
3106

PHYSICAL REVIEW E MARCH 1999VOLUME 59, NUMBER 3
Analysis of transients for binary mixture convection in cylindrical geometry

Kristina Lerman, David S. Cannell, and Guenter Ahlers
Department of Physics and Center for Nonlinear Science, University of California at Santa Barbara, Santa Barbara, California 9

~Received 8 September 1998!

We present experimental results for early transients near the onset of convection of an ethanol-water mixture
in cylindrical containers heated from below. The separation ratio of the mixture wasc'20.08, and the aspect
ratiosG[r /d (r is the radius andd the height of the sample cell! of two different containers were 10.91 and
11.53. For this system the onset of convection occurs via a subcritical Hopf bifurcation to traveling waves.
Beyond the bifurcation we found transient radially traveling waves whose amplitude grew in time. We decom-
posed the transient patterns into azimuthal modes of the form cosmu. The azimuthal symmetry of the pattern
depended strongly onG. For G510.91 odd azimuthal modes were preferred, while forG511.53 even modes
dominated. We measured the spatial and temporal growth rates at variouse[DT/DTc21 for different azi-
muthal modes and compared the results for the two aspect ratios. We found the temporal growth rates to be
proportional toe, but the spatial growth rates were essentially independent ofe. Reflection coefficients
deduced from the spatial growth rates agree with theory reasonably well. As convection evolved, the patterns
collapsed onto one or more diameters, during which time higher-order azimuthal modes grew significantly in
amplitude.@S1063-651X~99!06403-X#

PACS number~s!: 47.54.1r, 47.20.Ky, 47.27.Te, 47.20.Bp
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I. INTRODUCTION

A thin, quiescent horizontal layer of fluid heated fro
below is unstable to the formation of macroscopic flow p
terns. The instability is a result of competition between
buoyancy forces experienced by the warmer, less dense
near the bottom and the dissipative effects of thermal c
duction and viscosity. The control parameter that measu
the external stress due to the temperature difference, the
leigh number, is defined as

R[
agDTd3

kn
. ~1!

Here a52r21(]r/]T)P,c is the thermal expansion coeffi
cient at constant pressureP and mass concentration~weight
fraction! c,r is the density,g is the acceleration due to grav
ity, k andn are the thermal diffusivity and kinematic visco
ity, respectively, andDT is the temperature difference be
tween the bottom and top of the fluid layer. In an infinite
extended horizontal layer of pure fluid of thicknessd, the
initial instability occurs when the Rayleigh number excee
its critical valueRc51708 @1#. The collective motion of the
warmer rising fluid and cooler falling fluid organizes in
rolls @2,3#. The wavelengthl of the pattern at onset, th
roll-pair size, is about twice the layer height. The refractiv
index variation associated with the temperature variat
which is induced by the fluid flow can be detected by opti
means and used to visualize the pattern@4#.

In binary-fluid mixtures, such as ethanol and water,
temperature and concentration fields are coupled through
Soret effect, so that an externally applied temperature gr
ent drives a mass flux. This results in a vertical concentra
gradient which, in the presence of gravity, can stabilize
destabilize the quiescent fluid layer. Consequently, in ad
tion to the Rayleigh number, there is a further dimensionl
control parameter, the separation ratioc, defined as
PRE 591063-651X/99/59~3!/2975~11!/$15.00
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STc̄~12 c̄!. ~2!

Hereb5r21(]r/]c)P,T is the solutal expansion coefficien
ST is the Soret coefficient, andc̄ is the mean concentration
In ethanol-water mixtures at reasonable operating temp
tures,c can take on moderately negative or positive valu
which depend on the concentration. Whenc is positive
~negative!, then the concentration gradient is destabilizi
~stabilizing!. In addition to the Soret effect, the Dufour effe
describes the heat flux generated by a concentration grad
but it is extremely small in liquids and can be ignored.

The existence of a second control parameter leads to
array of interesting states and dynamic patterns not obse
in pure-fluid convection@5#. In mixtures with sufficiently
negativec, the bifurcation from the conduction state is
subcritical Hopf bifurcation to a time-dependent state
traveling waves. A variety of nonlinear structures have be
observed in narrow rectangular and annular cells, includ
localized pulses of traveling-wave convection that coex
with quiescent fluid over a range of the Rayleigh numb
@6,7#, and ‘‘dispersive chaos’’@8–10# ~a regime character
ized by persistent erratic growth and decay of convection!.

Previous experimental work on binary-fluid convection
a two-dimensional system with cylindrical geometry r
vealed a complex sequence of transients@11,12#. The first
convection patterns seen above onset consist of rad
inward- and outward-traveling rolls. When the temperatu
difference across the fluid layer is kept fixed, the rolls loc
ize azimuthally into bands of nonlinear convection along o
or more diameters of the cell. There the amplitude becom
very large, while it remains small elsewhere in the cell. T
focused line~s! of convection then collapse radially to form
localized structure of convection near the cell center, s
rounded by quiescent fluid. This structure often is a lon
lived pulse, similar to the stable localized pulses of TW co
2975 ©1999 The American Physical Society
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2976 PRE 59LERMAN, CANNELL, AND AHLERS
vection observed in one-dimensional systems@6,7,13#.
Subsequent evolution of the nonlinear transient depe
strongly on the composition of the mixture@14#.

