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Nature of the many-particle potential in the monatomic liquid state:
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The atomic configurational order of random, symmetric, and crystalline states of sodium is investigated
using molecular-dynamics simulations. Pair distribution functions are calculated for these states. Consistent
with the liquid- and random-state energetics, we find that, by cooling, the liquid configurations evolve con-
tinuously to random-state structures. For sodium, the random pair distribution function has a split second peak
characteristic of many amorphous materials and has the first subpeak exceeding the second subpeak. Experi-
ments have shown this to be the case for amorphous Ni, Co, Cr, Fe, and Mn. A universal pair distribution
function is identified for all random structures, as was hypothesized by liquid-dynamics theory. The peak
widths of the random pair distribution function are considerably broader, even at very low temperatures, than
those of the bcc and symmetric structures. No universal pair distribution function exists for symmetric struc-
tures. For low-temperature random, symmetric, and crystalline structures we determine average Voronoi co-
ordination numbers, angular distributions between neighboring atomic triplets, and the number of Voronoi
edges per face. Without exception the random and symmetric structures show very different trends for each of
these properties. The universal nature of the random structures is also apparent in each property exhibited in
the Voronoi polyhedra, unlike for the symmetric structures. Angles between neighboring Voronoi triplets
common to random close-packing structures are favored by the random structures whereas those hinting at
microcrystalline order are found for the symmetric structures. The distribution of Voronoi coordination num-
bers for both random and symmetric structures are peaked at 14 neighbors, but while the symmetric structures
are essentially all 14, the random structures have nearly as many 13 and 15 neighbor polyhedra. The number
of edges per face also shows a stark difference between the random and symmetric structures; the number is
broadly distributed about the peak value 5 for the random structures, but contains many more four- and
six-edged facegand very few five-edged facefor the symmetric structure§S1063-651X%99)02203-5

PACS numbgs): 61.20.Ne, 61.20.Ja, 61.20.Gy

I. INTRODUCTION many-particle structures. The energetically higher-lying
group was called random, since they are overwhelmingly
In liquid dynamics theory1] we postulated the existence most numerous and macroscopically uniform, and the lower-
of a very large number of nearly harmonic valleys in thelying group was called symmetric, since they are few in
many-particle potential surface. The stable equilibrium connumber and not macroscopically uniform. It still remains to
figuration at the bottom of a many-particle valley was calledexamine the symmetry properties of these structures, i.e., to
a structure. Noncrystalline or amorphous structures havexamine the geometry of the arrangements of the particles in
long been observed in molecular-dynami@dD) calcula- configuration space to see if the random and symmetric prop-
tions[2—6]. An important step in liquid-dynamics theory was erties are present as expected. This examination is the objec-
to divide the amorphous structures into two classes, randorive of the present work. In the end we shall find several new
and symmetric. The symmetric structures are supposed t@sults regarding the geometric characterization of random
have a remnant of crystal symmetry among near neighborgnd symmetric structures, and on the thermal broadening of
and because of this symmetry, are expected to be relativelyhe pair correlations for temperatures up to and including
few in number, and to have a significant spread in their macliquid states.
roscopic properties. The random structures are supposed to In Sec. Il, we investigate the radial correlations in atomic
have near-neighbor arrangements as random as possildenfiguration space by using our MD-calculated pair distri-
(compatible with the interatomic potentiabnd because of bution functiong(r). We do this for the bcc crystal, and for
this randomness, are expected to be overwhelmingly mosandom and symmetric states. We note that a considerable
numerous, and to be macroscopically uniform. This classifiportion of the work in Refd.2—6] was devoted to examining
cation is useful in liquid-dynamics theory, since it allows onethe radial and angular configurational order in low-
to ignore the more complicated but statistically insignificanttemperature liquid and amorphous solid states. Because the
symmetric structures, and to write a partition function as aconcept of random and symmetric states had not been estab-
sum over a large number of equivalent random structure valished, no attempt was made to categorize their findings ac-
leys. In the preceding paper, we used MD calculations taordingly. In contrast, here special importance is placed on
study a classical system of particles interacting through theomparing and contrasting tiggr)’s for the different classes
metallic sodium potential, at the fixed density of liquid so- of states: random, symmetric, and crystalline. Our findings
dium at melt[7]. We indeed found two distinct groups of demonstrate that the nature of the configurational order is
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strongly dependent on the class to which the many-particl@erations. Parenthetically, the minimal acceptable number of
valley belongs. stable iterations was taken by us to be 2000, but it was not
To deepen our understanding of the configurational ordeancommon to find stable plateaus that persisted for on the
it becomes necessary to identify a length scale akin to arder of 150000 MD iterations. When calculatirg(r),
nearest-neighbor distand®,,. One popular(though arbi- only those MD iterations were included in the time average
trary) choice is takeR,, as the point wherg(r) acquires a where the system remained on the flat portion of the poten-
minimum value between its first and second maxima. Betial energy plateau. In this way, the reporggd) are specific
cause of the limitations of that approach, we have chosen tm either states on the random branch or the symmetric
proceed differently by constructing the well-known Voronoi branch and were never averaged over a mixture of random
polyhedra specific to each atai®ec. Il). The Voronoi poly- and symmetric states, nor the transition region separating
hedra provide a partitioning of space inkd subvolumes, them.
such that the space contained in a given polyhedron is asso- Before proceeding with our discussion on the state depen-
ciated with one and only one atom. The Voronoi construc-dence of the pair distribution function, we first introduce
tion is unique and fills all of space. The advantage of this several variants af(r) that are useful in our analysis. When
construction is that the number of faces, the number of edgebe system is localized within a single many-particle valley,
per face, and so on, all provide information on the localas we observed for low temperatures, we shall denote the
configurational order. We use the Voronoi construction toassociated pair distribution function lgy(r). The indexy is
determine average Voronoi coordination numbéBec. the valley label. We also define te&ructurepair distribution
IITA), angular distributions between neighboring atomicfunction G,(r), for valley v, in the limit that the system
triplets (Sec. 1l B), and the number of Voronoi edges per becomes frozen into a structure.
face (Sec. lll O for the random and symmetric classes. The bcc crystal will provide us with an important refer-
The pair distribution functions for the random structuresence state since considerable information is already known
show a strong similarity to those that have been measured fabout the nature of the bcc pair correlations. In Sec. 1l A, it
several transition metals that have been arrested in amoprovides us with a reference pair distribution function to
phous states. In Sec. IV we review several such experimentompare to those of the random and symmeuigr)’s.
and make connections to the present work. Closing stateSonsequently, we will begin our discussion with the tem-

