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In this paper, we study the dynamic density autocorrelation funigmt) for smecticA films in the layer
sliding geometry. We first postulate a scaling form @&rand then we show that our postulated scaling form
holds by comparing the scaling predictions with detailed numerical calculations. We find some deviations from
the scaling form only for very thin films. For thick films, we find a region of a bulklike behavior, where the
dynamics is characterized by the same static critical expapewhich was originally introduced by Calil[€.

R. Acad. Sci. Ser. R74, 891(1972]. In the limit of very large distance perpendicular to the layer normal, or
in the limit of very long time, we find that the decay @ is governed by the surface exponept
=kBTq§/(47ry), wherey is the surface tension and the wave-vector compogesatisfies the Bragg con-
dition. We also find an intermediate perpendicular distance regime in which the deGag gbverned by the
time-dependent exponegexp(—t/7), where the relaxation time is given by= ns(Ld)/(2v), wheren; is

the layer sliding viscosity, antld is the film thickness[S1063-651X99)03403-0

PACS numbd(s): 61.30.Cz, 83.70.Jr

I. INTRODUCTION of phase transitions via the renormalization group formalism,
they have been extensively studied theoreticelly and ex-

Systems that are precisely at their lower marginal dimenperimentally[2]. However, almost all of this first round of
sionality (LMD) provide us with a unique opportunity to theoretical and experimental work was focused only on the
study the influence of the technically divergent Landau-Static critical behavior of these two classes of systems. This
Peierls thermal fluctuations on the correlation functions inPody of theoretical and experimental work has established
these systems. Mother Nature has only given us two classdlat the spatial decay of the static correlations is_ algebraic.
of systems that we can produce that are precisely at lowdput what about the temporal decay of the correlayo_ns? How
marginal dimension in three dimensions. We can study th&© they decay? What are the theoretical predictions, and
correlation functions in these two classes of systems from th)éyhat ‘?'0 the experiments say? We. answer the first half of this

atomic scale up to the macroscopic scale. The first class é}uestlon(l.e., the half about theojyn this paper by present-

LMD systems consists of the fluid.e., both liquid and ng t_he space and time scaling form of the density autocor-
. L . relation function. We hope to answer the second half experi-
hexatig smectic liquid crystals—namely, the smeckic-

) . : . mentally in the near future. So, our first goal is to extend
smectice, hexaticB, smectick, and smec_tld-phases_ The both the theory and the experiments to include the dynamic
second class of LMD systems consists of the tWO-yjtica| phenomena in the liquid crystal systems.
d!mens!onal _cry_stals. The specmc_ feature that_ the three- apother very important issue, which was not investigated
dimensional liquid crystal class has in common with the two-jy getail by the first theoretical and experimental work, con-
dimensional crystal class is that, if the thermal fluctuationserns the effects of finite size on the dynamics of reald
were any stronger, they would destroy the phase, or, equivaherefore finit¢ experimental systems. The theoretical alge-
lently, move the phase transition temperature to zero debraic divergence of the correlation functions only occurs in
grees. LMD occurs at three dimensions for these liquid crysthe thermodynamic limit—and it is clearly impossible to do
tals because of their unusual elasticity—they have morexperiments on infinite samples! How does the size of the
violent thermal fluctuations than three-dimensional crystalssystem come into the problem? How big must we make our
The thermal fluctuations in two-dimensional crystals aresample so that we will see the bulk behavior? Can we ever
comparably violent, and also destroy the long-range ordeachieve this limit? How small must we make it before we see
that would be present in the absence of the thermal fluctuahe surface effects? Can we ever achieve this limit? What is
tions. The special order in systems that are precisely at thethe right theory for finite-size samples with real surfaces?
LMD—and consequently do not have long-range order, buHow does the surface tension come into the problem? What
still have the same special kind of order that is found insets the relaxation time scale in realizable experiments? We
normal systems precisely at their critical points—is calledanswer these questions in this paper. So, our second goal is
guasi-long-range order, or algebraic order—so named bee extend both the theory and the experiments to include the
cause the correlation functions decay algebraically in spaceffects of finite size on the dynamic critical phenomena in

