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Dynamic critical behavior of the Landau-Peierls fluctuations: Scaling form of the dynamic
density autocorrelation function for smectic-A films
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In this paper, we study the dynamic density autocorrelation functionG(r ,t) for smectic-A films in the layer
sliding geometry. We first postulate a scaling form forG, and then we show that our postulated scaling form
holds by comparing the scaling predictions with detailed numerical calculations. We find some deviations from
the scaling form only for very thin films. For thick films, we find a region of a bulklike behavior, where the
dynamics is characterized by the same static critical exponenth, which was originally introduced by Caille´ @C.
R. Acad. Sci. Ser. B274, 891~1972!#. In the limit of very large distance perpendicular to the layer normal, or
in the limit of very long time, we find that the decay ofG is governed by the surface exponentx
5kBTqz

2/(4pg), whereg is the surface tension and the wave-vector componentqz satisfies the Bragg con-
dition. We also find an intermediate perpendicular distance regime in which the decay ofG is governed by the
time-dependent exponentxexp(2t/t0), where the relaxation time is given byt05h3(Ld)/(2g), whereh3 is
the layer sliding viscosity, andLd is the film thickness.@S1063-651X~99!03403-0#

PACS number~s!: 61.30.Cz, 83.70.Jr
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I. INTRODUCTION

Systems that are precisely at their lower marginal dim
sionality ~LMD ! provide us with a unique opportunity t
study the influence of the technically divergent Landa
Peierls thermal fluctuations on the correlation functions
these systems. Mother Nature has only given us two cla
of systems that we can produce that are precisely at lo
marginal dimension in three dimensions. We can study
correlation functions in these two classes of systems from
atomic scale up to the macroscopic scale. The first clas
LMD systems consists of the fluid~i.e., both liquid and
hexatic! smectic liquid crystals—namely, the smectic-A,
smectic-C, hexatic-B, smectic-F, and smectic-I phases. The
second class of LMD systems consists of the tw
dimensional crystals. The specific feature that the thr
dimensional liquid crystal class has in common with the tw
dimensional crystal class is that, if the thermal fluctuatio
were any stronger, they would destroy the phase, or, equ
lently, move the phase transition temperature to zero
grees. LMD occurs at three dimensions for these liquid cr
tals because of their unusual elasticity—they have m
violent thermal fluctuations than three-dimensional crysta
The thermal fluctuations in two-dimensional crystals a
comparably violent, and also destroy the long-range or
that would be present in the absence of the thermal fluc
tions. The special order in systems that are precisely at t
LMD—and consequently do not have long-range order,
still have the same special kind of order that is found
normal systems precisely at their critical points—is cal
quasi-long-range order, or algebraic order—so named
cause the correlation functions decay algebraically in sp

Because of the uniqueness of the LMD phases, and
cause of their direct relevance to our modern understan
PRE 591063-651X/99/59~3!/3048~11!/$15.00
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of phase transitions via the renormalization group formalis
they have been extensively studied theoretically@1#, and ex-
perimentally@2#. However, almost all of this first round o
theoretical and experimental work was focused only on
static critical behavior of these two classes of systems. T
body of theoretical and experimental work has establis
that the spatial decay of the static correlations is algebr
But what about the temporal decay of the correlations? H
do they decay? What are the theoretical predictions,
what do the experiments say? We answer the first half of
question~i.e., the half about theory! in this paper by present
ing the space and time scaling form of the density autoc
relation function. We hope to answer the second half exp
mentally in the near future. So, our first goal is to exte
both the theory and the experiments to include the dyna
critical phenomena in the liquid crystal systems.

Another very important issue, which was not investigat
in detail by the first theoretical and experimental work, co
cerns the effects of finite size on the dynamics of real~and
therefore finite! experimental systems. The theoretical alg
braic divergence of the correlation functions only occurs
the thermodynamic limit—and it is clearly impossible to d
experiments on infinite samples! How does the size of
system come into the problem? How big must we make
sample so that we will see the bulk behavior? Can we e
achieve this limit? How small must we make it before we s
the surface effects? Can we ever achieve this limit? Wha
the right theory for finite-size samples with real surface
How does the surface tension come into the problem? W
sets the relaxation time scale in realizable experiments?
answer these questions in this paper. So, our second go
to extend both the theory and the experiments to include
effects of finite size on the dynamic critical phenomena
the liquid crystal systems.