Theoretical efforts aimed at understanding binary-flu
convection have primarily focused on use of the comp
Ginzburg-Landau equation. This approach has qualitativ
described the behavior of patterns with one spatial degre
freedom@5,15,16#. There exists a body of experimental@17–
19# and theoretical@20,21# work on the subject of small am
plitude ~linear! transients of convection in negativ
separation-ratio mixtures in narrow rectangular cells. It w
shown@18,22# that at onset, the convection amplitude can
decomposed into right- and left-traveling waves~TW’s!. The
amplitudes of both TW’s grow exponentially as the wav
travel across the cell and the waves are reflected with los
the end walls. This behavior is similar to that which w
observe for cylindrical containers, with the waves propag
ing radially inward and outward and reflecting at the c
periphery.

A linear stability analysis for convection of a binary mix
ture in cylindrical geometry was carried out by Mercad
et al. @23#. They studied the case of insulating sidewa
which is not the case for our experimental arrangement,
they used fluid parameters quite close to our experime
ones. They found linear eigenfunctions in the form of spir
which rotate in the direction such that the arms trail. Beca
of reflection symmetry about the midplane, they find th
clockwise rotating right-handed spirals and counterclockw
rotating left-handed spirals are degenerate. Consequentl
perpositions of such spirals are equally valid eigenfunctio
Such a superposition, which the authors refer to as a stan
wave ~it is standing in the azimuthal but not in the radi
direction!, varies azimuthally as cosmu. The superposition
results in convection rolls which travel both radially outwa
and radially inward, as demonstrated by Fig. 6~b! of Ref.
@23#. In fact, the figure reveals the existence of a nearly p
standing wave~in the radial sense! at the cell center. This
results from the superposition of inward- and outwa
traveling waves of nearly equal amplitude. The figure a
shows that the incoming waves are smaller in amplitude t
the outgoing ones near the cell periphery, but that they g
in amplitude, relative to the outgoing ones, as they propag
inward radially. Their analysis also shows that for an asp
ratio close to our experimental ones the critical Rayle
numbers for the onset of modes with different azimut
mode numbersm can be nearly identical. Finally, they als
find solutions in the form of wall modes in which the co
vection rolls propagate azimuthally, while the cell center
free or nearly free of convection. For our fluid paramet
they find the critical Rayleigh number for such a wall mo
to lie about 0.8% above those for the cell-filling spiral mod
of low azimuthal wave number.

In this paper we present the results of a study of the ef
of aspect ratio on the linear transients in a 25.0 wt % etha
water mixture, in cylindrical geometry, with a separation
tio c'20.08. For this purpose we used two cells, one w
a radial aspect ratio~radius/height! G510.91 and the othe
with G511.53. We find that the linear transient consists
radially outward- and inward-traveling waves, and that
wave amplitude varies azimuthally as cosmu. Thus we ob-
serve a pattern that corresponds to the superposition
ds
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found by Mercaderet al. @23#. We find that several low-orde
azimuthal modes are usually present simultaneously, e
quite near threshold. ForG510.91 these modes are predom
nately odd, while forG511.53 even-m modes dominate. The
simultaneous presence of several azimuthal modes is
plained by the fact that the critical Rayleigh numbers
small m are very similar@23#. For the one aspect ratio the
studied,G511, Mercaderet al. found them51 andm53
modes to have lower critical Rayleigh numbers than those
low-order even-m modes. This is consistent with our findin
that even or odd modes are preferred for a given aspect r
We have never observed pure individual spirals, which m
indicate that some selection mechanism is operable, eve
the linear regime. On some occasions we have found sp
like patterns with strong azimuthal variation, such as wo
result from a superposition of two opposite-handed spirals
unequal amplitude. Such a pattern can be seen as the
image of Fig. 9. Finally, we have not observed wall stat
although we have not made any systematic search for th

The remainder of this paper consists of five sections. S
tion II describes the apparatus, mixture preparation and p
erties, and various experimental details. Section III is
voted to the quantitative analysis of the convection patte
Spatial and temporal evolution of the traveling-wave amp
tude associated with each independent azimuthal mode
studied by fitting solutions of a simplified amplitude equ
tion in cylindrical geometry@24# to the spatial and tempora
profiles of the waves. Decomposition of the patterns in
azimuthal modes enabled us to follow the evolution of ea
mode independently. Results for the two aspect-ratio c
during the linear transients are presented in Sec. IV. Sec
V provides a brief description of the nonlinear evolution fo
lowing the initial linear transient for each aspect-ratio cel

FIG. 1. Schematic diagram of the apparatus showing the c
vection cell, temperature-controlling bath, and shadowgraph ap
ratus. The arrows indicate the flow of temperature-controlled wa
used to maintain the sapphire top plate at constant temperatur
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TABLE I. Experimental parameters describing the mixtures.

c Tmean d G k n s L c tv

~°C! ~cm! (cm2/s) (cm2/s) ~s!

0.2504 20.539 0.362 10.91 0.00102 0.0247 24.12 0.006520.0795 128.24
0.2501 20.946 0.343 11.53 0.00102 0.0243 23.74 0.006620.0797 114.62
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II. EXPERIMENTAL METHODS AND MATERIALS

A schematic diagram of the apparatus is shown in Fig
The convection cell containing the fluid is located inside
stainless-steel can which is thermally insulated from the
vironment by means of a circulating temperature-control
water bath. The convection cell itself consists of a sapph
top plate and a silver bottom plate separated by an ann
Delrin spacer sealed to each plate by an O ring. The app
tus is optically accessible from above to enable shadowgr
observation of convection patterns. A typical convection
paratus of the type we used has been described in d
elsewhere@25–27#.