Because of the uniqueness of the LMD phases, and behe liquid crystal systems.
cause of their direct relevance to our modern understanding The fluid smectic liquid crystals have a layered structure,
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with two-dimensional fluidlike order within the layers, and physical sense of this equation is simple: it expresses New-
with a special kind of one-dimensional translational orderton’s second law for the acceleration along #hdirection in
along the layering direction. The long-range order whichterms of the elastic and viscous forces. Elql) results from
would be present at zero temperat@esen for infinite size the complete set of hydrodynamic equati¢h§] when it is
systemy, is destroyed by the effect of the Landau-Peierlsassumed that the density adjusts to the layer distortions, i.e.,
thermal fluctuations when the system size tends to infisity the isotropic part of the stress tensor vanishes, and when the
any nonzero temperatyrerhis results in an algebraic decay wave vector is in the regimg,<q, (the sliding geometry
of the density autocorrelation function. As noted above, thavhich is the regime of interest in the calculation of the dis-
corresponding Landau-Peierls static critical behavior haglacement autocorrelation function. This is because for typi-
been studied both theoreticalljt] and experimentallyf2].  cal thermotropic smectié materials K/B)Y? is of order of
More recent work has also been devoted to understanding thee layer spacing, which means that the wavelengths of the
effects of finite system size on the smectic layer fluctuationshermally excited compression modes are much longer than
in smectic liquid crystal§3—9]. We also note a closely re- the wavelengths of the thermally excited undulation modes.
lated work of Lei, Safinya, and Bruinsne al. [10] on lyo-  This allows us to greatly simplify the hydrodynamics for the
tropic lamellar phases. However, this early finite-size worksmecticA phase.
also focused only on the static critical behavior. It is well known that in the general case wheis oblique

To go beyond the static description of the correlations inwith respect to the layers there are two pairs of propagating
smecticA liquid crystals, it is necessary to study the hydro-modes, referred to as the “first sound” and the “second
dynamics of the smectid- phase. The full hydrodynamic sound,” respectivel)f17]. These acoustic waves satisfy hy-
behavior of smectic systems is very complicated since therdrodynamic equations in the limit of small wavevecténs
are five viscosities involveflL1], and four of these viscosi- dissipation. Quite often these modes decouple, i.e., the first
ties diverge aso~ ! in the low-frequency limif12]. These s essentially a density modulation, whereas the second cor-
divergences are the direct consequence of the anharmoniesponds to a modulation @f Then the speed of the first
terms in the elastic energy of the smedigghase, which are soundc; is isotropic as in ordinary fluids. The speed of the
required by the rotational invariance of the free endrgj. second sound, however, is strongly anisotropic, and it is
However, the wave-vector and frequency regimes that domigiven by c,~ (B/p,)*?sin #cos6, where 6 is the angle be-
nate the layer displacement fluctuations—which prove to béweenq and the optical axis. This decoupling occurs in the
the regime w~q,~q>, where g, and q, denote the limit of an incompressible fluid. It is also satisfied whep
wavevector components parallel and perpendicular to thekq, . It can also be shown that in both limits the contribu-
layer normal, respectively—are unaffected by the nonlinearition of the first sound to the dynamic displacement autocor-
ties[12], except for the weak logarithmic Grinstein-Pelcovits relation function is negligible. This means that we have to
effects on the staticgl3]. consider only the second sound mode, which becomes

