mechanism.
found in a class of generalized mean-field spin glass models There are, however, a number of differences between the
[6,26] with infinite-range interactions, and also in certain details of our findings and the predictions of spin-glass-like
mean-field spin models with complicated multispin interac-theories. In our earlier workl5,16 on the Langevin dynam-
tions but no quenched disorde,10]. At high temperatures, ics of the model system considered here, we found that the
the free energy of these mean-field models, expressed asdgnamic behavior is governed by activated processes if the
function of the single-site magnetizations, exhibits only onedimensionless density* exceeds a crossover valug; , of

IV. SUMMARY AND DISCUSSION
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about 0.95. This value is substantially higher than the valueninima. These local minima and the potential energy barri-
of n* (=~0.8) at which the glassy minima make their first ers that separate them define a complex “potential energy
appearance. These two densities are expected to be closelamdscape.” Recently, there have been several attef8gts
each other in spin-glass-like theories. Another difference lieS6] to relate the properties of this landscape to the dynamic
in the values of the free energy of the glassy minima relativédbehavior of the liquid. While the similarities between these
to that of the uniform liquid. We find that the free energy of investigations and our work are obvious, there are several
a glassy minimum becomes lower than that of the uniformimportant differences between these two approaches, some
liguid minimum as the density is increased above a valu®f which we now discuss. A study of the potential energy
that is only slightly higher than the density at which the Jandscape is based on a microscopic Hamiltonian defined in
glassy minimum comes into existence. In particular, the fregerms of the coordinates of the particles, whereas our work
energies of the glassy minima are substantially lower thamvolves a model free energy which is a functional of a
that of the uniform liquid one for values of nearn; . This  coarse grainedboth in space and timelensity field. Infor-
is different from the behavior found in the spin glass modelsmation about the microscopic interactions is incorporated in
In these systems, the free energies of the nontrivial locabur description through the direct pair correlation function
minima remain higher than that of the paramagnetic one oveC(r) appearing in Eq(1). The free energy of a thermal
the entire temperature rande<T<Ty4. Our results for the system is, of course, equal to the potential energy at zero
distribution of the overlap between different minima are alsotemperature. Therefore, the potential energy landscape of
somewhat different from those for the spin glass models. Weguch systems becomes identical to the free energy landscape
cannot rule out that some of these differences arise fromat T=0. There are some mean-field spin glass mo¢els.,
finite-size effects which may be significant for the ratherthe p-spin spherical spin glag87]) in which the correspon-
small samples considered in our study. Another possibility islence between the local minima of the energy and the free
that these differences arise in our system from the effects adnergy extends also to nonzero temperatures. Such a corre-
small fluctuations about a local minimum, which are unim-spondence is not likely to be generic, however. A description
portant in models with infinite-range interactions. A carefulbased on the potential energy landscape is certainly appro-
investigation of these issues would be very interesting. priate at low temperatures where entropic effects are rela-
A number of numerical studies of “aging” phenomena in tively unimportant. But it would, in general, be difficult to
the nonequilibrium dynamics of simple model liquids haveextend such a description to higher temperatures where en-
been reported recent[29-31. In these studies, the system tropic effects play a crucial role. In particular, information
is quenched from a relatively high temperature to a temperaabout the energy landscape alone would not be sufficient to
ture lower than the numerically determined glass transitiordescribe the behavior near a phase transifeuch as the
temperature, and is then allowed to evolve at this low temmelting transition of a solid and the order-disorder transition
perature for a certain “waiting timet,,. Then, the two-time  in magnetic systemsiriven by a competition between ener-
correlation functionC(t,,,t,,+t) of an appropriate fluctuat- getic and entropic effects. In contrast, a description based on
ing quantity is measured and the dependence of this correla model free energy that includes entropic contributions pro-
tion function ont andt,, is analyzed. The simulations show vides a convenient and intuitively appealing starting point
that the decay ofC(t,,,t,+1t) as a function oft becomes for studying the behavior near such phase transitions. For
slower ag,, is increased. Our results about the topography okexample, the free energy functional used in our work is
the free energy landscape provide a qualitative explanatioknown[11] to provide a correct description of the crystalli-
of this observation. When the system is rapidly quenched taation transition of simple liquids. Another well-known ex-
a low temperaturdéor compressed to a high density in our ample is the Curie-Weiss theory of magneti&mur approach
hard-sphere systemit is likely to get trapped in the basin of is analogous to an inhomogeneous version of the Curie-
attraction of one of the glassy local minima that are close inWeiss theory. For these reasons, we believe that our free-
phase space to the initial configuration. Such minima woulcenergy-based approach is more suitable for a description of
not, in general, have the lowest free energies. As the systethe behavior of liquids near the glass transition than ap-
evolves during the waiting time,,, it can be expected to proaches based on the potential energy landscape.
move progressively to the basins of attraction of minima Another important difference between free energy and po-
with lower free energies because such minima would have gential energy landscapes is that the former changes as the
higher Boltzmann weight. Since the effective barrier heightappropriate control parametddensity or temperatuyeis
is higher for deeper miniméhis follows from the “putting-  changed, whereas the latter, being determined completely by
green-like” structure of the free energy landschapbke time  the Hamiltonian of the system, remains unchanged. Specifi-
scale for subsequent relaxation is expected to increase wittally, some of the local minima of the free energy may ap-
increasingt,,. This is precisely the behavior found in the pear or disappear as the control parameter is vafmdex-
aging simulations mentioned above. ample, the inhomogeneous minima of the free energy used in
Our study is rather similar in spirit to numerical investi- our study disappear at sufficiently high densitieslso, the
gations of the “potential energy landscap§23,24,32—-3% heights of free energy barriers between different local
of model liquids characterized by simple Hamiltonians. Inminima may change with the control parametsee, e.g.,
such studies, a numerical minimization proced(eay., the Fig. 7 where the dependence of the height of a typical free
conjugate gradient methpds used to find the local minima energy barrier on the density is showin contrast, the po-
of the total potential energy of small samples as a function ofential energy landscape does not show any such variation as
the coordinates of the particles. The potential energy functhe temperature is changed. This difference may be impor-
tion is generally found to exhibit a large number of local tant in understanding some of the results found in recent
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studies[24,36] based on the energy landscape of simpletial energy landscape does not. We find in our free-energy-
model ligquids. In Ref[36], an approximate description of based study that thgrowth of the height of a typical effec-