The top plate is an optically flat single-crystal sapphi
102 mm in diameter and 9.5 mm thick. The top surface
the sapphire is held at a fixed temperature to an accurac
1–2 mK by means of circulating water. The bottom plate i
90-mm-diam silver plate 9.5 mm thick, diamond machin
to a mirror finish. It has a 100V resistive film heater attache
to its lower surface, and two thermistors are embed
within it. The temperature of the silver plate is regulated
better than 0.1 mK stability. To minimize warping of th
rather soft silver plate, the plate separation was monito
interferometrically during cell assembly.

Two annular Delrin sidewalls, both with an inner diam
eter of 7.90 cm and an outer diameter of 9.4 cm, were u
They had different thicknesses,d50.362 cm and d
50.343 cm, resulting in radial aspect ratiosG5r /d
510.91 andG511.53, respectively. Each sidewall had an
ring groove on its top and bottom surfaces as well as
radial fill holes. The O rings were ethylene-propylene h
droxide cured, with a cross-sectional diameter of 0.119
We used six cylindrical Delrin posts, set into the sidewa
to fix the cell height. The height uniformity of the assembl
cells was within60.04%.

We used 200 proof ethanol and de-ionized filtered wa
for the mixture preparation. Mixtures were degassed by
‘‘freeze, pump, thaw’’ method. The relevant experimen
and fluid parameters for each sample are shown in Tab
Each fluid is identified by its alcohol concentrationc and the
aspect ratio of the cellG. The mean temperature given in th
table was calculated asTmean5Tbath1DTc/2. Literature data
for the thermal diffusivityk, Soret coefficientST , mass dif-
fusivity D @28#, densityr, and shear viscosityh @29# were
interpolated using polynomial fits to obtainn5h/r, the
Prandtl numbers5n/k, the Lewis numberL5D/k, and the
separation ratioc. The polynomial fits tor(c,T) were used
to obtain the thermal and solutal expansion coefficients.
vertical thermal diffusion timetv5d2/k was used to scale
experimental times, while lengths were scaled by the la
thicknessd.

The shadowgraph apparatus was nearly identical to
.
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described in Ref.@26#, and will not be described here. W
found a good compromise between sensitivity and distort
by using the charge-coupled device~CCD! camera to image
a plane corresponding to viewing the shadowgraph sig
about 3 m from the cell. The camera signal was digitized
an 8-bit resolution at each pixel. The static nonuniformit
in light intensity over the cell were removed from the ima
by dividing each image of convection, pixel by pixel, by
background image taken in the conduction state. For disp
purposes, but not during analysis, divided images were
scaled so that the largest value was set to 255~white on the
8-bit gray-scale used in display!, and the smallest value wa
set to 0~black!.

The convective threshold was crossed quasistatically,
making small steps inDT and waiting for 3 h between steps
The experimental thresholde[DT/DTc2150 was defined
to be halfway between the last point in the conduction
gime and the first point at which convection was seen. O
step size inDT corresponded toDe.0.0015. In order to
study linear transients fore,0, we allowed convection to
grow at a supercriticale, and then suddenly reduced th
temperature difference to achieve a negativee.

III. DATA ANALYSIS

At the onset of convection the azimuthal symmetry of t
observed pattern was broken in a way that depended stro
on the aspect ratio of the cell. In all cases the rolls filled
cell and traveled radially, consistent with the circular geo
etry of the container, but the amplitude of convection var
in a way that was consistent with a superposition of mo
having azimuthal variation of the form cosmu. Here m
50,1,2, . . . , is asmall integer. The dominant mode~s! de-
pended sensitively on the aspect ratio. ForG510.91, for
example, the dominant azimuthal modes were odd. Typ
patterns seen at this aspect ratio were a superposition om
51 @Fig. 2~a!# and m53 @Fig. 2~b!# azimuthal modes.
Modes with evenm were suppressed in this geometry. T
dashed circle drawn for reference in the image in Fig. 2~a! is
concentric with the cell. The circle crosses the line of nod
which is indicated by a dashed line. At the line of nodes
dark concentric part of each convection roll, correspond
to upflowing fluid, becomes light, indicating a region
downflowing fluid. If the aspect ratio is changed by a sm
amount'1/2, azimuthal modes of even symmetry are
vored at onset. Figures 2~c! and 2~d! illustrate patterns con-
sisting primarily of a mixture of them50 and other even
azimuthal modes seen in theG511.53 cell. Odd modes wer
also present for this aspect ratio, but they were gener
weaker. The presence of a number of azimuthal modes a
same time is indicative that the critical Rayleigh number
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2978 PRE 59LERMAN, CANNELL, AND AHLERS
nearly independent of the azimuthal mode numberm. This is
also consistent with the theoretical analysis of Merca
et al. @23# who found critical Rayleigh numbers form51
and m53 differing by only 0.02%, for parameter value
similar to those of our experiment.

These observations, together with the findings of M
cader et al. @23# and a simple, but physically insightfu
model, suggested by Cross@24#, motivated us to analyze th
data in the linear regime in terms of a superposition of va
ous azimuthal modes of the form cosmu. In this model the
convection amplitude away from the cell center is expres
as

ArC~r ,u,t !5ReH(
m

@Am
1~r ,t !ei ~qcr 2vct !

1Am
2~r ,t !e2 i ~qcr 1vct !#cos~mu1dm!J ,

~3!

wheredm is an offset,Am
1 andAm

2 are slowly varying ampli-
tudes which refer to waves traveling radially outward a
inward, respectively, andqc and vc are the critical wave
vector and angular frequency at onset, respectively. TheAr
factor is included explicitly to eliminate the natur
asymptotic large-r dependence of waves in a cylindrical g
ometry, leaving only a slow variation to be captured by t
amplitudesAm

6(r ,t).