In our previous papefl4], we formulated the hydrody- damped when the viscosity is switched on. Note that this
namic description of smectic-A films. Our work was a direct mode is correctly described by E(..1) for 6 close ton/2.
generalization of the hydrodynamics for bulk smectic-A sys-Indeed, neglecting the terms of higher order todrwe find
tems to the so called “sliding geometny[15]. We derived the dispersion relationo = (B/py)*%q,, which corresponds
expressions for the time-dependent displacement and density the second sound whep<q, .
autocorrelation functions for smectie-systems both in the In Ref. [14], we assumed that the inertial term is negli-
thermodynamic limit, and in the finite size, nonzero surfacegible, which means that the smecichydrodynamics could
tension limit, which applies to real freely suspended smectiche studied in terms of the overdamped limit. This approxi-
A films. To do this, we used the linearized hydrodynamicmation is self-consistent provided that
equations for the smecti&-phase, and the Gaussian model

of the layer fluctuations. If permeation is neglected, the poK
smectic layers move at the same rate as the local fluid does, e=—<1. 1.2
and then the hydrodynamics of bulk smedAdiquid crys- 73

tals in the sliding geometry can be described by only one

variable, namely the local displacement fialdr,t). This  For a typical smectié: liquid crystal we finde~10"°—
assumption is supported by a recent study by Chen and Ja$0 °, thus, in the wave-vector regimB:q§~qu , the in-
now [16] on the dynamics of smectis-films. They show ertial term can indeed be neglected. Then the relaxation time
that the permeation constant does not affect the power law, of the g mode is given by 15]

spectral behavior of the surface fluctuations.

Then in the Fourier representation, we found the follow- 730>
ing equation of motion: Tq:%, (1.3
, Bg,+Ka;
acu(q,t) , ou(a,t) 5 4
po 2 T MBAIT —(Bgz+Kapu(a.). Thus, the relaxation time, diverges asy, —0, provided

(1. thath§~qu . This divergence is a direct consequence of
the slow Goldstone mode associated with the broken trans-
Herep, is the average mass density; is the layer sliding lational symmetry.
viscosity, andK andB are the elastic constants correspond- It is possible to obtain an explicit expression for the dy-
ing to the layer bend and compression, respectively. Th@amic density autocorrelation functi@yr,t) in the thermo-
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dynamic limit, albeit in terms of special functions. The scal-only the asymptotics for, —«~. We found an algebraic de-

ing form of G(r,t) is given by[14] cay with the time-dependent exponent
2
r |\ 27 (2\/KBt r2 ) keTd; p( t)
| £ = x(t)= exp ——|. 1.9
G(r,t) o ) (1.4) (t) P 7 1.9

where 7=q2ksT/(87\KB) is the static exponeril], A This resﬁullt is consistent with the overdamped limit oy
=JK/B, a, denotes the molecular size cutoff, and <+<Udc"- . .
h(¢,y) is the scaling function. The three asymptotic behav- In this paper, we study the dynamic density autocorrela-

iors of G(r,t) (which occur in the two different large dis- tion fgncti_on _for a finite_—size, nonzero surface tens_ion
tance limits, and the long time limitare given by smecticA film in more detail. We concentrate on the scaling

properties ofG(r,t). In order to obtain the complete picture,
(4\|z|/a)~7 for |z]— we do not neglect the inertial term in the linearized hydro-
21 dynamic equations, as this term becomes important in the
G(r,,z,t)~ (16Kt/75ap) for t—e (1.5 g, —0 limit. We expect that our predictions concerning the
(r, lag)~27 for r, — o, time-dependent exponent for the range pfspecified above
will not be changed. However, they will be modified fior
Here|z| is the distance parallel to the layer normal,isthe  =q_!. It is interesting to see how the crossover between
distance perpendicular, ands the time. different asymptotic regimes occurs. We also investigate the
To study finite-size smectié-films, we used the discrete crossover between the bulk and the finite-size smekfitm
model[14]. In this model, the deformations of the film are penavior, and the scaling of the dynamic density autocorre-
described by a set of functions,(r,,t)(n=0,...N), |ation function with the film thickness.
whereN+1=L is the number of smectic layers in the film.  \when the system is finite in thedirection, the density
Thus,Ld is the thickness of the filmd(is the layer spacing  autocorrelation functiorfwhich is defined precisely in Sec.
This discrete model was developed earlier to describe thg) also depends on the film thickness. In this paper, we pro-