The fluid smectic liquid crystals have a layered structu
3048 ©1999 The American Physical Society
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with two-dimensional fluidlike order within the layers, an
with a special kind of one-dimensional translational ord
along the layering direction. The long-range order wh
would be present at zero temperature~even for infinite size
systems!, is destroyed by the effect of the Landau-Peie
thermal fluctuations when the system size tends to infinity~at
any nonzero temperature!. This results in an algebraic deca
of the density autocorrelation function. As noted above,
corresponding Landau-Peierls static critical behavior
been studied both theoretically@1# and experimentally@2#.
More recent work has also been devoted to understanding
effects of finite system size on the smectic layer fluctuati
in smectic liquid crystals@3–9#. We also note a closely re
lated work of Lei, Safinya, and Bruinsmaet al. @10# on lyo-
tropic lamellar phases. However, this early finite-size wo
also focused only on the static critical behavior.

To go beyond the static description of the correlations
smectic-A liquid crystals, it is necessary to study the hydr
dynamics of the smectic-A phase. The full hydrodynamic
behavior of smectic systems is very complicated since th
are five viscosities involved@11#, and four of these viscosi
ties diverge asv21 in the low-frequency limit@12#. These
divergences are the direct consequence of the anharm
terms in the elastic energy of the smectic-A phase, which are
required by the rotational invariance of the free energy@13#.
However, the wave-vector and frequency regimes that do
nate the layer displacement fluctuations—which prove to
the regime v;qz;q'

2 , where qz and q' denote the
wavevector components parallel and perpendicular to
layer normal, respectively—are unaffected by the nonline
ties@12#, except for the weak logarithmic Grinstein-Pelcov
effects on the statics@13#.

In our previous paper@14#, we formulated the hydrody
namic description of smectic-A films. Our work was a dire
generalization of the hydrodynamics for bulk smectic-A s
tems to the so called ‘‘sliding geometry’’@15#. We derived
expressions for the time-dependent displacement and de
autocorrelation functions for smectic-A systems both in the
thermodynamic limit, and in the finite size, nonzero surfa
tension limit, which applies to real freely suspended smec
A films. To do this, we used the linearized hydrodynam
equations for the smectic-A phase, and the Gaussian mod
of the layer fluctuations. If permeation is neglected,
smectic layers move at the same rate as the local fluid d
and then the hydrodynamics of bulk smectic-A liquid crys-
tals in the sliding geometry can be described by only o
variable, namely the local displacement fieldu(r ,t). This
assumption is supported by a recent study by Chen and
now @16# on the dynamics of smectic-A films. They show
that the permeation constant does not affect the power
spectral behavior of the surface fluctuations.

Then in the Fourier representation, we found the follo
ing equation of motion:

r0

]2u~q,t !

]t2
52h3q'

2 ]u~q,t !

]t
2~Bqz

21Kq'
4 !u~q,t !.

~1.1!

Herer0 is the average mass density,h3 is the layer sliding
viscosity, andK andB are the elastic constants correspon
ing to the layer bend and compression, respectively.
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physical sense of this equation is simple: it expresses N
ton’s second law for the acceleration along thez direction in
terms of the elastic and viscous forces. Eq.~1.1! results from
the complete set of hydrodynamic equations@15# when it is
assumed that the density adjusts to the layer distortions,
the isotropic part of the stress tensor vanishes, and when
wave vector is in the regimeqz!q' ~the sliding geometry!,
which is the regime of interest in the calculation of the d
placement autocorrelation function. This is because for ty
cal thermotropic smectic-A materials (K/B)1/2 is of order of
the layer spacing, which means that the wavelengths of
thermally excited compression modes are much longer t
the wavelengths of the thermally excited undulation mod
This allows us to greatly simplify the hydrodynamics for th
smectic-A phase.