FIG. 2. Azimuthal modes at the onset of convection in two ce
with slightly different aspect ratio.~a! and~b! are forG510.91, and
~c! and~d! are forG511.53. The dominant azimuthal modes in~a!
and ~b! are the odd modesm51 and m53. In ~c! and ~d! even
modes are dominant: image~c! is a mixture ofm50 and m54,
while in ~d! m52 dominates. In~a! the dashed circle, concentri
with the cell wall, is drawn to bring out the phase change associ
with the m51 mode. The line of nodes is indicated by the dash
line.
r

-

i-

d

e

The amplitudesA1 andA2 are assumed to satisfy linea
ized amplitude equations, as they do for pure-fluid conv
tion in cylindrical geometry@30,31#,

t0@] tA
1~r ,t !1s0] r A1~r ,t !#5 ẽA1~r ,t !, ~4a!

t0@] tA
2~r ,t !2s0] r A2~r ,t !#5 ẽA2~r ,t !, ~4b!

wheret0 sets the time scale for pattern growth or decay, a
s0 is the group velocity of traveling waves at onset. No d
fusion term is included in Eqs.~4! because it was shown t
be unnecessary for capturing much of the observed beha
of linear traveling waves in one-dimensional cells@20,21#.
The various parameters entering the model equations ma
obtained to a good approximation by linear stability analy
of the laterally infinite system@32# and are summarized in
Table II. In calculating these parameters we usedc values
chosen to reproduce the experimentally measured critical
quencies for the two samples, rather than the literature va
corresponding to their concentrations and mean temp
tures. The dimensionless critical angular frequencies w
found to be 5.99 and 5.87 for the aspect ratio 10.91 a
11.53 cells, respectively. The linear-frequency-basedc val-
ues were20.085 for the 10.91 aspect ratio sample, a
20.082 for the 11.53 aspect ratio sample, as compared to
literature values of20.0795, and20.0797, respectively.
The reader should also note the extreme sensitivity of
group velocitys0 to c. A change of only 3.7% inc results in
a 20% change ins0 .

Within the context of this model, the traveling-wave am
plitudes

Am
15am

1esmtelmrei ~qmr 2Vmt !, ~5a!

Am
25am

2esmte2lmre2 i ~qmr 1Vmt ! ~5b!

have exponential profiles in space, and grow~or decay! ex-
ponentially in time. Heresm and lm are the temporal and
spatial growth rates, respectively, for modem, am

1 and am
2

may be complex to accommodate phase shifts, andqm and
Vm are small deviations fromqc andvc , respectively. The
reader should note that we are using the term ‘‘spatial gro
rate’’ for the inverse length scalelm , which characterizes
the envelope of the linear-wave amplitude in the cell.
should not be confused with thee-dependent ‘‘spatial growth
rate’’ e/s0t0 that characterizes the growth in amplitude of
linear pulse of convection as it travels.

In order that the ansatz represented by Eqs.~5! satisfy
Eqs. ~4!, the relationshipt0s1t0s0l5 ẽ must hold. Onset
will be observed experimentally when the temporal grow
rates becomes positive. For finite aspect-ratio cells this o
curs for a positive value ofẽ given by

s

d
d

77
77
TABLE II. Parameters obtained from the linear stability analysis.

c G c Rc kc s0 t0 j0
2

0.2504 10.91 20.085 1879.6 3.1198 1.0544 0.10303 0.14
0.2501 11.53 20.082 1873.6 3.1198 0.8791 0.10305 0.14
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ẽs~G!52
t0s0

2G
ln g. ~6!

Thus there is an onset shift which is linear inG21, as was
found previously for the one-dimensional case@33,34#. For
the one-dimensional system, this onset shift has been m
sured experimentally@35# and used to determine values f
the reflection coefficientg.

The striking resemblance of Eqs.~5! to the right- and
left-traveling wave solutions of the linearized amplitu
equation in one dimension@18–21# reveals the motivation
for the model. In cylindrical geometry, the inward-travelin
wave atu becomes the outward-traveling wave atp1u, as
the wave moves through the cell center. This process m
also involve a phase shift which we denote byfc , and as-
sume to bem independent. This implies

am
15~21!mam

2eifc. ~7!

The waves are reflected by the wall atr 5G, and the
outward-traveling wave becomes the inward-traveling o
We denote the complex reflection coefficient bygeifr and
assume it also to bem independent. This results in the rel
tionship

am
25g exp@ if r #am

1 exp@2lmG#exp@ i2~qc1qm!G#. ~8!

Equations~7! and ~8! in turn imply

ln g522lmG ~9!

and

fc1f r12~qc1qm!G5~2n2m!p, ~10!

wheren is an integer.
Equation~9! indicates that, to within the accuracy of th

model, the spatial growth ratelm should bem independent.
It is also clear that, in the linear state,l is determined by the
modulus of the reflection coefficientg and the aspect ratio
G, and it should be independent ofẽ.

Because onset will actually occur first for the mode~s!
nearest the critical wave vector, i.e., withqm as small as
allowed by Eq.~10!, it is clear that, asG is varied, even- and
odd-m modes will be favored alternately at onset. T
change inG necessary to go from favoring even to favorin
odd m, or vice versa, is justDG5p/2(qc1qm).1/2, be-
causeqc.p, andqm!qc . Such behavior has been observ
previously@36# in rectangular cells, and is well described b
pairs of amplitude equations@33#.