static correlation function$5]. Any arbitrary deformation pose the following scaling form for the density autocorrela-
can be expressed in terms of thenormal modes, which, in  tion function,

the Fourier representation, are functions @f. Conse-

quently, the decay of the deformation is described_bxe- B rp It

laxation timesr®(q,)(k=0, ... N). We studied the finite- G(ry ltL)=L""f MNaL' L'/ (1.10
size problem using the same overdamped approximation as

in the bulk case. Then the longest relaxation time, correHere the integer variabledenotes the difference between the
sponding to thek=0 mode, has a finite value in the limit |ayer indices. We will show that this scaling form is well

obtained forq, — 0, which is given by satisfied, except for very thin films where small deviations
occur. For thick films, we find thaB(r,t) has a region of a
_ e 3 bulklike behavior as predicted by formu(a.4).
=79(q, =0)=Ld=~. 1.6 | as predi Y
70=7"1(q,=0) 2y (1.6 The rest of this paper is organized as follows. In Sec. I,

we define the discrete model and calculate the formal expres-
Here y is the surface tension. This predicted form of thegjons for the displacement and the density autocorrelation
scaling ofrg with the film thickness has been confirmed in afynctions. In Sec. Ill, we compare the predictions of the scal-
recent coherent soft x-ray dynamic light scatteri®XDLS)  jng form (1.10 with the results of numerical calculations, to
experiment[14,18. The experimentally measured ratio of getermine the range of validity of the scaling form. Finally,

73/2y determined using SXDLS is in good agreement within Sec. IV, we discuss our results and present our conclu-
independent measurementsmf and y separately19-21]. sions.

In our previous pap€r4], we showed that the overdamping

assumed in our theoretical analysis is self-consistentjfor Il. THE DISCRETE MODEL FOR FINITE-SIZE
>q.; the value ofq. is given by SMECTIC-A FILMS
2007 A detailed treatment of the dynamics of a discrete stack of
o= 20 ) (1.7 membranes representing lyotropic smectic liquid crystals has
n3dL been presented by Ramaswastyal.[22]. Here we consider

a generalization of Ed1.1) to the case of finite-size smectic-

For typical values of the smecti-parameters, we find A films. This generalization is rather straightforward. The
discrete version of the harmonic Hamiltonian is given by
Qc~ \/Ex 10* cm™! (1.8 N-1

N—-1 2
u —Uu
Hz%fdzri[dBE (—”“ U +dKD (AL up)?
n=0 d n=1

This means that the length scale definedjbys comparable

to our experimental resolution cutoff. Note, however, that

for g, <q., the inertial term cannot be neglected. +[(V, Ug) 2+ (V un) 2]+ KJ (A ug)?+ (A uy)?] .
The asymptotic behavior o in the finite-size case is

different from the bulk case. Previously, we studigdt| 2.1
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Cnm(Q,t):<Un(Q,t)Um(_Q,O)>, (26)

equilibrium position. The surface layer bend elastic constant

K, (which has dimensions of dyn gnacts only at the two Where(---) denotes the equilibrium average over all dis-
surface layersi{=0 andn=N). Because of missing neigh- placements at=0, with the weight proportional to the
borsK, can differ fromKd. We assume that the system is Boltzmann factor exp{H/kgT). The equation of motion for
translationally invariant in they plane. Thus, in the Fourier C(Q,t) follows from Eq.(2.4) when both sides of2.4) are

representation, the hydrodynamic equatid®,23 has a

multiplied by u(—Q,0) and the thermal average is taken.

form of L coupled second-order differential equations for This procedure gives

un(q, ,t), i.e.,
92 9 Kgt+yqg? U;—u
2 sML 1 _ 1 0
<p0?+n3qLﬁ+T Uo= P
(2.2a9
(92
Po 730> —+Kq? |u
atz Lat 1 n
u 2u,+Uup,_
gL =" "7l o n=1,...N—-1, (2.2b
d2
92 9 Kat+yqg? Un_1—U
2 sd. n o Un-17UN
<p0E+7]3qLE+T Un=B—
(2.209