ments in Sec. V briefly summarize our work. perature dependence of bgér), obtained from MD using
the sodium potential of Ref7]. This is followed by discus-
Il. PAIR DISTRIBUTIONS AT ALL TEMPERATURES sions on the randonill B) and symmetrig(ll C) state pair

o ) o distribution functions.
The pair distribution functiorg(r), for liquids, crystals,

and amorphous materials, contains useful information about

the interparticle radial correlations. Our MD pair distribution A. bce states

functions are calculated in the standard way. About each chooser =0 to be an occupied bcc lattice site, then as the
particle, concentric radial bins are constructed with a Choseﬂemperature is decreased to zen(r) in Eq. (2.1) converges
small bin widthAr, W|th.the proviso that\r is sufﬁugntly to a value(perhaps zefoequal to the number of lattice sites
small to resolve numerically all relevant structureg(r). i the spherical shell of radiusand bin widthAr, centered
The number of neighbons(r) (a neighbor may be the peri- gpout the point =0. Omitting quantum effects, &t=0, in
odic image particlefor each particle is counted in each bin. the |imit of Ar—0, the bcc pair distribution functiog.(r)
The ensemble averagéime average for an MD equilibrium - pecomes the sum of a set of trdefunctions. This defines

statg of n(r) is then taken. Using the standard normalizationyhe strycture distribution functionG.(r). Since it is unique
factor that makeg(r) tend to unity as the correlations tend (y=1) we will denote it byG.(r)

to zero,g(r) is expressed as At any finite temperature, thé functions ofG{r) ther-
mally broaden and the bcc pair distribution function is prop-
g(r)= v (n(r)) 2.1) erly referred to ag,.{r). Since the characteristic measures

47Nr2Ar ’ ' of the potential energy curvature of the bcc vall€y,( 0.,

and® _,) are approximately the same as those of the random
whereN is the particle numbel is the system volume, and and symmetric valleyg7], then at any given temperature, the
the brackets indicate the time average plus the average ovetidth of the peaks irg,.{r) will give an estimate of the
all particles. Periodic boundary conditions are invoked in outhermal broadening present in the random and symmetric
MD simulations. valley g,(r)’s at the same temperature.

One of the important findings of R€f7] is that, for mon- In Fig. 1, three different-temperature MD,.{r) are
atomic supercooled sodium, there exist temperatures in th&hown. HereN=432 since this number of atoms in a bcc
range of 35 KT=200 K, where transitions from the ran- arrangement packs perfectly in a cubical box with periodic
dom to the symmetric branch occur readily during the actiorboundary conditions. Note, even as low &s0.356 K,
of running pure MD(Sec. Il B of Ref.[7]). Even in those gy {r), while having extremely narrow peaks, is neverthe-
situations one can still calculate meaningful “equilibrium” less not converged 8. By further reducing the tempera-
g(r). This is because of the relatively high temperaturequre the peak heights continue to grow while their widths
spanned by the transition window, and because it is alwaysontinue to decrease. At=0, when every atom is resting at
readily possible to find potential and kinetic energy plateausts minimum in potential, trueS functions will be realized
that are(metgstable and persist for many thousands of MDand g,.{r) converges toG,.{r). The effects of thermal
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FIG. 1. The bcc pair distribution functiogy.{r) for three dif- 1.,::,
ferent temperatures.

broadening, with increasing temperature, are clearly evident
in this figure. We also draw the readers attention to the
double split-peak structure on the the second maximum of
OpedF) at T=142.94 K, the details of which will be dis-
cussed in Sec. Il B and then again in Sec. IV. Results similar
to those in Fig. {c) have been reported by Brown and
Mountain[8] for supercooled liquid Rb.

