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Glassy behavior of the parking lot model
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We present a theoretical discussion of the reversible parking problem, which appears to be one of the
simplest systems exhibiting glassy behavior. The existence of slow relaxation, nontrivial fluctuations, and an
annealing effect can all be understood by recognizing that two different time scales are present in the problem.
One of these scales corresponds to the fast filling of existing voids, the other is associated with collective
processes that overcome partial ergodicity breaking. The results of the theory are in a good agreement with
simulation data; they provide a simple qualitative picture for understanding recent granular compaction ex-
periments and other glassy systefi$1063-651X99)14402-7

PACS numbes): 68.45.Da, 61.43:j, 64.70.Pf

[. INTRODUCTION found that the system jams at density=0.75, and the way
it approaches this state is given by the following formula:
Constrained dynamics of complex systems has long been
a subject of extensive experimental and theoretical research. kit w “u
Certain important features, such as slowing kinetics, nonex- p(t)= o dwex _2j0 du(l—e %)/u
ponential relaxations, and memory effects are believed to be
generic for a wide class of systems ranging from structur
and spin glasses to granular materials and traffic fldws3|.
In spite of significant progress in this field there is still no
general framework for the description of jamming and gIassyN

phenomena. The development of a clear qualitative plctureranular compaction, Nowadt al. [9] presented the results

of them has been frustrated by the relatively high complexitygf simulations on the PLM. These simulations and the ex-

of the considered systems. One could hope to boost the COR’erimental ranular compaction data have manv important
ceptual progress in this field by analyzing simple model 9 P y Imp

capable of capturing the important features of glasses. eatures in common. In particular, the average coverage of

Inthis paper we present a theoretial discussion o one Jf7, 21 T8 %0 G %0, 2 ot Ne'E: e Virated sant
the simplest systems that exhibits glassylike relaxation dy: . y N :

. L : . ' Once in the steady state, the finite size of the system results
namics and a nontrivial fluctuation spectrum. This system is

known as the parking lot modéPLM) [4—8], or the con- in considerable density fluctuations. Insight into their dy-
tinuous random adsorption problem, and it is defined as fol-nﬁm';?s IS p{lowd_ed by the p?V\r/]er spectrum alf STen In F'g: 3.
lows. Identical, unit length particle&arg can adsorb on a This figure illuminates one of the most remarkable properties

line (curb) at ratek, per unit curb length. They can also of the parking lot model, i.e., that it exhibits two very differ-

: ) ; ; ent time scales at higtk=k,/k_ values (high density.
leave the line with raté&_ . The desorption process is unre- ; .
: . o . These time scales appear in the power spectrum as two cor-
stricted while the adsorption is subject to free volume con-

straints, i.e., two cars cannot overlggee Fig. 1. This model ner frequencies, one at high frequency and one at low. The

can be applied in a straightforward way to random phyS|ca|OW frequency corner 1S Lorent2|_an, Wh'ch |nd|cate_s that_ It
. g can be associated with exponential relaxation at a single time
adsorption of large molecules. In addition, the PLM appears ; . ”
o cale. The high-frequency “corner,” however, shows an un-
to be one of the most successful models for the description 0 . - o . ;
. : . : , usual “hump” that indicates that the density relaxation can-
density relaxation and fluctuations in a vibrated granular ma-

terial. The possible reason for this is that the dynamics of the
PLM drastically depends on the available free volume, just T
as in the case of granular materials or structural glasses. $ ks T k.
The dynamics of the original version of the PLM, in
Y g o Me Jre B ] | i

the particles adsorb irreversibly has
01.

which p [y.e., k_=0), ]

been well understood as long ago as 1958 by RdByiHe 7// ,
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alI'he late-stage asymptotics of this result is the power-law
relaxation:p(t) — p.~ 1h.

The desorption process introduced by Krapivsky and Ben-
aim [8] results in even richer physics. In a recent paper on
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1 N II. LIMITATIONS OF THE MEAN-FIELD APPROACH

In their original work on the reversible PLI8], Krapiv-
sky and Ben-Naim proposed a mean-field description of the
problem that can be essentially expressed in terms of the
I following master equation for the average dengity
06 -

1 p)
. : | &—’::k+(1—p)exp(—l%p)—kp. ?)