It is well known that in the general case whenq is oblique
with respect to the layers there are two pairs of propaga
modes, referred to as the ‘‘first sound’’ and the ‘‘seco
sound,’’ respectively@17#. These acoustic waves satisfy h
drodynamic equations in the limit of small wavevectors~no
dissipation!. Quite often these modes decouple, i.e., the fi
is essentially a density modulation, whereas the second
responds to a modulation ofu. Then the speed of the firs
soundc1 is isotropic as in ordinary fluids. The speed of th
second sound, however, is strongly anisotropic, and i
given by c2'(B/r0)1/2sinu cosu, whereu is the angle be-
tweenq and the optical axis. This decoupling occurs in t
limit of an incompressible fluid. It is also satisfied whenqz
!q' . It can also be shown that in both limits the contrib
tion of the first sound to the dynamic displacement autoc
relation function is negligible. This means that we have
consider only the second sound mode, which becom
damped when the viscosity is switched on. Note that t
mode is correctly described by Eq.~1.1! for u close top/2.
Indeed, neglecting the terms of higher order thanq2 we find
the dispersion relation:v5(B/r0)1/2qz , which corresponds
to the second sound whenqz!q' .

In Ref. @14#, we assumed that the inertial term is neg
gible, which means that the smectic-A hydrodynamics could
be studied in terms of the overdamped limit. This appro
mation is self-consistent provided that

e5
r0K

h3
2

!1. ~1.2!

For a typical smectic-A liquid crystal we finde;1026–
1025, thus, in the wave-vector regime:Bqz

2;Kq'
4 , the in-

ertial term can indeed be neglected. Then the relaxation t
tq of the q mode is given by@15#

tq5
h3q'

2

Bqz
21Kq'

4
. ~1.3!

Thus, the relaxation timetq diverges asq'→0, provided
that Bqz

2;Kq'
4 . This divergence is a direct consequence

the slow Goldstone mode associated with the broken tra
lational symmetry.

It is possible to obtain an explicit expression for the d
namic density autocorrelation functionG(r ,t) in the thermo-
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dynamic limit, albeit in terms of special functions. The sc
ing form of G(r ,t) is given by@14#

G~r ,t !5S r'

a0
D 22h

hS 2AKBt

h3uzu
,

r'
2

4luzu D , ~1.4!

where h5qz
2kBT/(8pAKB) is the static exponent@1#, l

5AK/B, a0 denotes the molecular size cutoff, an
h(f,c) is the scaling function. The three asymptotic beha
iors of G(r ,t) ~which occur in the two different large dis
tance limits, and the long time limit!, are given by

G~r' ,z,t !;H ~4luzu/a0
2!2h for uzu→`

~16Kt/h3a0
2!2h for t→`

~r' /a0!22h for r'→`.

~1.5!

Hereuzu is the distance parallel to the layer normal,r' is the
distance perpendicular, andt is the time.

To study finite-size smectic-A films, we used the discret
model @14#. In this model, the deformations of the film a
described by a set of functionsun(r' ,t)(n50, . . . ,N),
whereN115L is the number of smectic layers in the film
Thus,Ld is the thickness of the film (d is the layer spacing!.
This discrete model was developed earlier to describe
static correlation functions@5#. Any arbitrary deformation
can be expressed in terms of theL normal modes, which, in
the Fourier representation, are functions ofq' . Conse-
quently, the decay of the deformation is described byL re-
laxation timest (k)(q')(k50, . . . ,N). We studied the finite-
size problem using the same overdamped approximatio
in the bulk case. Then the longest relaxation time, co
sponding to thek50 mode, has a finite value in the lim
obtained forq'→0, which is given by

t05t~0!~q'50!5Ld
h3

2g
. ~1.6!

Here g is the surface tension. This predicted form of t
scaling oft0 with the film thickness has been confirmed in
recent coherent soft x-ray dynamic light scattering~SXDLS!
experiment@14,18#. The experimentally measured ratio
h3/2g determined using SXDLS is in good agreement w
independent measurements ofh3 andg separately@19–21#.
In our previous paper@14#, we showed that the overdampin
assumed in our theoretical analysis is self-consistent forq'

@qc ; the value ofqc is given by

qc5A2r0g

h3
2dL

. ~1.7!