B. Random states
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FIG. 2. Random structural pair distribution functi@,(r) for

four different random valleys. The small wiggles on these curves
vanish asN increases.

the universalnature of ther dependence o6 ,(r) for ran-
dom structures. The second property pertains to the continu-

,L | ous evolution ofg(r) from the liquid to the random states as
the temperature is reduced into the supercooled regime. This
0 P TS U W W A L and random states.
8 10 12 14 16 18 2

second property provides further evidence linking the liquid

To expound on the first property, we use our MD simula-

30 - < < < tions to calculate the pair distribution function for low tem-
perature T<3 K) random states. The pair distribution
A BCC CRYSTAL functions for four different random valleys are shown in Fig.
T=0356K 2. The potential and kinetic energies for these four valleys
are consistent with energies on the random brafaf 3 of
Ref. [7]), and the system is no longer sampling multiple
random valleys(see Fig. 11 of Ref[7]), at least for time

6 T T ¥

Liquid and
Random States

N = 1000
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FIG. 3. The liquid pair distribution functionT(=390 K) and
random pair distribution functions (0.002<KT=<201 K). This
In this subsection we establish two important properties ofigure illustrates the continuous evolution of the random states into
the random pair distribution functions. The first property isthe liquid, with increasing temperature.
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durations relevant in our simulation. near 150 K. The increased width of the maximaGy,{(r)

The fourg,(r) are very similar to one another with the are caused by the random placement of atoms, and not by
exception of small wiggles that are increasingly pronouncedhermal vibrations of atoms about their equilibrium posi-
with decreasing\. When overlaid, one on top of the other, tjgns.
the fourg,(r) differ only by these wiggles. The wiggles are i) In this work we are often in regimes of extreme low
N dependent, and appear to be absenNby3000. The ori-  temperatures where quantum effects should not be negli-
gin of the wiggles is clear and will be elaborated on at thegipje. The role of quantum effects will be to further broaden
end of this subsection. and smooth the pair distribution functions. We refer the

By reducin.g the temperature of the=_30_00 valley belpw reader to Campbell's revie|®] for a comprehensive discus-
0.73 K we find essentially no quantitative change in the

T sion on pair distribution functions in quantum liquids.
shape ofg,(r). This is also true for the other three random . R .
valleys. We conclude that thel=3000 pair distribution (iv) We now return to finite-size effects, discussed above,

‘ T that led to the small wiggles observed in Fig. 2. Relative to
function has converged to thstructure pair distribution r=0, each randong,(r) can be decomposed int t of
functionG,(r), associated with its valley. If we ignore, as o gy P 0aseto

we should, the wiggles that arose from finite-size effects, th hermally brogdeneab‘ funct|ons._ One expects the thermal-
other three valleys have converged to the saBr). roadgne(_j width of each function to be on the order of
Moreover, our investigation, through numerous quenched10S€ in Fig. 1a), for the bee crystalNote, the widths of the
into the random valleys, has demonstrated with overwhelmWiggles forN=168 in Fig. 2 appear consistent with tiée

ing evidence, that a singleniversal G,(r) exists(omitting ~ function widths of Fig. 1a).] For N=168, thes functions
the smalN wiggles, which we callGg,{r). This observa- are few enough in number such that, even upon averaging
tion is in agreement with the prediction of liquid dynamics over allN particles, they can still be resolved from the back-
theory, that random valleys have universal average propeground distribution. However, fdd= 3000, this is no longer
ties in the largeN limit. [1] the case, and the number &ffunctions is so great that they

We now turn to the second property of the randgyr). are no longer discernible. Ad tends to infinity, we believe
The random valleys possess order that is much more liquicdthe distribution function will remain smooth even at zero
like than (microjcrystallinelike, thus it is obvious that one temperature and a&r—0. Of course, in any real system,
should study the temperature evolution of these states wituantum effects will additionally smooBg,{r).
the goal of relating the liquid to the random states.

From very low temperatures, for example, £0K, up to C. Symmetric states
near 3 K,g,(r) is independent of temperature. As just dis- .
cussed, this constant loW-function is an expression of ~ We now compare and contragr) for symmetric states
G,(r). Thermal effects become readily noticeable abovewith the bce and random ones. The overall conclusion is that
10 K. For example, the height of the first peak, which is9(r) for any symmetric state is clearly distinguishable from
approximately 5.3 for temperatures up to 10 K, drops tod(r) for any crystal, and from th@g,{r). We will further
approximately 5 at 25 K. Figure 3 shows the continuousdemonstrate thaG,(r) for any symmetric valleyy is typi-
evolution of the pair distribution function for the random cally different for each symmetric valley. Consequentiy,
states up to normal liquid temperatures. It is evident fromuniversalGg(r) exists. We now summarize our findings.
this figure that liquid states are properly viewed as a subset First, for each symmetric valley,(r) loses temperature
of the random states. This is of course consistent with thelependence and converges to a constant curve as the tem-
notion that the liquid and random states fall on a singleperature is lowered. Specificallg,(r) changes very little
branch in kinetic energy versus potential energy space.  below 10 K, and changes almost imperceptibly below 1 K.