0.4 - i 4

Here the first term represents the adsorption rate and takes
into account its strong dependence on the available free vol-
ume; the second term corresponds to unrestricted desorption.
The above equation indeed captures some of the features of

0.2 - J .

o A the PLM. In particular, it results in an equation for the equi-
LS TS [ [ [ [ e e librium density p.q, which is consistent with the numerical
. data:
FIG. 2. Simulation dat&circles and theoretical results for den- 1-peq Peq k_
sity evolution in the cold K=10% and hot k=10) regimes. Note Peq exp — 1 peq = E ©)

that the mean fielddashed lingis quite adequate for the descrip-
tion of the hot system but it fails to describe the slow dynamics at Although this mean-field approach does result in typical
the “supercooled” regime fok=10". The solid line is the combi-  jamming dynamics, the predicted density relaxation rate is
nation of the irreversible parking curve, EQ), describing the fast  seyveral orders of magnitude faster than that observed in the
stage of the relaxatiotfor k=10%), and our result, beginning &t sjmylationg9]. Moreover, the mean-field description fails to
=100, for the later slow dynamics. capture the most interesting feature of the PLM, its fluctua-
not be described with only one time scale. It is these featuretéOn spectrum. .'”de‘?d' the very structure Of. £2). cannot
result in anything different from a regular linear response

in the power spectrum that led Nowaik al. to present the . . S S
parking lot model in conjunction with the sand experiment equation for the_ densny near eqU|I|br|um,_|.e., it should have
‘a single relaxation time for small fluctuations.

which shows a similar nontrivial fluctuation spectrum. The A tial feature that the ab ield h
existence of several relaxation time scales is a signature of n essential feature that the above mean-nield approac
the partial ergodicity breakingxhibited by the model, i.e., overlool_<s s the strong correla’qon_betwggn adsorption and
its high-frequency evolution does not allow the system todesorptlon events. This correlanqn is familiar to anyone who
explore all the configurational space. In this sense the obhas ever attempted to park in a big city. Cars dq not Ie_ave the
served behavior of the PLM may be relevant not only forCurb very often but as soon as they do an incoming car

understanding the particular granular compaction experimerﬁ’('fhest.In go tak(?[. the newly dcreatedt shpace. t:]'hlz pa!tred f
but also for the whole class of systems exhibiting gIassya Sorption-gesorption process does not change the density o

relaxation dynamics. Below we focus on developing an anaJEhe system; it is equivalent to merely sliding a car in its

lytical description of the PLM capable of capturing theseparking space. One can explicitly emphasize this by the in-

R : : : troduction of a slow(adiabati¢ variableZ=N+ N*, which
intriguing features and revealing the underlying physics. is the sum of the number of adsorbed catsand the num-

Py ber of voids large enough to fit at least one partidie. If
] the system is sufficiently dense, most individual adsorption
E or desorption events do not change the paramgtefhe
4 existence of this slow variable results in the observed sepa-
] ration of the relaxation time scales. The fast modes of the
density relaxation correspond to the evolution with nearly
constantZ, while the slow dynamics is determined by low-
] probability events, which result in a drift a2. In other
4 words, on short time scales the ergodicity of the PLM is
] broken: the system can explore only the part of the configu-
rational space corresponding to a consf@nt
The fast and slow modes are expressed as two typical
- time scales in the density fluctuations and also lead to a
E two-stage relaxation process of the density evolution from
p=0 10 peq. In the case of a very small desorption rate
10° 10° 104 102 10° the system follows the universal irreversible-adsorption
curve, Eq.(2), until it jams atp,=0.75. Afterward, it slowly
evolves towards the equilibrium density. By using the above
FIG. 3. The power spectrum of density fluctuations near the€sult forp.qas a function ok=k, /k_ and knowingp one
equilibrium fork=10° andk=10". Circles and solid lines represent can construct the “kinetic phase diagram” of the systeee
the simulation data and our analytic results, respectively. Fig. 4. if pey(K)<p. the system reaches the equilibrium

S(w)
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0.9 ———rrr———rrr ———rrrr——

o8 | //M: h (x), where 16 is th ftip!
ST v Partially Broken/] with respect top(x), where 15 is the Lagrange multiplier
: /////////Er/g/o/%'/t}///f- conjugate tox. Naturally, the resulting formula fop(x) is