For typical values of the smectic-A parameters, we find

qc;A2

L
3104 cm21. ~1.8!

This means that the length scale defined byqc is comparable
to our experimental resolution cutoffL. Note, however, that
for q'<qc , the inertial term cannot be neglected.

The asymptotic behavior ofG in the finite-size case is
different from the bulk case. Previously, we studied@14#
-

-

e

as
-

only the asymptotics forr'→`. We found an algebraic de
cay with the time-dependent exponent

x~ t !5
kBTqz

2

4pg
expS 2

t

t0
D . ~1.9!

This result is consistent with the overdamped limit fora0

!r'!qc
21 .

In this paper, we study the dynamic density autocorre
tion function for a finite-size, nonzero surface tensi
smectic-A film in more detail. We concentrate on the scalin
properties ofG(r ,t). In order to obtain the complete picture
we do not neglect the inertial term in the linearized hyd
dynamic equations, as this term becomes important in
q'→0 limit. We expect that our predictions concerning t
time-dependent exponent for the range ofr' specified above
will not be changed. However, they will be modified forr'

>qc
21 . It is interesting to see how the crossover betwe

different asymptotic regimes occurs. We also investigate
crossover between the bulk and the finite-size smectic-A film
behavior, and the scaling of the dynamic density autoco
lation function with the film thickness.

When the system is finite in thez direction, the density
autocorrelation function~which is defined precisely in Sec
II ! also depends on the film thickness. In this paper, we p
pose the following scaling form for the density autocorre
tion function,

G~r' ,l ,t;L !5L2h f S r'

AldL
,
u l u
L

,
t

t0
D . ~1.10!

Here the integer variablel denotes the difference between th
layer indices. We will show that this scaling form is we
satisfied, except for very thin films where small deviatio
occur. For thick films, we find thatG(r ,t) has a region of a
bulklike behavior as predicted by formula~1.4!.

The rest of this paper is organized as follows. In Sec.
we define the discrete model and calculate the formal exp
sions for the displacement and the density autocorrela
functions. In Sec. III, we compare the predictions of the sc
ing form ~1.10! with the results of numerical calculations, t
determine the range of validity of the scaling form. Final
in Sec. IV, we discuss our results and present our con
sions.

II. THE DISCRETE MODEL FOR FINITE-SIZE
SMECTIC- A FILMS

A detailed treatment of the dynamics of a discrete stack
membranes representing lyotropic smectic liquid crystals
been presented by Ramaswamyet al. @22#. Here we consider
a generalization of Eq.~1.1! to the case of finite-size smectic
A films. This generalization is rather straightforward. T
discrete version of the harmonic Hamiltonian is given by@5#

H5 1
2 E d2r'H dB(

n50

N21 S un112un

d D 2

1dK (
n51

N21

~n'un!2

1g@~¹'u0!21~¹'uN!2#1Ks@~n'u0!21~n'uN!2#J .

~2.1!
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Hereun(r' ,t) denotes the deviation of thenth layer from its
equilibrium position. The surface layer bend elastic const
Ks ~which has dimensions of dyn cm! acts only at the two
surface layers (n50 andn5N). Because of missing neigh
bors Ks can differ fromKd. We assume that the system
translationally invariant in thexy plane. Thus, in the Fourie
representation, the hydrodynamic equation@14,23# has a
form of L coupled second-order differential equations
un(q' ,t), i.e.,

S r0

]2

]t2
1h3q'

2 ]

]t
1

Ksq'
4 1gq'

2

d D u05B
u12u0

d2
,

~2.2a!

S r0

]2

]t2
1h3q'

2 ]

]t
1Kq'

4 D un

5B
un1122un1un21

d2
for n51, . . . ,N21, ~2.2b!

S r0

]2

]t2
1h3q'

2 ]

]t
1

Ksq'
4 1gq'

2

d D uN5B
uN212uN

d2
.

~2.2c!