We now focus on several miscellaneoatheit relevant  Hence, at these low temperatui@s(r) has seemingly con-
topics regardin@ra{r). verged to the structure pair distribution function

(i) The random structur&g,{r) has first, second, third, G,(r). G,(r)’s for three different symmetric structures are
and so forth, maxima. Inspection of Fig. 2 shows that theshown in Fig. 4. While this low-temperature convergence
second maximunicentered at approximately 4@ is split  property is essentially the same for symmetric and random
into a first and a second subpeak, and moreover, the firsalleys, it distinguishes a symmetric valley from any crystal-
subpeak exceeds the strength of the second subpeak. Whigme valley.
compared to the counterexampl&ecs. Il A and Il G, this Second, for a symmetric valle@,(r) is highly irregular
behavior of the split-peak strength is characteriatimeof  in the sense that it is composed of a significant number of
the random states. For the bcc case, the broad peak at tharrow peakgc.f. Fig. 4, the number being 50% more than
same location ing,.{r) [Fig. 1(c)], which comprises the for the bcc lattice, out to 24),. This composition implies
third- and the fourth-neighbor shells, is also split, but withthat the symmetric structure has more symmetry than the
the first subpeakower than the second. We shall return to random structure but less than the bcc crystal.
this point in Sec. Il C and then again in Sec. V. Third, the locations and magnitudes of the peaks ir)

(i) The maxima widths exhibited b@r,{r) are in sharp differ noticeably from one symmetric valley to anothi€ig.
contrast to those afi,.{r). Ggra{r) has a very broad first 4). This agrees with the prediction of liquid-dynamics theory
neighbor maximum, relative to the crysti@nd also to the [1]that symmetric structures possess a wide variation in their
symmetric states discussed in Sec. |l Eor example, the average properties, even in the lafgdimit. Above a tem-
first maximum ofGg,{r) has a width comparable to that of perature of around 100 K the subpeaks have broadened to
the first maximum ofy(r) for a bce crystal at a temperature the point whereg,(r) is a rather smooth function of radial
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positionr. Figure 5 shows three examplesgifr) for states € Ll

on the symmetric branch. e
Fourth, two more noteworthy features distinguish any -

symmetricG,(r) from the universaGg,{r). First, the first-

neighbor maximum o6 (r) is narrower tharGg,{r); it is

approximately twice as high and half as wide. Second, in B

G,(r), the broad maximum at~11-1%, gets resolved

into four to five peakgFig. 4. As demonstrated in Fig. 5, 0

when smoothed by thermal broadeningTat100 K, this

becomes a broad split maximum, with the first subpeak 6 — T T T 771

lower in height than the second, like the bcc structure but A

opposite tog,(r) for a random valley. In this work, we ob- s SYMME;‘:‘S::QTE _

served that allg(r)’s from the symmetric branch had this N = 1000

characteristic behavior for their second maxima, indicating a

possible universal property of the elevated-temperature sym-

metricg(r)’s.

g y(r)
w
T

IIl. VORONOI DISTRIBUTIONS AT ZERO
TEMPERATURE

We will now make a more detailed study of the configu- L
rational arrangements among near neighbors in random and
symmetric structures. This is conveniently done in terms of
the Voronoi polyhedra. For a given configuration of the par- 0 2 4 6 8 10 12 14 16 18 20
ticles, the Voronoi polyhedron for each particle is unique. To r (bohr)

construct it draw lines connecting this particle with all other FIG. 5. Temperature dependence of the symmetric giate In
particles, bisect each line with a normal plane, and take thga) and (b) the system is confined to a single symmetric valley,

Sma!leSt p_onhedron enclo§ing the origi_nal particle. For aNYyhile in (c) the system exhibits a slow diffusion among symmetric
configuration, the Voronoi polyhedra fill space, and each,a”eys_

face belongs to two polyhedra. If the configuration of the

particle is a crystal lattice, the Voronoi polyhedra are thepecome broadened by the thermal motion of the particles.

W|gner-Se|tz“ceIIs. Whep the meaning is clear, we use thech proadening merely obscures the underlying structural

simple term “polyhedra. _ _geometry, and so we eliminate it by working only with MD
At zero temperature, the particles are located at the minigysiems at very low temperaturesTat 103 K, where our

mum of a valley in the many-particle potential surface. Thisyytg accurately represents the condifion 0.
stable equilibrium configuration is a structure, and we are

interested in local geometry of structures, as measured, for
example, by the number of near neighbors, or the angles
formed by near-neighbor triplets. If the system is warmed The number of faces of a polyhedron is a coordination
from zero temperature, these measures of local geometry wilumber, but is not simply the number of nearest neighbors.