the dynamics of a Lennard-Jones system in supercooled anide free energybarrier with increasing density is primarily
glassy regimes is developed in terms of the numerically dedue to entropic effects arising from an increase in the diffi-
termined properties of the local minima of the potential en-culty of finding low-free-energy paths to other minima. This
ergy and the energy barriers between them. While this deeffect is closely related tohangesn the topography of the
scription is found to reproduce several interesting features diree energy landscape as the density is changed. In contrast,
glassy dynamics, iloes notshow the expected faster than the potential energy landscape studied in R24] does not
Arrhenius growth of the viscosity at low temperatures. Thisdepend on the temperature which is the appropriate control
may be due to the energy barriers in this description noparameter for the Lennard-Jones system considered there. In
changing with temperature. It is possible that a free-energyparticular, the calculated values of the height of the potential
based description in which the barrier heights change witlenergy barrier between two minima and the entropic faRtor
temperature would lead to a faster than Arrhenius growth oflo not change as the temperature is changed. Therefore,
the viscosity. This possibility is clearly illustrated in our there is no direct connection between our res(ibich, as
study which shows that the dependence of the heights of freexplained above, are about thieange<f these quantities as
energy barriers on the appropriate control parameter leads the appropriate control parameter is changaad those re-
Vogel-Fulcher behavior. Referenf24] describes a numeri- ported in Ref[24].

cal study of the local minima and the saddle points of the We end with a word of caution. Because of the computa-
potential energy surface of small Lennard-Jones clustersional complexity of numerical studies of free energy and
One of the quantities calculated in this paper is an “entropigotential energy landscapes, such studies have been re-
ratio” R that approximately quantifies the entropic effects onstricted to rather small samples which may exhibit finite-size
the rate of thermally activated transitions between two locakffects. In our work, we found that certain features of the
minima of the potential energy function. Values Bf>1  free energy landscape are quite sensitive to the commensu-
indicate entropic suppression of the transition rate, whereasbility properties of the discretization scale and the sample
R<1 corresponds to an enhancement. The probabilitRR of size. Strong dependences on the sample size and the bound-
having values greater than 1 is found to be small. This resulary condition have also been fouf2i3,24] in studies of the

is interpreted as evidence for entropic effects being relativelpotential energy landscape. One should, therefore, be careful
unimportant. In particular, the authors mention that this obin extrapolating the results obtained from such studies to the
servation contradicts our conclusigdescribed in detail in thermodynamic limit.

Ref. [19] and summarized in Sec. IlIC abgvé¢hat the
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rily entropic in origin. In our opinion, the results reported in

Ref. [24] do not necessarily contradict our conclusion. The A part of the numerical work was carried out at the Su-
difference between our conclusion and that of Re¥4] percomputer Education and Research Center of the Indian
about the importance of entropic effects is probably just dnstitute of Science. One of U€.D.) acknowledges support
reflection of the aforementioned fact that the free energyrom the Theoretical Physics Institute, University of Minne-
landscape changes with the control parameter, but the potereta, for a visit.