It is convenient to introduce the following dimesionle
variables: Q5Aldq' ,R5r' /Ald, and t°th3d/AKB,
whereh3d/AKB has the dimension of time. For simplicity
we use the same symbol for the dimensionless time. Now
is convenient to introduce matrix notation, in which th
Hamiltonian and the equation of motion can be expresse
the following compact form

H5
B

2d(Q u†~Q!M ~Q!u~Q!, ~2.3!

where u is the L31 matrix with componentsun(n
50, . . . ,N), u† is the matrix adjoint tou, and

F e
]2

]t2
1Q2

]

]t
1M ~Q!Gu~Q,t !50. ~2.4!

HereM (Q) is anL3L tridiagonal symmetric matrix define
by

M005MNN511ḡQ21K̄sQ
4, ~2.5a!

Mnn521Q4, for n51, . . . ,N21, ~2.5b!

Mn~n21!5Mn~n11!521, for n51, . . . ,N21.
~2.5c!

Here we have introduced two dimensionless parameterḡ

5g/AKB and K̄s5Ks /Kd.

A. Displacement-displacement correlation function

In the discrete model, we can treat the displaceme
displacement correlation function as anL3L symmetric ma-
trix C(Q,t) with the components given by
nt

r

it

in

t-

Cnm~Q,t !5^un~Q,t !um~2Q,0!&, ~2.6!

where ^•••& denotes the equilibrium average over all d
placements att50, with the weight proportional to the
Boltzmann factor exp(2H/kBT). The equation of motion for
C(Q,t) follows from Eq.~2.4! when both sides of~2.4! are
multiplied by u(2Q,0) and the thermal average is take
This procedure gives

F e
]2

]t2
1Q2

]

]t
1M ~Q!GC~Q,t !50. ~2.7!

The formal solution of this equation fort>0 is given by

C~Q,t !5C~Q,0!

3@a1~Q!2a2~Q!#21$a1~Q!exp@a2~Q!t#

2a2~Q!exp@a1~Q!t#%, ~2.8!

where the matricesa6(Q) satisfy the quadratic equation

ea6
2 ~Q!1Q2a6~Q!1M ~Q!50. ~2.9!

The initial conditions att50

C~Q,0!5
kBTd

B
M 21~Q!, ~2.10a!

and

F]C~Q,t !

]t G
t50

50 ~2.10b!

must be satisfied. The second equation follows from the
that u(Q,0) and] tu(Q,0) are statistically independent.

The spatiotemporal Fourier transform of the displacem
autocorrelation function is given by

C~Q,v!5E
2`

1`

dtexp~2 ivt !C~Q,t !

5
2dkBT

Bv
Im @M ~Q!2~ev21 ivQ2!I #21

~2.11!

whereI denotes the unit matrix, and we have used the tim
reversal symmetry ofC(Q,t). In the previous paper~see
Appendix B in@14#! we presented a method for obtaining a
explicit expression forM 21(Q). Using the same method it i
also possible to give an explicit formula for the inverse m
trix in Eq. ~2.11!. This might be of some use in analytica
studies of the asymptotic behavior of the displacement a
correlation function in real space. However, since we stu
the problem numerically, we do not take this route.

In an alternative approach, used in this paper,M (Q) is
diagonalized~see Appendix B in@14#! andC(Q,t), which is
a matrix function ofM (Q), is also expressed in this diagon
representation. Thekth eigenvalue ofa6(Q)(k50, . . . ,N)
can be expressed in terms of thekth eigenvalue of
M (Q), l (k)(Q), via the relaxation timet6

(k)(Q) and the
frequencyv (k)(Q) of the kth mode as follows:
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FIG. 1. Relaxation times@in units of h3d/(KB)1/2# of normal modes vsQ for a 16 layer thick film with the parameterse51025, ḡ

56,K̄s51. The inset shows the region of small wave vectors. In the main panel,t1
(k) is plotted as the solid line. In the inset,t (0) ~which has

been obtained from the overdamped limit wheree50) is plotted as the dashed line. Note that in this inset plot, only the brancht2
(0)—which

is represented by the long dashed line—can be seen.
e

e

s,

is
e

r.
the

ob-
a6
~k!~Q!52

1

t6
~k!~Q!