A. Distribution of coordination numbers
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00— 7 T ;T T T T T T T distribution for random and symmetric structures are in stark
oas | @ Pe 1 contrast. The random distribution is rather broad, with con-
040 | _ | ] tributions fromN,=13 and 15 being at least half the contri-
bution fromN,= 14, and with significant contributions also
033 1 : 1 from N, =12 and 16. The symmetric distribution is very nar-
~ 030F 1 row, being almost entirelil, = 14, only very small contribu-
g ol [ ] = : | i tions fromN,=13 and 15, and nothing else of importance.
& 020 b ] The distributionsP(N,) we have found are qualitatively the
' same for all random structures on the one hand, and qualita-
015 : 0001‘ tively the same for all symmetric structures on the other
0.10 | 1A hand. As is clear from Fig. 6, given the graphRfN,) for
00s | 4 any noncrystalline structure found in the present study, we
000 L | b HERNN can positively identify the structure as random or symmetric.
’ 12 13 14 15 16 17 12 13 14 15 16 17
NV
B e e e e e LIS B m mo o v B. Angles between Voronoi neighbor pairs
o P® = — © ) ) _ _
0.90 - _ ; : ] The lines from the central particle to two of its Voronoi
080 F . neighbors intersect at anglé The distribution of these
070 L ; ] angles, normalized so that it is a probability density, is de-
i : notedP(6). Here the normalization is made in termséih
5 r i degrees:
Z 050+ .
A
040 i 5 . 180
030 | - f P(6) do=1. (3.1
020 | i ; . 0
0.004 0.002 0.0001 0.001 0.003
olor ir — l l Obviously, for a given polyhedron, the set of angles will
000 1 1 1 1 Lol | o B TI 11 1 1 1 e hbt d d th b ff . tth
12131415 16 17 21314 15 2131415 16 xhibit some dependence on the number of faces, since at the
N, very least, the more the faces present, the smaller the angles

will tend to be. It is therefore of interest to classify the poly-
FIG. 6. DistributionP(N,) of the Voronoi coordination num-  hedra according to their number of faces, and to evaluate

bersN, for two different random structurdsop) and three different P(6) separately for each class.
symmetric structuregoottom. Figure 7 shows a set of fiie( ) distributions for random

structures, and eadR( ) representing polyhedra with fixed

N,, for N,=12-16. Each graph show& ) for two differ-
To see this, consider the primitive cubic lattices of bcc andent random structures, one each with 500 and 1000 particles.
fcc structures. For the bec crystal, the polyhedron has eightVe notice that the two distributions in each graph are essen-
hexagonal faces that bisect lines from the central particle tgally identical, differing only in their fluctuations. Hence
its eight nearest neighbors, and has six square faces that liig. 7 demonstrates once again that different random valleys
sect lines from the central particle to its six second neighare macroscopically identical up to fluctuations, or equiva-
bors. Hence for the bcc crystal, the polyhedron has 14 facegntly, are macroscopically identical in the linht—c. The
and the 14 coordinated particles constitute both nearest- ardrger fluctuations alN,=12 and 16 result from having
next-nearest neighbors. For an fcc crystal, the polyhedrofewer samples of polyhedra with these coordination num-
has 12 rhombic faces that bisect lines from the central parbers.
ticle to its 12 nearest neighbors, and that is all. However, for The general characteristics B{ ) for the random struc-
the fcc crystal, lines from the central particle to its six secondures, as seen in Fig. 7, are a broad distribution, with peaks
neighbors pass through the vertices where four faces meet, atound 60 and 120, and with movement toward smaller
half the distance to the second neighbors. If, for exampleangles as\, increases. For the peak at 60, rather symmetric
two of the fcc second neighbors are each moved a littlén shape aiN,=12, a small shoulder at smaller angle, say,
closer to the central particle, then the two vertices of theapproximately 50, appears &,=13, and this shoulder
polyhedron will become small planes, and the number ofgjrows and moves to still smaller anglesNjsincreases, until
faces will be 14. For the random and symmetric structuresit N,=16 the whole feature becomes a band in the range
we find here, the polyhedra have from 12 to 17 faces. For 40—60. Again, starting aN,=12, where broad peaks are
given central particle, the number of its polyhedron faces igpresent at approximately 120 and 170, a similar development
called its coordination number, denoted Ky, and the co- through the appearance and growth of new shoulders moves
ordinated neighbors are called its Voronoi neighbors. these peaks, respectively, to approximately 100 and 145 at

Figure 6 shows the normalized distribution of coordina-N,=16.

tion numbersP(N,) for two random structures and for three  Figure 8 shows a set of thrd®( ) distributions, corre-
symmetric structures. The universal property of these graphsponding toN, =13, 14, and 15 for a single symmetric struc-
is thatN, =14 is the most prevalent value. Beyond this, theture. Again, the larger fluctuations At,=13 and 15 result
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FIG. 7. Distribution of angular correlatior?( ) between Voronoi neighbors for two different random structueen(degrees

from having fewer samples of polyhedra with these coordi-nearest neighbors for bcc; 45 and 135 appear among nearest
nation numbers. AN, =13, P(6) has major peaks at 60, 90, and next-nearest neighbors for fcc; while 65 and 115 do not
120, and 180. Upon increasiry, to 14, new peaks appear appear among nearest and next-nearest neighbors for either
above 60 and below 120, at approximately 65 and 115, refcc or bcc. However, the symmetri®y( 6) in Fig. 8 represents
spectively. But then, upon increasimg, to 15, those two T=0, while theT=0 distribution for a crystal structure is a
peaks recede, and others appear below 60 and above 120,s&t of  functions, so clearly, any local bcc crystalline sym-
approximately 45 and 135, respectively. Through this evolumetry that might be present is strongly distorted in the sym-
tion, the peaks at 60, 90, 120, and 180 remain intact. metric structure.

