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Nature of the many-particle potential in the monatomic liquid state:
Radial and angular structure

B. E. Clements and D. C. Wallace
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 15 September 1998!

The atomic configurational order of random, symmetric, and crystalline states of sodium is investigated
using molecular-dynamics simulations. Pair distribution functions are calculated for these states. Consistent
with the liquid- and random-state energetics, we find that, by cooling, the liquid configurations evolve con-
tinuously to random-state structures. For sodium, the random pair distribution function has a split second peak
characteristic of many amorphous materials and has the first subpeak exceeding the second subpeak. Experi-
ments have shown this to be the case for amorphous Ni, Co, Cr, Fe, and Mn. A universal pair distribution
function is identified for all random structures, as was hypothesized by liquid-dynamics theory. The peak
widths of the random pair distribution function are considerably broader, even at very low temperatures, than
those of the bcc and symmetric structures. No universal pair distribution function exists for symmetric struc-
tures. For low-temperature random, symmetric, and crystalline structures we determine average Voronoi co-
ordination numbers, angular distributions between neighboring atomic triplets, and the number of Voronoi
edges per face. Without exception the random and symmetric structures show very different trends for each of
these properties. The universal nature of the random structures is also apparent in each property exhibited in
the Voronoi polyhedra, unlike for the symmetric structures. Angles between neighboring Voronoi triplets
common to random close-packing structures are favored by the random structures whereas those hinting at
microcrystalline order are found for the symmetric structures. The distribution of Voronoi coordination num-
bers for both random and symmetric structures are peaked at 14 neighbors, but while the symmetric structures
are essentially all 14, the random structures have nearly as many 13 and 15 neighbor polyhedra. The number
of edges per face also shows a stark difference between the random and symmetric structures; the number is
broadly distributed about the peak value 5 for the random structures, but contains many more four- and
six-edged faces~and very few five-edged faces! for the symmetric structures.@S1063-651X~99!02203-5#

PACS number~s!: 61.20.Ne, 61.20.Ja, 61.20.Gy
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I. INTRODUCTION

In liquid dynamics theory@1# we postulated the existenc
of a very large number of nearly harmonic valleys in t
many-particle potential surface. The stable equilibrium c
figuration at the bottom of a many-particle valley was cal
a structure. Noncrystalline or amorphous structures h
long been observed in molecular-dynamics~MD! calcula-
tions@2–6#. An important step in liquid-dynamics theory wa
to divide the amorphous structures into two classes, rand
and symmetric. The symmetric structures are suppose
have a remnant of crystal symmetry among near neighb
and because of this symmetry, are expected to be relati
few in number, and to have a significant spread in their m
roscopic properties. The random structures are suppose
have near-neighbor arrangements as random as pos
~compatible with the interatomic potential!, and because o
this randomness, are expected to be overwhelmingly m
numerous, and to be macroscopically uniform. This class
cation is useful in liquid-dynamics theory, since it allows o
to ignore the more complicated but statistically insignifica
symmetric structures, and to write a partition function a
sum over a large number of equivalent random structure
leys. In the preceding paper, we used MD calculations
study a classical system of particles interacting through
metallic sodium potential, at the fixed density of liquid s
dium at melt@7#. We indeed found two distinct groups o
PRE 591063-651X/99/59~3!/2955~11!/$15.00
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many-particle structures. The energetically higher-lyi
group was called random, since they are overwhelmin
most numerous and macroscopically uniform, and the low
lying group was called symmetric, since they are few
number and not macroscopically uniform. It still remains
examine the symmetry properties of these structures, i.e
examine the geometry of the arrangements of the particle
configuration space to see if the random and symmetric p
erties are present as expected. This examination is the ob
tive of the present work. In the end we shall find several n
results regarding the geometric characterization of rand
and symmetric structures, and on the thermal broadenin
the pair correlations for temperatures up to and includ
liquid states.

In Sec. II, we investigate the radial correlations in atom
configuration space by using our MD-calculated pair dis
bution functiong(r ). We do this for the bcc crystal, and fo
random and symmetric states. We note that a consider
portion of the work in Refs.@2–6# was devoted to examining
the radial and angular configurational order in low
temperature liquid and amorphous solid states. Because
concept of random and symmetric states had not been e
lished, no attempt was made to categorize their findings
cordingly. In contrast, here special importance is placed
comparing and contrasting theg(r )’s for the different classes
of states: random, symmetric, and crystalline. Our findin
demonstrate that the nature of the configurational orde
2955 ©1999 The American Physical Society
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2956 PRE 59B. E. CLEMENTS AND D. C. WALLACE
strongly dependent on the class to which the many-part
valley belongs.

To deepen our understanding of the configurational or
it becomes necessary to identify a length scale akin t
nearest-neighbor distanceRnn . One popular~though arbi-
trary! choice is takeRnn as the point whereg(r ) acquires a
minimum value between its first and second maxima. B
cause of the limitations of that approach, we have chose
proceed differently by constructing the well-known Voron
polyhedra specific to each atom~Sec. III!. The Voronoi poly-
hedra provide a partitioning of space intoN subvolumes,
such that the space contained in a given polyhedron is a
ciated with one and only one atom. The Voronoi constr
tion is uniqueand fills all of space. The advantage of th
construction is that the number of faces, the number of ed
per face, and so on, all provide information on the lo
configurational order. We use the Voronoi construction
determine average Voronoi coordination numbers~Sec.
III A !, angular distributions between neighboring atom
triplets ~Sec. III B!, and the number of Voronoi edges p
face ~Sec. III C! for the random and symmetric classes.