It is convenient to introduce the following dimesionless

variables: Q=1\dq, ,R=r, /\Ad, and t—tzysd/ KB,

92 d
e—+Q°—+M(Q)|C(Q,1)=0. 2.7
ot at

The formal solution of this equation fae0 is given by

C(Q,H)=C(Q,0
X[a(Q)—a-(Q)] Ha(Qexda-(Q)t]

where 7;d/ KB has the dimension of time. For simplicity, and

we use the same symbol for the dimensionless time. Now, it
is convenient to introduce matrix notation, in which the
Hamiltonian and the equation of motion can be expressed in

the following compact form

B
H=772 t(QM(Qu(Q), 2.3
Q

where u is the LX1 matrix with componentsu,(n

=0,...N), u'isthe matrix adjoint tay, and
70
e—+Q* - +M(Q) [u(Q,1)=0. (2.9
ot ot
HereM(Q) is anL X L tridiagonal symmetric matrix defined
by
Moo= Myn=1+7Q%+KQ*, (259
M,,=2+Q* for n=1,... N—1, (2.5b

Mn(n,]_):Mn(nJFl):_l, f0r n:].,...,N_l

(2,50

Here we have introduced two dimensionless paramet;_ers:

= /KB andK¢=K/Kd.

A. Displacement-displacement correlation function

—a_(Qext ay (T}, 2.9
where the matricea. (Q) satisfy the quadratic equation
€a?(Q)+Q%a+(Q)+M(Q)=0. (2.9

The initial conditions at=0
cQo="2 M), (2108
[ac(a?’t) t=0:0 (2.100

must be satisfied. The second equation follows from the fact
thatu(Q,0) andd;u(Q,0) are statistically independent.

The spatiotemporal Fourier transform of the displacement
autocorrelation function is given by

C(Q,w)= ff:dtexp( —iwt)C(Q,t)

dkgT
Bw

Im [M(Q)— (ew?+iwQ?)I1] !

(2.11

wherel denotes the unit matrix, and we have used the time-
reversal symmetry of2(Q,t). In the previous pape(see
Appendix B in[14]) we presented a method for obtaining an
explicit expression foM ~1(Q). Using the same method it is
also possible to give an explicit formula for the inverse ma-
trix in EqQ. (2.11). This might be of some use in analytical
studies of the asymptotic behavior of the displacement auto-
correlation function in real space. However, since we study
the problem numerically, we do not take this route.

In an alternative approach, used in this papd{Q) is
diagonalizedsee Appendix B i114]) andC(Q,t), which is
a matrix function oM (Q), is also expressed in this diagonal
representation. Thkth eigenvalue ofr. (Q)(k=0, ... N)

In the discrete model, we can treat the displacementcan be expressed in terms of theh eigenvalue of

displacement correlation function as laix L symmetric ma-

trix C(Q,t) with the components given by

M(Q), A%(Q), via the relaxation timer(Q) and the
frequencyw®¥(Q) of the kth mode as follows:
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FIG. 1. Relaxation time§in units of 5,d/(KB)/2] of normal modes v for a 16 layer thick film with the parametees=10"°, y
= GKS: 1. The inset shows the region of small wave vectors. In the main psEﬁ)eis plotted as the solid line. In the inset® (which has
been obtained from the overdamped limit where0) is plotted as the dashed line. Note that in this inset plot, only the breifleh-which
is represented by the long dashed line—can be seen.