It is necessary to decompose the convection patterns
their azimuthal modes, in order to determine the tempo
and spatial growth ratessm andlm for each mode. Figure 3
illustrates this process. The original image shown as Fig.~a!
was sine and cosine transformed azimuthally withm51, 3
and 5 in this case. This served to determine the offsetsdm .
The data were then multiplied pixel by pixel by cos(u1dm)
and averaged azimuthally. For example, Fig. 3~b! shows the
data of Fig. 3~a! multiplied by cos(u22.20). The azimutha
averaging eliminated all but a singlem mode and, after mul-
tiplication by Ar , produced a radial functionAm(r ,t0)
5 Re@Am

1(r ,t0)ei (qcr 2vct0)1Am
2(r ,t0)e2 i (qcr 1vct0)#. This
a-

ay

.

to
al

function is the sum of the outgoing and incoming wave a
plitudes corresponding to the selectedm at a given instant in
time t5t0 @see Eq.~3!#. It is shown in Fig. 3~c! for m51, 3,
and 5. Clearly the pattern shown in Fig. 3~a! is dominated by
the m51 mode, and has only weak radial dependence
maining after allowing forC}1/Ar . The weak radial depen
dence is consistent with the assumptions of the model.

We used Fourier demodulation to separate the radial fu
tion into outgoing and incoming waves. A time series of 2
successive determinations ofAm(r ,t) separated in time by a
fraction of the vertical thermal diffusion timetv was mea-
sured. Such a series is best displayed as a gray-scaled s
time plot such as is shown in Fig. 4~a! for data taken in the
G510.91 cell. Each horizontal line is a gray-scaled vers
of the measuredAm(r ,t) at a particular time, with successiv
measurements displaced upward along the time axis. In
case, the total time interval involved was 18.81tv . This rep-
resentation reveals the presence of both outgoing and inc
ing waves. The waves are quite similar in amplitude near
50, giving rise to a deeply modulated standing wave. N
the outer boundary atr 5G, the incoming wave is clearly
much weaker than the outgoing one, as would be expe
for a weakly reflecting boundary. The reader should note t
the left half of Fig. 4~a! is the reflection of the right half
aboutr 50, and contains no additional information. We r
tain both halves to emphasize the similarity to convection
a one-dimensional container extending from2G to 1G. It
does mean, however, that the ‘‘right’’-traveling waves a
outgoing in the right half of the space-time plot and inco

FIG. 3. Analysis of a pattern to determine the amplitude of
m51 mode: The pattern in~a! is multiplied by cos(u2d1) with
d152.2. The product, shown in~b!, is azimuthally averaged, an
the result, after multiplication byAr , is shown in~c!. Results for
other odd modes,m53 andm55, are also shown in~c!. The solid
line in ~a! shows the axis from whichu is measured, and the dashe
line indicates the azimuthal offsetu5d1 of the m51 mode.
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2980 PRE 59LERMAN, CANNELL, AND AHLERS
ing in the left half. The waves were separated into ‘‘righ
and ‘‘left’’ TW’s by Fourier transforming a space-time plo
such as that of Fig. 4~a!, using a filter which preserved onl
a single peak, and then inverting the transform. In orde
implement the filter, the signal at each point (r ,u) of Fourier
space was multiplied by a function of the form

@11tanh~r 2r 1!/wr #@11tanh~r 22r !/wr #

3@11tanh~u2u1!/wu#@11tanh~u22u!/wu#.

The parametersr 1 and r 2 set the radial, andu1 and u2 the
azimuthal, bounds of the filter. The parameterswr andwu fix
the sharpness of the cutoff in the radial and azimuthal dir
tions, respectively. The results of this procedure are ill
trated in Figs. 4~b! and 4~c!. Figure 4~b! is a gray-scaled
representation of the modulus of the Fourier transform
Fig. 4~a!. Image 4~c! shows, also in gray scale, the real pa
of the inverse transform, with the filter centered on the pe
circled in Fig. 4~b!. The resulting time series of the ‘‘right’
TW’s show the steady growth in amplitude beginning af
reflection at the left side of image 4~c!, and continuing as the
waves pass through the cell center. Figure 4~c! also reveals a
significant phase shift as the waves crossr 50.

A signal proportional to the envelope of the right TW’s
obtained as the modulus of the inverse transform which
shown in Fig. 4~d!. The signal amplitude has been artificial
forced to zero atr 50, by the Ar factor, resulting in the
vertical black stripe in the center of Fig. 4~d! and the low-
amplitude regions visible in the centers of Figs. 4~a! and
4~c!. A horizontal cut through image 4~d! gives the spatial
dependence of the TW envelope at a fixed time. The l
hand half corresponds to radially incoming waves and
right-hand half to outgoing waves. A vertical cut at a fix
position reveals the temporal behavior of the right TW

FIG. 4. Time-series analysis of them51 mode.~a! Gray-scaled
image of a time series of 256 radial functionsA1(r ,t i), for the m
51 mode in theG510.91 cell for the same conditions as Fig. 3.~b!
Central region of the Fourier-transform plane, enlarged by a fa
of 2, showing the modulus of the transform. Performing the inve
Fourier transform after multiplication by a filter function center
on the circled peak, which corresponds to right TW’s, leads to
time series for the right TW’s shown in~c! and to their envelope
shown in~d!.
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Thus a vertical cut on the left half shows the growth or dec
of incoming waves with time and on the right half that
outgoing waves.