""""""""""""" similar to the Boltzmann distribution:

o[p]-- f:dx( pOX)IN p(X)+ P(x) g) @

®

1 X
p(x)ZEex%—s .

The parametew is equal to the average spacing between
cars, i.e.,

o=——-. (6)

sl " a1l Liaiay
10? 10° 10*

We now proceed with the calculation of the high-frequency
part of the fluctuation spectrum. The coupled adsorption-
k desorption process can be viewed as a relaxation-excitation
o ) ~ of the conventional two-statgelegraph system, which can
FIG. 4. “Kinetic phase diagram” of the system. The solid line switch from one state, 0, to another one, 1, with a character-
corresponds to the reversible equilibrium lipgg(k); the dashed jqiic time t and then relax back to 0 with the characteristic
line shows the jamming density above which the ergodicity is Parime . The power spectrum of telegraph noise has been

tially broken. investigated by Machlupl0] and is given by

density before it jams, otherwise it relaxes gg and then 1 1

slowly creeps toward equilibrium. It would be tempting to S(w)=————, @)
m(t+7) w2+ 12

associate the critical poirk,=60, which separates the two
regimes, with a glass transition. However, this term is tradi-

, . : : . wherev=1/7+1k.

tionally reserved for the hypothetical point at which the ki- "V . oo .

netic goefficients ofa systgrg would gopto zéiour simple The fast d_ynamlcs of the density is the superposition Of.
case this is the poirk==). Thus, the zone of partial ergod- these nel?rlyhlndeperk;dentftelel?raph modes, whlose) number is
s . L T . essentially the number of cafsr, more preciselyZ). An

icity breaking appearing s>k is an analog of what is important feature of the adsorption-desorption modes is that

;T);svsentlonally called a supercooled liquid rather than awhile their “excitation rate,” 1f=k_, is uniform over the

An important implication of the above picture of the PLM Z?(f:?teergi ;Paetereilaexa?r?g gth?)rlstit(if rF;rtzpies rtyr(())f ;Eéﬂgivggl{{ile
kinetics is the existence of an annealing effect, which is typi-f volurm 'V' ill’bl i i\? n void: Hkp xp+x A
cal for classical glassy systems and has also been observed jf€ volume available at a given vold.z- +(X1tXp). S

a result, the fluctuation spectrum deviates from the simple

the granular compaction experimen&|. The idea is that ; ]
one can overcome the slow kinetics of the supercooled Syé__orentman form, Eq(7):
tem by “heating” it (by decreasinds belowk.), then slowly (NN_,) k_ (= f(v)dv
cooling it (increasingk), so that the system would follow the Su(@)=(pop_o)= o0/ PR )
reversible equilibrium curvee (k). L2 L Jo w?+ 1?2

()

Herel is the total length of the system. Note that here and
lll. FAST DYNAMICS OF THE SYSTEM below we assume th&t=k, /k_>1, so that the typical ad-

As we have pointed out above, the fast dynamics of thesorption process is much faster than the desorption. As a

PLM is dominated by a two part process: a desorption thafesu“' the desprption rate determines the amplitude if‘ the
takes place at ratk_ leaving a void and an adsorption that above expression, while th@onuniform) adsorption domi-

occurs at ratek, z, wherez is the void size minus a car NAtes Its frequency dependerite., v=1/7=k, (X, +x;) ]

length. This two-part process is equivalent to simple replaceThUS' the calculation of the power spectrum for the parking

ment of one adsorbed particle with another or a sliding of ot model reduces to finding the distribution of relaxation
single particle in its own space. As a result, the separation mes for adsorption, and then weighting the spectrum for

between a given particle and its two nearest neighbors, eflegrap.h hoise \.N'th this d|§tr|butlon. As shoyvn above, t'he
o distribution function for the inter-car spaces is exponential.
and x,, change randomly to the new valug$ and x; in

h that thei : O X X Assuming that the separations between a given car and its
SUC, a way that their sum remains constant X=X, neighborsx; and x,, are uncorrelated, we obtain the
+x5=2z. This sliding process cre.ate.s th'e necessary mixing t?ollowing distribution of relaxation rates; =k, (x;+X,):
ensure that the steady-state distribution of the spaces be-

tween carsp(x), corresponds to the maximal entropy for a " "
fixed sum of all the separations. Thus, the distribution func- f(v)=— ex;{ - —) 9
tion can be obtained by maximizing the functional Wy @H
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Here calculate the rates of the above two-car processes. The rate
of the —1 process has three contributions. First, a car must

wy=k; o (10 leave, and the corresponding “trial rate” is just per par-

ticle. Then, an adjacent car must leave before the hole left by

the first car fills, which gives a “waiting” factor

2k_ [ foexp(t)dtf(v)dv. Finally, the big hole must be

%locked by a bad parkéup to a correction of order af, the

probability of this is unity. Thus the overall rate is

is the characteristic frequency of the fast relaxation.