1 branch[see Egs(2.13 and(2.14)]. For comparison, we also
aP(Q)=- W0 +io®(Q), (212 showr® obtained from the overdamped limié€0); it has
7-(Q) a finite limit for Q—0.

where B. Density-density correlation function

0®(Q)=0, (2.133 We start with the center-of-mass density opergdr

N
p(ry ,t>=psn§0 S(z—nd—un(r. 1), (2.1

Q) = (2.13p
Ty = , .
T Q% R-4a Q)
where pg is the density of molecules in the smectic layer.

if Q*>4ex®(Q) and The corresponding density-density correlation function in the
Fourier representation is defined to be

2¢
(k) _
7+ (Q)=—3, (2148~ .- _
B Q? <P(q,t)P(_q,0)>:P§Af d?r  expliq, -r,)
1 N
0M(Q)=5v|Q"-4erM(Q)], (2.14b x 2 exdi(n—m)dg,]G(r, ,n,m,t),
n,m=0
. . . . . (2.19
otherwise. All relaxation times eventually diverge in the
- —6 5
I|n_1|t Q—>O. However, because~10 °-10 ~ is very small, where A is the area of the film, and where
this divergence can only be seen for rather small wave vec-
tors. The frequencies of thie0 modes have finite limits G(r, ,n,m,t)=(exp{ig,[un(r, ,t)—um(0,001})
whenQ—0. For thek=0 mode, and for small wave vectors, Lo
it can be showri14] that =exd —z0;9nm(r..t)] (2.1
25,02 with
Ao~ (219 )
L gnm(rl yt):<[un(rL ,t)—um(0,0)] >

Hence,w(®(Q)—0 whenQ—0. In Fig. 1, we plot the re- In Eq. (2.18 we have used the fact thatis a Gaussian
laxation times vsQ, and the small wave-vector regime is random variable. In terms of dimensionless variables, we ob-
shown in the inset. The cusps correspond to the change ¢&in
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FIG. 2. InGL") as a function of IMR/LY?), for I=0 andt=0. In this figure, we display the results for the film thicknesses
=16,32,64, and 128.

Ill. SCALING FORM OF THE CORRELATION FUNCTION

kgT fm — —
R,t)= dQC 0+C ,0 G FOR SMECTIC-A FILMS
Inm(R,1) 27 JKBJo QA Cyn(Q,0+Crmn(Q,0) | | |
o In this section, we present the results of our numerical
—2Jo(QR)Crm(Q,1) ] (2.19  studies of the density autocorrelation functiGiir , ,I,t;L).

Our goal was to check whether the scaling formGfpre-

Here J, denotes the zeroth-order Bessel function, ahd Sented in Sec. [see Eq.(1.10] is correct. We have per-
=(B/dkgT)C is dimensionlessG=M"! at t=0). In the formed numenca! calculations of5 for the following
same overdamped limit approximation used in R&d], this  Set of dimensionless ~parametersy=6,e=10"°K
integral has a logarithmic divergence @t=0. Thus, it was = 1kgT/(d?\JKB)=4/45, andq,d=2. For practical rea-
necessary to introduce a cutoff at small wave vectors. Thi§ons, we have also introduced a cutoff at large wavevectors,
problem does not appear here, since all of the relaxatioRmax: t0 calculate the integral in Eq2.19, although this
times diverge whe®— 0, and the integrand remains finite at integral has a finite limit whe@,,— . In our calculations,

Q=0. we used Qa—=40. This set of parameters corresponds
Transforming the double sum in E(2.17, we obtain roughly to typical experimental values:kgT=4
X101 ergK=10"% dyn,B=2.5x10" dyn/cnt,d
(p(q,)p(—q,0)) =30 A,y=30 dyn/cmpy=1 glcn?,73=0.3 g/(cms),
anda,=4 A.