Figure 5 shows examples of the same type of analysis
the m53 mode as that presented in Fig. 4 for them51
mode. The most obvious difference is the larger region
small amplitude nearr 50. The width of this region in-
creased withm, as might be expected for waves having
nonzero correlation length in the direction parallel to t
rolls. Again a significant phase shift is visible in Fig. 5~c! as
the waves cross the center.

For each run, several series of 256 images, each se
covering a period of about 20tv , were collected. Such mea
surements were begun about 20tv after the last change ine.
Time scans at two fixed locations and spatial scans at
fixed times were extracted from the time series data for e
cell. For theG510.91 cell, the time scans were extracted
r 0566.5d. The spatial scans for this cell were extract
starting at timest152tv and t2514tv , as measured from
the beginning of each time series. The spatial scans w
averaged over a periodDt53tv . For theG511.53 cell, the
time scans were extracted atr 0566.8d. The spatial scans
were extracted starting at timest153tv and t2517tv , and
they were averaged over a timeDt53tv . The temporal av-
eraging of the data for the spatial scans was done to red
the effects of small scratches in the bottom plate.

Figure 6 shows examples of such scans both in time,
6~a!, and in space Fig. 6~b!, for the m51 mode in theG
510.91 cell. These scans were extracted from the time se
shown in Fig. 4~d!. In this run convection was allowed t
grow for '84tn at e52.331023, after which time the con-
trol parameter was reduced toe521.5331023. Even at this
negativee, the strong convection pattern evident in Fig.

or
e

e

FIG. 5. Time-series analysis of them53 mode.~a! Gray-scaled
image of a time series of 256 radial functionsA3(r ,t i), for the m
53 mode in theG510.91 cell for the same conditions as Fig. 3.~b!
Central region of the Fourier-transform plane, enlarged by a fa
of two, showing the modulus of the transform. Performing the
verse Fourier transform after multiplication by a filter function ce
tered on the circled peak, which corresponds to right TW’s, lead
the time series for the right TW’s shown in~c! and to their envelope
shown in ~d!. Note the relatively larger region of low amplitud
nearr 50 as compared to Fig. 4.
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continued to grow, and the pattern eventually became n
linear before dying out some time later. Data from this r
were not used for the purposes of measuring linear gro
rates, but the strong convection patterns are useful to il
trate the method of analysis.

The lines marked in~out! in Fig. 6~a! refer to ingoing
~outgoing! waves. For the spatial scan shown in Fig. 6~b! it is
obvious that there are regions both near the cell center an
the wall where the amplitude decays rather abruptly. T
decay nearr 50 is the result of multiplication byAr together
with the effects of filtering described above; the actual wa
amplitude is large near the cell center. Data from these
gions are indicated by dots and were excluded from the
discussed below.

To obtain the temporal growth ratesm of modem, we fit
the time scan by a single exponential of the formc
1Dmexp(smt), with Dm and sm adjustable. The small con
stant offset termc was fixed at 0.010, the value obtaine
from a time series of images without convection. This ba
ground comes from various sources: camera noise, light s
tered from scratches in the bottom plate, and nonuniformi
in the cooling bath flow. In fitting the data, the timet was
taken as the time from the last change ine, and thusDm
represents the amplitude at the time of that change. W
only the central 192 of the 256 points to reduce the e
artifacts associated with the Fourier transform and demo

FIG. 6. Analysis of the temporal and spatial growth of them
51 mode.~a! Two scans at fixed radial positionsr 566.5d, show-
ing the temporal evolution of the incoming and outgoing TW’s
the G510.91 cell. ~b! Line scan ~averaged over a period 2tv)
showing the spatial profile of the right TW’s from Fig. 4~d! at a
fixed time. The solid lines represent single-exponential fits to
data. In~b! only the points away from the cell center and side wa
~represented by circles! are fitted.
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lation of a finite image. Temporal growth rates of both t
outgoing and the incoming waves were measured and w
identical to within our accuracy, as would be expected. T
solid lines in Fig. 6 are the exponential fits to the data.

Spatial scans were also fit by an exponentialc
1Fmexp(lmr) with the same constant background offset.Fm
andlm were adjusted to give the spatial growth rateslm of
the modes. The spatial profiles are fit reasonably well
single exponentials, provided data near the walls and in
vicinity of the cell center are excluded from the fit. The so
line in Fig. 6~b! is the result of a single-exponential fit to th
portion of the data shown as open circles. The spatial gro
rateslm , especially those for weaker modes, were harde
measure and showed more variability than did the temp
growth ratessm .

The spatial profiles of the TW envelopes of all azimuth
modes display the same characteristics independent oe.
They all have a roughly exponential shape over most of
cell, excluding regions close to the center of the cell an
small distance from the side walls. In these healing regio
the amplitude of the rolls decreases rapidly. The heal
length is approximately one roll pair~one wavelength! in
extent. This is consistent with studies of traveling waves
narrow rectangular cells@22#. These features — exponentia
growth, the shape and length of healing regions — are g
erally insensitive to the details of Fourier demodulation,
particular to the size and sharpness of the region of Fou
space that is retained by the filter for demodulation.