One can now substitute the distribution function fointo
the above expression for the high-frequency fluctuation spe
trum, Eq.(8). The result of the numerical integration of this
formula overv is in excellent agreement with the simula-
tions, see Fig. 3. We now have an explanation for the hump e
in the spectrum at high frequency; it is caused by a relatively V1T s
broad distribution of relaxation times for the adsorption pro- +
cess. Further examination of our result illuminates the con-
nection between the PLM and other, more complicated sys; per car. The void left by the calits length isx;+x,
tems exhibiting glassy dynamics. The above distribution °+71) must be large enough for two cars, which gives the
relaxation rates does not just distort the Lorentzian form neay, (or '
the characteristic frequency,,=k. 8, but rather affects the
spectrum at all frequencies belowy, . The asymptotic be- 1+ A F{ 14+ A

ex

(13

The opposite+1, process has the same trial frequency,

havior of the spectrum ab<w,, is

5 dA. (14

52
S(w)~In w. (11

Note that the first incoming car must park with precisidn
Hence, the spectrum never recovers the Lorentzian-like pla=x;+Xx,—1 in order to leave enough space for the second
teau regime at low frequencies. The logarithmic behavior iar. The probability of this happening contributes a factor of
reminiscent of the power-law spectrum typical for glasses aRA/(1+A) to the overall+1 rate:
mesoscopic frequencidit corresponds tg relaxation[1]).
Because the logarithmic behavior is a result of the problem ©° 2A 1+A
being one dimensional, one could expect real power-law be- V+1= —f 2 expg — —5—|dA=2k_ exp(—1/5).
havior in the spectrum in higher dimensions. A simple as- (15)
sumption that the adsorption probability is proportional to
the free volume associated with the newly created void, comThe density changes with time according to the following
bined with the natural exponential distribution for the free equation:
volume, would result in the &/ spectrum at mesoscopic fre-

quencies: p=(vir—v_1)p+pt). (16)
© exp(— vl vg)dv Here 7 is the noise originating from the fact that the density
Sh(w)~ fo e Vo, w<wvg. (12  changes by discrete one-particle steps(t))=0, because

the average evolution is given by the interplay of th& and

Note that in the one-dimensional case discussed above, 1 kinetic terms in the above equation. Since adding an
the free volume is a sum of two presumably independengXtra car or removing one at the moment of figecorre-
variables x; andx,, each of which has an exponential dis- sponds toN==§(t—ty), and since there is no obvious
tribution. As a result, the distribution function for the free mechanism for the correlations between such processes,
volume vanishes near zero, i.e., the probability of finding a N
long-living excited state is strongly suppressed in the one- o Z-1Tm V4 ot
dimensional case compared to the higher dimensions. (O 7(t))= L pot=t7). (17

IV. SLOW DYNAMICS OF THE SYSTEM Using Eq. (16), we fir_l_d that the equilibrium density is
determined by the condition

In the previous section we have discussed the fluctuations
of the density on short time scales, over which ergodicity is - 1/s 18
effectively broken. Now we proceed to a discussion of the Kk, eq®XP— 1deg), (18
low-frequency part of the fluctuation spectrum associated
with the change of the slow parametér This change is where 5eq=pe_q1—1. This result coincides with the mean-
caused by collective events; the rearrangement of a state cdield one, Eq.(3). We note that the mean-field approach ig-
responding to a gived is dominated by a two-car process. nores the adsorption-desorption correlations; this would be a
In one process, responsible for decreasing the “groundeasonable assumption for the model with strong diffusion of
state” Z by 1, two adjacent cars leave and a single ¢me the adsorbed cars. Since the diffusion cannot shift the equi-
“bad” parker) comes in their stead, hogging the space; thdibrium properties, it is not surprising that the mean-field
opposite process results in adding an extra car to the lot: approach gives the correct value @f;. As to the descrip-
car exits and leaves a large space big enough for two caripn of the PLM kinetics, the rates_; and v, ; in Eq. (16)
provided that the new cars are “good” parkers. How dodiffer by an exponentially small factor, 2 expl/d,g) from
these collective modes affect the power spectrum? We nowheir mean-field analogs. The above equation describes only
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=k, /k_ (or, equivalently orp¢y); the theoretical calculation
is again in good agreement with simulation.