6 iv~k!~Q!, ~2.12!

where

v~k!~Q!50, ~2.13a!

t6
~k!~Q!5

2e

Q27AQ424el~k!~Q!
, ~2.13b!

if Q4.4el (k)(Q) and

t6
~k!~Q!5

2e

Q2
, ~2.14a!

v~k!~Q!5
1

2e
AuQ424el~k!~Q!u, ~2.14b!

otherwise. All relaxation times eventually diverge in th
limit Q→0. However, becausee;1026–1025 is very small,
this divergence can only be seen for rather small wave v
tors. The frequencies of thekÞ0 modes have finite limits
whenQ→0. For thek50 mode, and for small wave vector
it can be shown@14# that

l~0!~Q!'
2ḡQ2

L
. ~2.15!

Hence,v (0)(Q)→0 whenQ→0. In Fig. 1, we plot the re-
laxation times vsQ, and the small wave-vector regime
shown in the inset. The cusps correspond to the chang
c-

of

branch@see Eqs.~2.13! and~2.14!#. For comparison, we also
showt (0) obtained from the overdamped limit (e50); it has
a finite limit for Q→0.

B. Density-density correlation function

We start with the center-of-mass density operator@5#

r̂~r' ,t !5rs(
n50

N

d„z2nd2un~r' ,t !…, ~2.16!

where rs is the density of molecules in the smectic laye
The corresponding density-density correlation function in
Fourier representation is defined to be

^r̂~q,t !r̂~2q,0!&5rs
2AE d2r'exp~ iq'•r'!

3 (
n,m50

N

exp@ i ~n2m!dqz#G~r' ,n,m,t !,

~2.17!

whereA is the area of the film, and where

G~r' ,n,m,t !5^exp$ iqz@un~r' ,t !2um~0,0!#%&

5exp@2 1
2 qz

2gnm~r' ,t !# ~2.18!

with

gnm~r' ,t !5^@un~r' ,t !2um~0,0!#2&.

In Eq. ~2.18! we have used the fact thatu is a Gaussian
random variable. In terms of dimensionless variables, we
tain
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FIG. 2. ln(GLh ) as a function of ln(R/L1/2), for l 50 and t50. In this figure, we display the results for the film thicknessesL
516,32,64, and 128.
h
tio
at

e,
o

e
e

cal

-

ors,

ds

d
, to

red

In

can
gnm~R,t !5
kBT

2pAKB
E

0

`

QdQ@C̄nn~Q,0!1C̄mm~Q,0!

22J0~QR!C̄nm~Q,t !# ~2.19!

Here J0 denotes the zeroth-order Bessel function, andC̄

5(B/dkBT)C is dimensionless (C̄5M 21 at t50). In the
same overdamped limit approximation used in Ref.@14#, this
integral has a logarithmic divergence atQ50. Thus, it was
necessary to introduce a cutoff at small wave vectors. T
problem does not appear here, since all of the relaxa
times diverge whenQ→0, and the integrand remains finite
Q50.

Transforming the double sum in Eq.~2.17!, we obtain

^r̂~q,t !r̂~2q,0!&

5rs
2ALE d2r'exp~ iq'•r'! (

l 52N

N

exp~ i ldqz!G~r' ,l ,t !,

~2.20!

where, by definition,

G~r' ,l ,t !5
1

L (
n50

N2u l u

G~r' ,n,n1u l u,t !. ~2.21!

Thus, G is a function only of the layer indices differenc
whereasG is a function of both indices. This is similar t
bulk smectic-A systems. If the limitN→` is taken at con-
stantl, thenG reduces toG. For simplicity, the dependenc
of G andG on qz and the film thickness has been suppress
In the next section we study the dependence ofG on the four
variables:r' ,l ,t, and L, for a wave vector satisfying the
Bragg condition, i.e., forqz52p/d.
is
n

d.