In the symmetric graphs of Fig. 8, the narrowness of the It was shown in the last section, by comparison of the pair
peaks, and their appearance and disappearance with changitigtribution functions, that the symmetric structures are no-
N, , suggests that the structure is composed of a set of locéiceably different from one anothésee Fig. 4 We can see
clusters of different symmetries, and with significant rangethis again in Fig. 9, which showB(6) at N,=14 for three
of angular distortions among clusters. We may notice thatlifferent symmetric structures. The thr&€6) are qualita-
the angles 60, 90, 120, and 180 appear among nearest neiglvely similar, with all showing the same main peaks at
bors for fcc; 90 and 180 appear among nearest and nex&round 60, 90, 120, and 180, but the three exhibit quantita-
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0025 T T T T T T Ll 1 0035 1 T T T T T T T
SYMMETRIC STATE (Nv =13) SYMMETRIC STATES (NV =14)
N = 500, T = 0.00001 K 0.030 - N=1000,T=0.01305K —
0.020 - N =500, T=0.00001 K ----
0.025 L N=500, T=0.044 K i
0015 0020
£ g
0.010 0.015 .
0.010
0.005 -
0.005
0.000 L HER AW vl ‘
0 20 40 60 80 100 120 140 160 180 0.000 L Lat L —
o 0 20 40 60 8 100 120 140 160 180
0
0025 T T T T T H T T
SYMMETRIC STATE (N, = 14) FIG. 9. Over-laid distributions of angular correlatioR§6) be-
N =500, T = 0.00001 K tween Voronoi neighbors for three different symmetric structiées
0.020 T in degrees
0015} . structure in Fig. 8, we can positively identify the structure as
£ random or symmetric.
0.010 - .
C. Number of edges per face
0.005 - The number of edges per face proves a most interesting
statistical measure. This measure is presented in Fig. 10, in
0.000 Y A S the form of a bar graph of the number of faces which have
0 20 40 60 8 100 120 140 160 180 3,4, ...,7edges. Graphs are shown for a random structure,
' 6 and a symmetric structure, each with 1000 particles. Again,
0.018 . T . — . T . the data are shown separately for polyhedra with 12-16
| SYMMETRIC STATE (N, =15) | faces. The normalization is such that the total number of
0.016 N =500, T = 0.00001 K - :
’ : faces in each separate bar graph, labeledNpy is the total
0.014 1 number of faces in the set of polyhedra with faces, for the
0.012 | structure in question. The one exception is the symmetric
A graph forN,=14, which was reduced by a factor of 20, to
& 0.010 |- i 2
x scale away the approximately 20-fold majority WNf =14
0.008 - polyhedra in the symmetric structu¢see Fig. 6.
0.006 - The universal properties we have found, for both random
and symmetric structures, are the number of edges runs from
0.004 3 to 9, while most faces have four, five or six edges. Here the
0.002 similarity ends, and a stark difference between random and
0.000 . . . ) . . . 4 symmetric again appears. For the random structure, the ma-
0 20 40 60 8 100 120 140 160 180 jority of the faces have five edges, but a significant number
b have four and six edges, while for the symmetric structure,
FIG. 8. Distribution of angular correlation®(6) between there are relatively few five-edged faces, and many more
Voronoi neighbors for a symmetric structui@in degreek four- and six-edged faces. Indeed among all the symmetric-

structure polyhedra, only 10% of the faces have five edges.

. : ) . This remarkable difference in the relative numbers of four,
tive differences that are well outside the fluctuations. Thesg, o 4nd six edges clearly distinguishes random and symmet-

differences are a notable property of symmetric structures;c sryctures. Once again we can say, given a single graph of
and apparently survive d$—e. the number of faces versus edges per faceNfpr 12 to 16,

Compared to the randof(0) distributions, the symmet- j e given a single graph such as the ten shown in Fig. 10, we
ric P(6) are sharper and more detailed, that is, they exhibitan positively identify the structure as random or symmetric.
more and narrower peaks. In addition, the prominent sharp |n the random graphs in Fig. 10, there is a small but
peak at 90 in the symmetric structure, and the weaker peak ateaningful evolution a, increases. The number of six-
180, are never seen in the random structure. In the presestiged faces is well below the number of five-edged faces at
work, the general sharpness B{6) is sufficient to distin- N,=12, but increases relatively d$, increases, until the
guish the symmetric structures from the random structuretwo are about the same Kt =15 and 16. In the symmetric
Given a single graph d?(6), for anyN, shown for random graphs in Fig. 10, noteworthy evolution with increasigis
structures in Fig. 7, or for ani{, shown for a symmetric not apparent.
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A The review of Angel[10] lists various experimental tech-