[1] For a review, setiquids, Freezing and the Glass Transition [10] L. F. Cugliandolo, J. Kurchan, G. Parisi, and F. Ritort, Phys.
edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin  Rev. Lett.74, 1012(1995.

(Elsevier, New York, 1991 [11] T. V. Ramakrishnan and M. Yussouff, Phys. Revl® 2775
[2] J. Jakle, Rep. Prog. Phyg9, 171(1986. (1979.
[3] C. A. Angell, J. Phys. Chem. Solidt9, 863 (1988. [12] C. Dasgupta, Europhys. Le@0, 131(1992.

. [13] C. Dasgupta and S. Ramaswamy, Physica88 314 (1992.
[4] P. W. Anderson, idll Condensed MatterLecture Notes of the [14] L. M. Lust, O. T. Valls, and C. Dasgupta, Phys. RevAg&

Les Houches Summer School, 1978, edited by R. Balian, R: 1787(1993
Maynard, and G. ToulousgNorth-Holland, Amsterdam, [15] C. Dasgupta and O. T. Valls, Phys. Rev5& 3916(1994).

1979. ) o ) . [16] O. T. Valls and C. Dasgupta, Transp. Theory Stat. PRys.
[5] P. G. Wolynes, irFrontiers in Science: International Sympo- 1199(1995.
sium edited by S. S. Chen and P. G. Debrunner, AIP Conf.[17] C. Dasgupta and O. T. Valls, Phys. Rev5& 2603(1996.
Proc. No. 180AIP, New York, 1988. [18] P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos.
[6] T. R. Kirkpatrick and P. G. Wolynes, Phys. Rev.38, 3072 Mag. 25, 1 (1972; W. A. Phillips, J. Low Temp. Phys, 351
(1987; Phys. Rev. B36, 8552(1987). (1972.
[7] T. R. Kirkpatrick and D. Thirumalai, J. Phys. 82, L149  [19] C. Dasgupta and O. T. Valls, Phys. Rev58 801 (1998.
(1989. [20] H. Vogel, Z. Phys.22, 645 (192)); G. S. Fulcher, J. Am.
[8] T. R. Kirkpatrick, D. Thirumalai, and P. G. Wolynes, Phys. Ceram. Soc8, 339(1925.
Rev. A40, 1045(1989. [21] L. V. Woodcock and C. A. Angell, Phys. Rev. Le#t7, 1129

[9] J. P. Bouchaud and M. Mezard, J. Phyd, 1109(1994. (1981).



3134 CHANDAN DASGUPTA AND ORIOL T. VALLS PRE 59

[22] J. P. Hansen and I. R. McDonal@heory of Simple Liquids [30] J.-L. Barrat and W. Kob, e-print cond-mat/9806027.

(Academic, London, 1986 [31] G. Parisi, J. Phys. A0, L765 (1997); Phys. Rev. Lett79,

[23] A. Heuer, Phys. Rev. Let#8, 4051(1997). 3660(1997).

[24] G. Daldoss, O. Pilla, G. Villani, and G. Ruocco, e-print [32] F. H. Stilinger and T. A. Weber, Phys. Rev. 28, 2408
cond-mat/9804113. (1983.

[25] G. Parisi, inComplex Behavior of Glassy Systems: Proceed-33] T. A. Weber and F. H. Stillinger, Phys. Rev. 8, 5402
ings of the XIV Sitges Conferencadited by M. Rubi and C. (1985.
Perez-VicentdSpringer, Berlin, 1991 [34] F. H. Stillinger, Scienc&67, 1935(1995.

[26] T. R. Kirkpatrick and D. Thirumalai, Phys. Rev. 86, 5388  [35] S. Sastry, P. G. Debenedetti, and F. H. Stillinger, Natuoa-
(1987. don) 393 554(1998.

[27] See, for example, W. Gpe, in Liquids, Freezing and the [36] L. Angelani, G. Parisi, G. Ruocco, and G. Villani, Phys. Rev.
Glass TransitionRef.[1]). Lett. 81, 4648(19989.

[28] W. Kauzmann, Chem. Rew8, 219 (1948. [37] J. Kurchan, G. Parisi, and M. A. Virasoro, J. Phys, 11819

[29] W. Kob and J.-L. Barrat, Phys. Rev. Le@8, 4581(1997). (1993.