III. SCALING FORM OF THE CORRELATION FUNCTION
G FOR SMECTIC- A FILMS

In this section, we present the results of our numeri
studies of the density autocorrelation functionG(r' ,l ,t;L).
Our goal was to check whether the scaling form ofG pre-
sented in Sec. I@see Eq.~1.10!# is correct. We have per
formed numerical calculations ofG for the following
set of dimensionless parameters:ḡ56,e51025,K̄s

51,kBT/(d2AKB)54/45, andqzd52p. For practical rea-
sons, we have also introduced a cutoff at large wavevect
Qmax, to calculate the integral in Eq.~2.19!, although this
integral has a finite limit whenQmax→`. In our calculations,
we used Qmax540. This set of parameters correspon
roughly to typical experimental values: kBT54
310214 erg,K51026 dyn,B52.53107 dyn/cm2,d
530 Å,g530 dyn/cm,r051 g/cm3,h350.3 g/(cm s),
anda054 Å.

First, we studiedGLh as a function of one of the scale
variables when the remaining two variables are set to zero
check whether the bulk asymptotic behavior is recove
whenL→`. In other words, the scaling functionf (f,c,y)
must have the following properties:

f ~f,0,0!;f22h for f→0, ~3.1!

f ~0,c,0!;c2h for c→0, ~3.2!

f ~0,0,y!;y2h for y→0. ~3.3!

In Fig. 2, we plot ln(GLh ) vs ln(R/L1/2) for a few values
of L. The scaling relation is rather well satisfied forR@1
and for thick films. For thin films larger deviations occur.
the region of very smallR, i.e. R;1 or smaller, the scaling
does not hold at all, and the limitR→0 depends onL. In the
region where the scaling is approximately satisfied, we
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FIG. 3. ln(GLh ) as a function of ln(l/L), for R50 andt50. In this figure, we display the results for the film thicknessesL516 and 128.
is
,

h
o

of

s
en

er
distinguish two asymptotic regimes:~1! R!L1/2 and ~2! R
@L1/2. In the first regime, the slope of the ‘linear’ part
'22h, in agreement with Eq.~3.1!. In the second regime
the slope approaches2x, wherex5kBTqz

2/(4pg).
In Fig. 3, ln(GLh ) as a function of ln(l /L) is shown, for

L516 and 128. The two curves are practically indistinguis
able from each other. Some deviations from the scaling
cur only for extremely thin films (L54). Here only one
asymptotic regime, forl !L can be observed. The slope
the curve approaches2h when l /L→0, in agreement with
Eq. ~3.2!.
-
c-

The plot ln(GLh) vs ln(t/t0) is presented in Fig. 4. It is
very similar to the plot shown in Fig. 2. Large deviation
from the scaling relation occur for very short times. Th
there is a region of a quasibulk behavior fort!t0 , i.e., the
slope of the curves is close to2h @see Eq.~3.3!#, and finally,
the slope approaches2x when t@t0 . The scaling becomes
more accurate for thick films, whereas for thin films larg
deviations occur.

In Figs. 5 and 6, we present ln(GLh ) as a function of
ln(R/L1/2) at t50 and ln(GLh ) as a function of ln(t/t0) at R
50, respectively, for a few values of the ratioL/ l and for a
FIG. 4. ln(GLh) as a function of ln(t/t0), for R50 and l 50. In this figure, we display the results for the film thicknessesL
516,32,64, and 128.
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FIG. 5. ln(GLh ) in the static case (t50) as a function of ln(R/L1/2). In this figure, a few values of the ratioL/ l are shown for the
thicknessesL516,64,128, and 256. Starting from the top, we display the curves for the ratio valuesL/ l 5128,16,8,4, and 2.
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few values ofL. In order to study the scaling form ofG, we
have chosen a particular set ofl, for which the ratioL/ l is an
integer. In this way we can easily compare the results
different L. It is clear from these plots that whenlÞ0 the
scaling is very well satisfied even in the region of very sm
R or t.

The dependence of ln(GLh ) on ln(t/t0) for a few values
of the ratioR/L1/2 andl 50 is shown in Fig. 7. Fort@t0 the
slope of all curves approaches2x.

In Fig. 8, we plot ln(GLh ) vs ln(R/L1/2) for a few ratios
t/t0 and L/ l . All curves approach the same slope (2x) in
r

ll

the limit R/L1/2→`. ForR.L1/2 there exists an intermediat
region of approximately linear dependence with a time
pendent slope. This is shown in Fig. 9, where the derivat
d(lnG)/d(lnR) is plotted againstt/t0 , at ln(R/L1/2)52. This
is in a very good agreement with the asymptotic behavior
G for largeR, i.e., with G;R2x(t) as predicted in Ref.@14#.