M ] niques used to structurally arrest materials in amorphous
| states. The experimental work discussed below relies on one
such technique, namely, vapor deposition onto an ultracold
substrate. In summary, these investigatdysexperimentally

— obtained supercooled states of various liquid meiafel al-
loys); (2) carried out scattering experiments using electron
- diffraction and then extracted the scattering intensty);

and (3) having obtained an amorphous state, attempted to
elucidate the underlying configurational order of the amor-
phous state by comparing the experimeht&l), or its asso-

500 | 1 ciated g(r), to hypothesized theoretical models of amor-
,—I_l—‘ phous materials. While the details of the experiments vary
infinmEmARANEIANANA Ll ialilils from investigator to investigator, the essence of each was to
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357 357 357 3 create thin films (20-1000 A) by vapor deposition of the
EDGES PER FACE material onto either liquid-nitrogen or liquid-helium cooled
TTTN=1 N =1 DTN =18 TN =16 substrates of various inert compositions. The experiments
350 Y Y Y Y Y were done in ultrahigh vacuum (18-10"° torr), and im-
purity contamination was extremely low. The rate of deposi-
tion was typically in the As? range.
20 | 4 One of the earlier papers on this study was by Davies and
Grundy[11]. Noncrystalline films of Ni, Co, and Co-P were
200 | . obtained by vapor deposition of these materials onto liquid-
— nitrogen cooled collodion substrates. The films were gener-
150 - 1 ally metastable to crystallization and thus all configurational
aspects of the study were performadsitu. The ambient
100 1= T pressure was 10 torr and the film thicknesses reached up to
1000 A thick. Davies and Grundy then extractgg) for
these materials. Initial attempts to explain their experimental
o Limmaemy bbb bl Jolbe il scattering functions in terms of fcc and hcp crystallites were
35 735 7 3 5 7 35 7 3 57 unsuccessful. The authors also concluded that their experi-
EDGES PER FACE mental intensity curves could not be obtained by diffraction

FIG. 10. Distribution of number of edges per Voronoi face for afrom small distorted fcc and hcp crystals arising from stack-

random (top) and symmetric(botton) structure. Both structures ing faults. They also concluded that the packing was not

haveN=1000. The random structure is at 0.0005 K and the sym-Consistent with models of dense random packing of hard
metric one is at 0.013 05 K. spheregDRPHS, though the agreement was better than for

the microcrystalline models. We refer the reader to the re-
view of Finney[12] for a discussion of DRPHS and its de-
rivative models. What is of special interest to us is tffe)
determined by Davies and Grundy as displayed in Fig. 2 of
It has long been recognized that the split second maxiRef. [11]. The split second maximum for both Ni and Co,
mum ing(r) is an indication that a material may be amor- characteristic of amorphous materials, has the same structure
phous. Extensive experimental work has been done to deteas we have found for supercooled Na. The intensity of the
mine g(r) for many different amorphous alloys and a lesserfirst subpeak of the split second maximum exceeds the inten-
number of amorphous monatomic metals. The goal, in thossity of the second subpeak. By immediate inspection, we
earlier studies, was to uncover the underlying configurationa¢xpect that Davies and Grundy have arrested Ni and Co in
order characteristic of amorphous materials. While these ethe amorphousandomstate.
forts are too many to review here, we will mention a suffi-  This work was soon followed by Ichikawa[4.3] thin film
cient number of them to obviate the relation between thosstudies on amorphous Ni and Fe, again by low-temperature
efforts and the present theory. condensatiorfliquid helium temperaturesin a high vacuum
We mention from the outset that we will not be concerned(P=10° torr), in conjunction with an electron diffraction
with amorphous alloys, but rather restrict ourselves to amorstudy. The substrate was polyvinyl formvar, film thickness
phous monatomic systems. The configurational order of theeached 90 A for Fe, and 20 A for Ni, and the rate of depo-
former requires investigating the partial pair distribution sition was 0.5-1.0 As. Many Ni films froze into fcc lat-
functions g,4(|r,—r4|) for speciesa and B (in a binary tices when the film thickness was allowed to grow to 30 A
alloy g11, 922, and g45). Since this case is beyond our or more. Indeed, further work showed that increasing the
present scope of interest, we make no mention of the relimpurity concentration in Ni facilitates the formation of the
evance of our present work to alloys. Unfortunately, becausamorphous phasd4].
of the relative ease of stabilizing amorphous alloys, many Upon analysis of the configurational order, Ichikawa con-
more experimental results exist for them than for amorphousluded that Ni and Fe pack most consistently with dense
monatomic systems. random packing mode[4.3]. Accordingly, he concluded that

z]
[
=]