V. CONCLUSIONS

We have presented a theoretical discussion of the parking
lot model, which appears to be a very simple glassy system,
E ] perhaps the simplest. We have identified two time scales in
10 b AN 4 the problem: one associated with a simple relaxation of voids

i §\ ] and the other corresponding to the collectitwo-particle
10° ¢ \ 1 processes responsible for the rearrangement of the “ground

i $ state” (the state that the system can reach by an instant fill-
10° ¢ }- ing of all currently available voids In the limit of weak

(.OH,(.l)

desorption, corresponding to a large difference between the
two times, the relaxation of the system toward its equilib-
rium density is a two-stage process: first, it reaches the uni-
P versal jamming densitp=p.=0.75 as if there were no de-
sorption at all, then it slowly relaxes &,(k) via collective

FIG. 5. Low and high characteristic frequencies,andwy , as ts. This t t laxation feat di
functions of the equilibrium density. The dashed and solid Iines_ream;mgemen S. 1Tis two-stage relaxation feature disappears

represent the theoretical results; the squares and the circles are #jetN€ régime of strong desorptiok{k), and we identify
simulation data fow, and wy , respectively. the crossover poirk; with peq(k)=pc.

At k>k., on times shorter than the longest characteristic
_l . . . .

the slow evolution of the jammed state toward equilibrium.Sc@l€ @, ) the evolution of the system is nonergodic; this
Thus, the overall density relaxation curve of the “cold” sys- 'egime is analogous to a supercooled liquid. The system
tem (at k>k;) consists of the classical fast regime, Et), evolve; by jumping between the metastable states corre-
resulting in a jamming ap=p.~0.75, and the desorption- sponding to different values of the parameZeNote that the
promoted final stage, discussed here. Such a combination Hfetime of these states does not grow with the system size,
the two theoretical results is in agreement with the simulaPut rather decreases. Since the probability of the rearrange-
tion data, as is shown in Fig. 2. The same figure shows thgfent of the ground state is, ;+»_, per particle per unit
the mean-field curve does not capture the two-stage nature §fne. Its Ilfet|_rr1e is inversely proportional to the number of
the relaxation dynamics and is inadequate for the descriptioR@rSN=2Z: 7;"=Z(v,1+v_,). In this sense, the free en-
of the cold systemK=10%). However, the mean field may €rgy landscape of PLM is similar to that of structural glasses.
be used for the description of the single-stage relaxation ofnother similarity between the PLM and glassy systems is

107 [ P S P S 1
0.7 0.75 0.8 0.85 0.9

the “hot” system. the possibility of accelerating relaxation by means of anneal-
By expanding Eq(16) near the equilibrium density, one 'N9- _ o .
can determine the relaxation frequency of the Syste[rand The existence of two characteristic time scales is respon-

the reversible parking problem. The slow fluctuations are
described by a single Lorentzian with the relaxation fre-

k., quencyw, associated with two-particle rearrangements. The
L= exp(—2/6eq), (190 fast dynamics is a superposition of many single-particle
eq adsorption-desorption modes. In a sense, the non-Lorentzian

form of the high-frequency part of the power spectrum is a

reflection of the deviations of the local density from its av-

2K_peq €XP(— 1/deq) erage value, i.e., it is a signature of long-living disorder. In
g (02 + 0?) (200 this form, our observation may be relevant for understanding

L the nontrivial behavior of the relaxation spectrum of other
glassy systems on mesoscopic frequencies. The distribution

h lecrc:rpbmlng thlsﬂ expression with tge _earllﬁr rfeslrlt forof the relaxation rates of the single-particle excitations re-
the high-frequency fluctuations, one obtains the Tollowingg 5 not only in the distortion of the Lorentzian in the vicin-

analytic form for the entire power spectrum of the PLM: ity of the characteristic corner frequeney,, but also in an

_ interesting logarithmic behavior of the power spectrum at
S(w)=Sy(w)+3 (o) lower frequencies $~In w). We have suggested that this
. _ . feature is reminiscent of the power-law spectrum corre-
- k*peq/ J exp — vlwy) ﬂ+ 2 exp— 1/deq) _ sponding toB relaxation in classical glasses and that such a
7l \Jo w2412 0’ + w? power-law behavior could be reproducible in PLM at higher
dimensions.

Si(w)=

(21
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