N First, we studiedSL" as a function of one of the scaled

_ 2 2 ; ;
—pSALJ d°r expiq, - rl)IZN exp(ildq,)G(r, ,I,t), variables when the remaining two variables are set to zero, to
check whether the bulk asymptotic behavior is recovered
(220  whenL—. In other words, the scaling functidi{ ¢, ¢, v)

where, by definition, must have the following properties:

N~ I f(4.00~¢" 2" for $—0, (3.
[t)=— +|1],1). 2.2
Gru )= 2 dronntlily. (229 OB O~y for Y0, 3.2
Thus, G is a function only of the layer indices difference, f(0,0p)~v~ "7 for v—0. 3.3
whereasg is a function of both indices. This is similar to
bulk smecticA systems. If the limitN—< is taken at con- In Fig. 2, we plot InGL7) vs In(R/LY?) for a few values

stantl, thenG reduces taj. For simplicity, the dependence of L. The scaling relation is rather well satisfied flae1

of G andG on g, and the film thickness has been suppressedand for thick films. For thin films larger deviations occur. In
In the next section we study the dependenc& o the four  the region of very smalR, i.e. R~1 or smaller, the scaling
variables:r  ,I,t, andL, for a wave vector satisfying the does not hold at all, and the limir— 0 depends ok.. In the
Bragg condition, i.e., fog,=27/d. region where the scaling is approximately satisfied, we can



3054 PONIEWIERSKI, HOLYST, PRICE, AND SORENSEN

PRE 59
100 L} L) L)
0.0 [ T —— be, .
~a_,
.
~~ -10 A‘ 5
-
- AL=16 “\%
) ——- L=128
N »
E 20t Y
\
\
A
\
30 F Y
|
|
[
|
-4.0 : ' : '
-4 3 2 1 0
In(l/L)

FIG. 3. InGL7) as a function of In(L), for R=0 andt=0. In this figure, we display the results for the film thicknedsesl6 and 128.

distinguish two asymptotic regime§l) R<L'? and (2) R The plot In(GL7) vs In(t/ 7o) is presented in Fig. 4. It is
>LY2 In the first regime, the slope of the ‘linear part is very similar to the plot shown in Fig. 2. Large deviations
~—2n, in agreement with Eq(3.1). In the second regime, from the scaling relation occur for very short times. Then
the slope approachesy, wherex= kBTq§/(47ry). there is a region of a quasibulk behavior te¢ 7y, i.e., the

In Fig. 3, InGL") as a function of Ini/L) is shown, for  slope of the curves is close tor [see Eq(3.3)], and finally,
L=16 and 128. The two curves are practically indistinguish-the slope approachesy whent> ry. The scaling becomes
able from each other. Some deviations from the scaling ocmore accurate for thick films, whereas for thin films larger
cur only for extremely thin films I(=4). Here only one deviations occur.
asymptotic regime, fol<L can be observed. The slope of In Figs. 5 and 6, we present [&["7) as a function of
the curve approaches » whenl/L—0, in agreement with In(R/ILY?) att=0 and InGL”) as a function of Ir{7,) at R

Eqg. (3.2. =0, respectively, for a few values of the ratiél and for a
g AL=16
o o1=32
A BN o L=64
03 % a g\g ——-L=128 1
RN
=
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) &
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— .02} Y .
\°\
\e\
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&‘6\&
-0.7 L L 1
4 2 0 2 4
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FIG. 4. InGL") as a function of In{r), for R=0 and|=0. In this figure, we display the results for the film thicknesses
=16,32,64, and 128.
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FIG. 5. InGL") in the static casetE0) as a function of IHLY?. In this figure, a few values of the ratio/l are shown for the
thicknessed = 16,64,128, and 256. Starting from the top, we display the curves for the ratio \alle428,16,8,4, and 2.

few values ofL. In order to study the scaling form @&, we  the limit R/LY?— . ForR>L'?there exists an intermediate
have chosen a particular setlpfor which the ratioL/l isan  region of approximately linear dependence with a time de-
integer. In this way we can easily compare the results fopendent slope. This is shown in Fig. 9, where the derivative
different L. It is clear from these plots that whér:0 the  d(InG)/d(InR) is plotted against/ 7, at IN(R/LY?)=2. This
scaling is very well satisfied even in the region of very smallis in a very good agreement with the asymptotic behavior of
Rort. G for largeR, i.e., withG~R X" as predicted in Ref14].

The dependence of IBL7) on In(t/ ) for a few values
of the ratioR/L*? andl =0 is shown in Fig. 7. For> 7, the
slope of all curves approachesy.