NUMBER OF FACES

50 | ] 1

IV. COMPARISONS WITH EXPERIMENT
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these materials can not be described as an assemblage mény monatomic systems exist that can be arrested in an
minute crystals with bcc and fcc structure. amorphous state characterized with pair distribution func-
Of special interest to us is Fig. 4 in Rdf13], which tions that closely match owg,{r) for supercooled Na. We
shows his Ni and Fegy(r). Once again, these exhibit the believe that it is a small step to make the statement that these
same structure as we found for supercooled Na: the secorekperiments have arrested the structureandomvalleys.
maximum ofg(r) is split, and first subpeak exceeds the sec-This view is supported by1) the rapid cooling processes
ond subpeak. required to escape crystallization either in a perfect crystal or
The existence of an amorphous phase in Mn, Cr, plus Fa microcrystalline statéour symmetric statg¢sand (2) the
and Co films, was then proven by Leung and Wrigh5]. extensive work done by these investigators indicating atomic
We call to the readers attention, their experimental scatteringandom packing arrangements. Sodium, however, was obvi-
functions, shown in Fig. 2 of Ref15], which again have the ously not in the list of elements that have been arrested in the
same split maximum structure as those of the previous twgandom amorphous state. Insight into the reason for this is
investigations. Failure to obtain agreement between exper'given by Angell, Clarke, and Woodcogk9], who examined
ment and microcrystalline models was extended by Leungne role of the interatomic potential in the formation of amor-
and Wright to include fcc, strained and unstrained bcc, hephoys states. These authors assert that it is more difficult to
with and without stacking faults, even also complex CUb'Camorphoust arrest elements with softer catié® the alkali
structureA15. This finding was taken as evidence that theetgls withr ) than it is with elements with harder cores
amorphous structure is a distinct phase and has no IO”Qﬁke the transition metals with~1?), because soft-core par-
range order. It is interesting to note that Leung and Wrightjcjes can move past each other more easily and thus find
[15] also attempted to describe the underlying configurayheir way to the crystalline state. This simple picture is cer-
tional order as being one that is seeded by both regular and;,|y consistent with known experimental results. While it is
irregular icosahedra; again these attempts were unsuccessfyhqgiple in our MD simulation to arrest the alkali metals,
This was also found to be the case by Wantanabe and Miidg, -, a5 Na, in random valleys, quench times possible in the

[16]. This fin_ding is also consistent with the extensive recenﬁaboratory are far too long to escape crystallization.
work of LaViolette[6].

Leung and Wrighf15] also summarize indirect evidence
of a distinct amorphous phase. Their evidence includes resis-
tivity, magnetoresistence, and magneto-optical measure-
ments in Co; magnetization measurements in Fe; and Moss-

bauer hyperfine field and Hall measurements in amorphous Referencd 7] considered energetics, stability, and kinetic
cobalt. properties of the random and symmetric states. Our purpose
Next we mention early MD calculations by Rahman, here was to investigate the atomic configurational order of
Mandell, and McTagugl7] dealing with Lennard-Jones par- these states. Omitting details, we summarize our most impor-
ticles quenched to low temperaturgis3 K for argon. They  tant conclusions as follows(i) Both the pair distribution
again found the split second maximumg(r) (Fig. 1, Ref.  function and information on local positional order extracted
[17]) with the relative height of the first subpeak of the split from the Voronoi polyhedra support the hypothesis that ran-
second maximum being greater than the second subpeaffom valleys have universal propertiéa the limit of large
Once again, this is consistent with our picture that the systerny), consistent with the hypothesis of liquid-dynamics theory
had been arrested in @ndomamorphous state. Rahman, [1]. (ii) The symmetric valleys do not share these universal
Mandell, and McTagu¢17] noted the comparison of their properties.(iii) Given a graph ofG,(r), one can positively
g(r) with models derived from DRPHS, but also rightfully identify its class as random, symmetric, or crystallifig)
point out the relevance of the soft-core portion of the potenGiven a graph of thél) distribution of Voronoi coordination
tial. Further discussion into the importance of the soft corenumbersN, , or (2) the angular distributiorP(6), for any
was given by Finney12], who pointed out that the mediocre N | or (3) the distribution of number of faces versus edges
agreement achieved by using DRPHS could be improved bler face, as a function @i, , we can positively identify the
using random packing with more realistic potentials.  structure as random or symmetriz) For sodium the ran-
More recently, Ullo and Yig[18] carried out a detailed dom pair distribution function has a split second maximum
study of supercooled soft-sphere fluids using MD simula+that is characteristic of many amorphous materials. We find
tions. Their interest centered on uncovering a physicaihat the first subpeak of the split maximum structure of Na
mechanism responsible for a theoretically proposed transixceeds the second subpeak. Experiments have shown this to
tion, distinct from the glass transition, predicted to occur ing|sg pe the case for amorphous Ni, Co, Cr, Fe, and Mn. We
supercooled liquids. In the process of their study, Ullo andyelieve that these experiments indicate that the random struc-

Y|p calculated pair diStributiOIn functions for h|gh densities. ture has been observed in the |aboratory for the transition
At a temperature corresponding to 72 K for argon, and denmetals.

sities approaching 0.7 of the hexagonal close-packing den-

sity, the second maximum og(r) split in a manor that is

consistent with our universalr,{r), and characteristic of

dense random packing. We expect qualitatively similar find-

ings would hold for the density dependence of supercooled

liquid sodium. This work was supported in part by the U.S. Department
The experiments just reviewed leave little doubt thatof Energy under Contract No. W-7405-ENG-36.
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