IV. DISCUSSION

We have proposed a simple scaling form for the dynam
density autocorrelation functionG(r ,t) for smectic-A films.
FIG. 6. ln(GLh) as a function of the dimensionless time variable ln(t/t0) for R50. The choices of the values of the ratiosL/ l and of the
thicknessesL are the same as in Fig. 5.



e

3056 PRE 59PONIEWIERSKI, HOŁYST, PRICE, AND SORENSEN
FIG. 7. ln(GLh ) as a function of the dimensionless time ln(t/t0). In this figure,l 50, andR/L1/250,0.2,0.5,1, and 10. The lines and th
squares correspond to the thickness valuesL564 andL532, respectively.
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Our work is based on~1! linearized hydrodynamics, and~2!
the Gaussian model of thermally driven layer fluctuations
the smectic-A phase. We tested our postulated scaling fo
by detailed, real-space numerical calculations ofG(r ,t).
SinceG depends on four variables—the two distancesz and
r' , the timet, and the film thicknessLd—it is rather diffi-
cult to completely verify the postulated scaling form nume
cally. Consequently, we have not attempted very deta
systematic studies of the dependence ofG on the extra con-
n

-
d

trol parameters provided by the bulk and surface smectiA
material parameters—namely:K, B, h3 ,g, andKs . Never-
theless, the results that we obtained using typical value
these parameters strongly suggest that the postulated sc
form works very well, except for very thin films. In the limi
of infinitely thick films, we recover the asymptotic form tha
we obtained previously—by neglecting inertia—for th
smectic-A phase in the thermodynamic limit@14#. It is inter-
esting that the inclusion of the inertial term in the hydrod
tio
FIG. 8. ln(GLh ) as a function of ln(R/L1/2) for the dimensionless time valuest/t050,0.5, and 1. In this figure, three values of the ra
L/ l are shown; starting from the top, we displayL/ l 564,4, and 2. The lines and the circles correspond to the thickness valuesL5128 and
L564, respectively.
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FIG. 9. The logarithmic slopedlnG/dlnR with ln(R/L1/2)52 ~see Fig. 8! as a function oft/t0 . In this figure, the logarithmic slope v
dimensionless time plots are shown for the ratiosL/ l 564,4, and 2 when the thicknessL564. The dashed line corresponds to the expon
x(t) defined by Eq.~1.9!.
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namic equation of motion leads to the scaling form ofG in
which the time scale is given by the relaxation timet0 ob-
tained from the overdamped, no inertia, approximati
However, the divergence of the true relaxation times, in
small perpendicular wave-vectorq'→0 limit, manifests it-
self in the long distance behavior of the dynamic correlat
function, which approaches the static correlation function
the limit r'→`. Thus, the long distance behavior ofG(r ,t)
in the direction parallel to the film is characterized by
algebraic decay with the surface exponentx. The long time
behavior for films also differs from the predictions for bu
smectic-A liquid crystals. We observe that for timest
;10t0 or longerG also decays algebraically with the surfa
exponentx.

We have also verified that the sum ofG(r' ,l ,t) over l at
qz52p/d @see Eq.~2.20!# scales with the thickness of th
film as L12h, provided that the film is sufficiently thick (L
;100). This shows that the sum is well approximated by
integral overl /L. In this approximation, we obtain the fo
lowing scaling form of the dynamic structure factor
R
hy
.

s.

et
.
e

n
n

e

S~q,t !}L12hq'
22F~q'AldL,t/t0!, ~4.1!

where

F~f,y!5E
0

`

sdsJ0~s!L21 (
l 52N

N

f ~s/f,u l u/L,y!.

In the limit asq'→0, we find

S~q,t !;L12h1x/2q'
221x . ~4.2!

However, since the decay ofG is governed by a time-
dependent exponent for a wide range ofr' values, there
must be analogous effects on the behavior ofS(q,t). We
defer detailed studies of the dynamic structure factor to
future, so that we can compare our theoretical predicti
with our experimental results.
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