In Fig. 8, we plot InGL”) vs In(RILY?) for a few ratios We have proposed a simple scaling form for the dynamic
t/7y andL/I. All curves approach the same slope X) in density autocorrelation functio@(r,t) for smecticA films.

IV. DISCUSSION
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FIG. 6. In(GL") as a function of the dimensionless time variablé/lg)f for R=0. The choices of the values of the ratiod and of the
thicknessed are the same as in Fig. 5.
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FIG. 7. In(GL") as a function of the dimensionless timetlrg). In this figure,| =0, andR/LY?=0,0.2,0.5,1, and 10. The lines and the
squares correspond to the thickness value$si4 andL =32, respectively.

Our work is based ofil) linearized hydrodynamics, an@)  trol parameters provided by the bulk and surface smektic-
the Gaussian model of thermally driven layer fluctuations inmaterial parameters—namellt;, B, 73,7y, andK. Never-

the smecticA phase. We tested our postulated scaling formtheless, the results that we obtained using typical values of
by detailed, real-space numerical calculations Gfr,t). these parameters strongly suggest that the postulated scaling
SinceG depends on four variables—the two distanzesxd  form works very well, except for very thin films. In the limit

r, , the timet, and the film thicknest d—it is rather diffi-  of infinitely thick films, we recover the asymptotic form that
cult to completely verify the postulated scaling form numeri-we obtained previously—by neglecting inertia—for the
cally. Consequently, we have not attempted very detailedmecticA phase in the thermodynamic linjit4]. It is inter-
systematic studies of the dependencésadn the extra con- esting that the inclusion of the inertial term in the hydrody-
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FIG. 8. In(GL") as a function of INR/LY?) for the dimensionless time valuésr,=0,0.5, and 1. In this figure, three values of the ratio

L/l are shown; starting from the top, we displail =64,4, and 2. The lines and the circles correspond to the thickness \auE28 and
L =64, respectively.
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FIG. 9. The logarithmic slopdinG/dinR with In(RILY?)=2 (see Fig. 8 as a function ot/r,. In this figure, the logarithmic slope vs
dimensionless time plots are shown for the ratids= 64,4, and 2 when the thickneks-64. The dashed line corresponds to the exponent
x(t) defined by Eq(1.9).

namic equation of motion leads to the scaling formGfn S(q,t) LY~ 2F (q, VNdL,t/g), (4.0
which the time scale is given by the relaxation timgob-

tained from the overdamped, no inertia, approximationwhere

However, the divergence of the true relaxation times, in the . N

sma!l perpendicu_lar wave—vect.quﬂo limit, mapifests it—. F(qﬁ,v):f sdsJ(s)L L 2 f(s/|1]/L,v).

self in the long distance behavior of the dynamic correlation 0 I==N

function, which approaches the static correlation function i
the limitr , — . Thus, the long distance behavior &f{r,t)

in the direction parallel to the film is characterized by an S(q,t)NLl—nw/ZqIZw_ (4.2
algebraic decay with the surface expongntThe long time

behavior for films also differs from the predictions for bulk However, since the decay db is governed by a time-
smecticA liquid crystals. We observe that for times dependent exponent for a wide range rof values, there

~10r, or longerG also decays algebraically with the surface Must be analogous effects on the behaviorSeg,t). We
exponenty. defer detailed studies of the dynamic structure factor to the

We have also verified that the sum@fr, ,I,t) over| at future, so that we can compare our theoretical predictions

q,=27/d [see Eq.(2.20] scales with the thickness of the With our experimental results.
film as L1~ 7, provided that the film is sufficiently thicki(

nIn the limit asq, — 0, we find

~100). This shows that the sum is well approximated by the ACKNOWLEDGMENTS
integral overl/L. In this approximation, we obtain the fol- We gratefully acknowledge the partial support of this
lowing scaling form of the dynamic structure factor work by KBN Grants Nos. 3T09A07212 and 2P03B12516.
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