IV. RESULTS AND DISCUSSION

We used the procedure described above to measure
temporal and spatial growth rates of different azimuth
modes as a function ofe in the two different aspect ratio
cells. Temporal and spatial growth rates of the strong
modes in theG510.91 cell are plotted versuse in Fig. 7.
The amplitude of the linear TW grows in time at a rate pr
portional to the distance from threshold,s5e/t0 . The spa-
tial growth rates, on the other hand, show little depende
on e. This is consistent with the model. The various straig
lines represent fits of the formy5a1be to the data. For
example, the temporal growth rate of them51 mode gives

e

FIG. 7. Spatial (l) and temporal (s) growth rates as a function
of e for the m51 and m53 modes in theG510.91 cell. The
straight lines are fits to the data. The dashed line is a single fit to
combined spatial growth-rate data forl1 andl3 , and the solid and
dotted lines are the fits to the temporal growth rates,s1 and s3 ,
respectively.
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TABLE III. Results of linear fits of the formy5a1be, to the spatial and temporal growth rates
different azimuthal modes in two different aspect ratio cells, together with the reflection coefficieg
obtained from the spatial growth rates.

m asm
bsm

alm
blm

g

G510.91
1 0.009560.0009 10.2660.46 0.081260.0004 0.3260.15 0.17060.002
3 0.005260.0023 10.6560.70 0.078660.0006 21.8360.24 0.18060.002

G511.53
0 0.002560.0010 9.8960.37 0.08260.002 0.4660.58 0.15160.007
2 0.003660.0016 10.2460.40 0.07860.002 20.1460.41 0.16460.006
4 20.003360.0029 10.0760.81 0.08660.003 23.9860.84 0.13960.010
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510.360.45. These coeffi-

cients, and similar results form53, are collected in Table
III. The fits pass through zero ate52a/b52(961)
31024 for the m51 mode and2(562)31024 for the m
53 mode. Thus, to within the uncertainty of60.0008 asso-
ciated with the experimental threshold determination,
temporal growth rates vanish at the point wheree50. The
time scale for this mixture ist050.103; therefore, the slop
of the temporal growth rates, the inverse oft0 , is expected
to be 9.71. This agrees reasonably well with the experime
results of 10.360.5 and 10.660.7. Fits to the spatial growth
rates of them51 and 3 modes are also given in Table I
They provide no evidence of ane dependence.

Growth rates of different azimuthal modes in theG
511.53 aspect-ratio cell, at different values ofe, are shown
in Fig. 8. Again the temporal growth rates are linearly d
pendent one, and the spatial growth rates are independen
e. The coefficients derived from linear fits form50, 2, and
4 are also given in Table III. Temporal growth rates vanish
e52a/b52(361)31024 and 2(462)31024 for the
strongest modes. Again this is within the60.0008 experi-
mental resolution of the convection threshold. The coe
cients derived from fits to the spatial growth rates can
found in Table III as well. These results are also consist
with lm being independent ofe. Moreover, all the fits col-
lectively suggest that the temporal growth rates of all a
muthal modes in the two geometries evolve in the same m
ner with respect toe.

FIG. 8. Spatial (l) and temporal (s) growth rates as a function
of e for various modes in theG511.53 cell. The dashed and dotte
straight lines are fits to the spatial growth-rate data forl0 andl2 ,
respectively. The solid and short dashed lines are fits to the tem
ral growth-rate data fors0 ands2 , respectively.
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Because the gain in amplitude corresponding to pass
across the cell is balanced by reflection loss, the modulu
the reflection coefficient,gm , is related to the spatial growth
rate lm and aspect ratio:gm5exp@22lmG#. Thus, we may
use our results for the spatial growth rates of various mo
in the two different geometries to obtain values forgm . The
results are also collected in Table III. The average values
G510.91 (G511.53) areg50.175 (g50.151), with no
clear dependence onm. Physically, the value of the reflectio
coefficient depends on the ratio of thermal properties of
fluid and the walls, as well as on the lateral distance
which the walls extend beyond the fluid@33#. Analytic @33#
and numerical@37# investigations of thec dependence of the
reflection coefficient predicted that for small enough sepa
tion ratios,g}Aucu. However, experiments that used the o
set shift to determine the reflection coefficient in narrow re
angular samples@35# found that over a wide range o
negativec,g was constant and approximately 0.33. Th
value is about 50% higher than the theoretical@33,37,35#
value of 0.23 appropriate to the conditions of those exp
ments. For our experiments the ratio of the sidewall therm
conductivity to that of the fluid was 0.5. The ratio of th
sidewall thermal diffusivity to that of the fluid was 1.1, an
our sidewalls extended 3.9 thermal penetration lengths
yond the fluid. Consequently our experimental conditions
very close to those of curve~c! Fig. 2~a! of Ref. @37#, which
gives a theoretical reflectivity of 0.17 forc520.08. Our
results forg are in the range 0.14–0.18, and thus agree ra
well with the theoretical prediction. The most obvious diffe
ence between our experiment and previous reflectivity m
surements@35,38# is the presence of sidewalls in the recta
gular geometry, which are absent in the circular geometr

V. NONLINEAR TRANSIENTS

As the amplitude of convection grew, the linear state
ways gave way to a nonlinear one. During this evolutio
higherm azimuthal modes became detectable, and their
plitudes increased faster than did the amplitudes of the lo
m modes. Simultaneously, convection became locali
along one or more diameters of the cell. This focusing p
cess is illustrated by the sequence of images in Fig. 9 ta
at e521.031023 in theG510.91 cell. The images in Fig. 9
are indexed by time from the onset of convection, in units
tv . The linear transient was allowed to grow ate52.8
31023. The first image in the figure, att570.6tv , was
o-
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taken during the linear transient, whenm51 was the domi-
nant mode of the pattern. Shortly after this image was tak
the control parameter was reduced to a value below thr
old, e521.031023. At this negative value ofe the evolu-
tion of nonlinear transients proceeded in a manner very s
lar to their behavior at positivee. Azimuthal focusing had
became quite pronounced by aroundt5120tv , by which
time the convection amplitude was localized in a bro
double stripe along the diameter of the cell. With time, t
stripe continued to narrow, eventually forming a single ba
of convection slightly beforet5150tv . This band of con-
vection began to shrink away from the wall, thereby formi
a long pulse. Depending one, this second stage of collaps
resulted in a radially localized pulse of convection, ve
similar to the ones studied in one-dimensional cells@7,6#, or
a localized but disordered region of convection, which,
25% mixtures, grew to fill the cell with a steady state
stationary overturning convection@12,14#. During the pro-
cess of forming a localized pulse the TW frequency, m
sured near the cell center, gradually decreased to about 2
the linear~Hopf! frequency.

The time evolution of the outgoing wave amplitude of t
three strongest azimuthal modes is shown in Fig. 10. Th
amplitudes were computed from time series of images us
the techniques described previously. The scans for 50tv,t
,70tv show the evolution of the linear transients ate52.8
31023. During this time the pattern is dominated by them
51 mode, although all three modes have nearly equal t
poral growth rates. Aftere was decreased to a negativ
value, at time 75tv , all of the modes continued to grow, wit
the m55 mode doing so quite dramatically.

Figure 11 shows another example of the evolution of

FIG. 9. Evolution of nonlinear transients in theG510.91 cell
showing aximuthal focusing. The images are labeled by the elap
time since the onset of convection, in units oftv . Linear transients
were initially allowed to evolve ate52.831023. Shortly after the
first image in the figure was taken, the control parameter was
duced toe521.031023. Subsequent images were taken at t
value ofe.
n,
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nonlinear transient in theG510.91 cell. This run, conducted
at e53.831023, illustrates the infrequent case in which th
m53 mode was dominant in the linear regime. Convect
localized azimuthally along the three diameters of the c
corresponding to the angular locations where them53 mode
was strongest. After some time, convection along all th

ed

e-

FIG. 10. Amplitudes of the outgoing traveling waves of th
three strongest azimuthal modes in theG510.91 cell as a function
of time elapsed since the onset of convection. The data shown
times between 50tv and 70tv were taken in the linear regime ate
52.831023, with all modes having comparable temporal grow
rates, although differing considerably in amplitude. The control
rameter was reduced toe521.031023 around 75tv . Note the
remarkable increase in the amplitudes of them53 and m55
modes, following the reduction ine. This growth corresponds to th
azimuthal focusing process shown in Fig. 9.

FIG. 11. Nonlinear-transient evolution in theG510.91 cell at
e53.831023. Images are indexed by time since the onset of c
vection, in units oftv . The m53 mode evolves into a nonlinea
convection state involving three bands of convection localiz
along cell diameters, and this pattern subsequently collapses
ally to form a disorganized ‘‘blob’’ of convection.
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diameters collapsed away from the wall, leading to a loc
ized but disorganized ‘‘blob’’ of convection near the cen
of the cell. During this process the traveling-wave frequen
fell to about 1/3 of the Hopf frequency. The traveling-wa
frequency dropped to zero a few hours later, when the
filled with stationary convection rolls. Similar experimen
using a mixture with nearly the same separation ratio,
different alcohol concentrations revealed similar behavio
the linear regime, but rather different nonlinear evoluti
@14#.

Figure 12 shows the amplitude of the outgoing travel
waves for the four strongest azimuthal modes. For times
fore 80tv , that is, during the linear regime, the pattern
dominated by them53 mode, although the three stronge
modes have comparable growth rates. Focusing starts ar
90tv . After this time, the amplitudes and the growth rates
all modes increase, but those of the two highest modesm
55 and m57, increase more rapidly. For the perio
60tv –80tv the growth rates are s150.0328, s3
50.0467, s550.0446, ands750.0180, while for the time

FIG. 12. Amplitudes of the outgoing traveling waves associa
with four different azimuthal modes in theG510.91 cell ate
53.831023 as a function of time since the onset of convection
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period 90tv –110tv the growth rates ares150.0400, s3
50.0527, s550.0715, ands750.0917. The tendency o
the higher azimuthal modes to grow at much faster rates t
the lower ones seems to be a generic feature of the nonli
regime.

VI. CONCLUSION

A decomposition method for describing TW transients
binary fluid convection in cylindrical geometry has been p
sented and used to study transients in two different asp
ratio cells. The symmetries of the patterns are found to
pend sensitively on aspect ratio. ForG510.91, odd-m
azimuthal modes of the form cosmu were selected at the
onset of convection while the even modes were very we
For G511.53, on the other hand, even-m modes, including
m50, were dominant, and the odd-m modes were sup-
pressed. The analysis gives results for the spatial and tem
ral behavior of the slowly varying envelopes of the ingoi
and outgoing waves associated with each azimuthal mo
We found that the temporal growth rates of the strong
modes in both aspect ratio cells vanished at the experime
onset of convection, and varied linearly withe. The spatial
growth rates of all modes, on the other hand, were found
be independent ofe. The time evolution of individual azi-
muthal modes was followed well into the nonlinear regim
All modes exhibited comparable temporal growth rates,
though differing in amplitude, during the linear transient r
gime. During the nonlinear period higherm azimuthal modes
grew faster, becoming comparable in amplitude to lowerm
modes. This corresponded to azimuthal focusing of rolls o
bands of convection lying along one or more diameters
the cell, a characteristic feature of the nonlinear regime.
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