The pair distribution functions for the random structur
show a strong similarity to those that have been measured
several transition metals that have been arrested in am
phous states. In Sec. IV we review several such experim
and make connections to the present work. Closing st
ments in Sec. V briefly summarize our work.

II. PAIR DISTRIBUTIONS AT ALL TEMPERATURES

The pair distribution functiong(r ), for liquids, crystals,
and amorphous materials, contains useful information ab
the interparticle radial correlations. Our MD pair distributio
functions are calculated in the standard way. About e
particle, concentric radial bins are constructed with a cho
small bin widthDr , with the proviso thatDr is sufficiently
small to resolve numerically all relevant structure ing(r ).
The number of neighborsn(r ) ~a neighbor may be the per
odic image particle! for each particle is counted in each bi
The ensemble average~time average for an MD equilibrium
state! of n(r ) is then taken. Using the standard normalizati
factor that makesg(r ) tend to unity as the correlations ten
to zero,g(r ) is expressed as

g~r !5
V

4pNr2Dr
^n~r !&, ~2.1!

whereN is the particle number,V is the system volume, an
the brackets indicate the time average plus the average
all particles. Periodic boundary conditions are invoked in o
MD simulations.

One of the important findings of Ref.@7# is that, for mon-
atomic supercooled sodium, there exist temperatures in
range of 35 K&T&200 K, where transitions from the ran
dom to the symmetric branch occur readily during the act
of running pure MD~Sec. II B of Ref.@7#!. Even in those
situations one can still calculate meaningful ‘‘equilibrium
g(r ). This is because of the relatively high temperatu
spanned by the transition window, and because it is alw
readily possible to find potential and kinetic energy plate
that are~meta!stable and persist for many thousands of M
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iterations. Parenthetically, the minimal acceptable numbe
stable iterations was taken by us to be 2000, but it was
uncommon to find stable plateaus that persisted for on
order of 150 000 MD iterations. When calculatingg(r ),
only those MD iterations were included in the time avera
where the system remained on the flat portion of the pot
tial energy plateau. In this way, the reportedg(r ) are specific
to either states on the random branch or the symme
branch and were never averaged over a mixture of rand
and symmetric states, nor the transition region separa
them.

Before proceeding with our discussion on the state dep
dence of the pair distribution function, we first introduc
several variants ofg(r ) that are useful in our analysis. Whe
the system is localized within a single many-particle valle
as we observed for low temperatures, we shall denote
associated pair distribution function bygg(r ). The indexg is
the valley label. We also define thestructurepair distribution
function Gg(r ), for valley g, in the limit that the system
becomes frozen into a structure.

The bcc crystal will provide us with an important refe
ence state since considerable information is already kno
about the nature of the bcc pair correlations. In Sec. II A
provides us with a reference pair distribution function
compare to those of the random and symmetricgg(r )’s.
Consequently, we will begin our discussion with the te
perature dependence of bccg(r ), obtained from MD using
the sodium potential of Ref.@7#. This is followed by discus-
sions on the random~II B ! and symmetric~II C! state pair
distribution functions.

A. bcc states

Chooser 50 to be an occupied bcc lattice site, then as
temperature is decreased to zero,n(r ) in Eq. ~2.1! converges
to a value~perhaps zero! equal to the number of lattice site
in the spherical shell of radiusr and bin widthDr , centered
about the pointr 50. Omitting quantum effects, atT50, in
the limit of Dr→0, the bcc pair distribution functiongg(r )
becomes the sum of a set of trued functions. This defines
the structuredistribution functionGg(r ). Since it is unique
(g51) we will denote it byGbcc(r ).

At any finite temperature, thed functions ofGbcc(r ) ther-
mally broaden and the bcc pair distribution function is pro
erly referred to asgbcc(r ). Since the characteristic measur
of the potential energy curvature of the bcc valley (Q0 , Q2 ,
andQ22) are approximately the same as those of the rand
and symmetric valleys@7#, then at any given temperature, th
width of the peaks ingbcc(r ) will give an estimate of the
thermal broadening present in the random and symme
valley gg(r )’s at the same temperature.

In Fig. 1, three different-temperature MDgbcc(r ) are
shown. Here,N5432 since this number of atoms in a bc
arrangement packs perfectly in a cubical box with perio
boundary conditions. Note, even as low asT50.356 K,
gbcc(r ), while having extremely narrow peaks, is neverth
less not converged toGbcc. By further reducing the tempera
ture the peak heights continue to grow while their widt
continue to decrease. AtT50, when every atom is resting a
its minimum in potential, trued functions will be realized
and gbcc(r ) converges toGbcc(r ). The effects of thermal
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PRE 59 2957NATURE OF THE MANY-PARTICLE POTENTIAL IN . . .
broadening, with increasing temperature, are clearly evid
in this figure. We also draw the readers attention to
double split-peak structure on the the second maximum
gbcc(r ) at T5142.94 K, the details of which will be dis
cussed in Sec. II B and then again in Sec. IV. Results sim
to those in Fig. 1~c! have been reported by Brown an
Mountain @8# for supercooled liquid Rb.

B. Random states

In this subsection we establish two important properties
the random pair distribution functions. The first property

FIG. 1. The bcc pair distribution functiongbcc(r ) for three dif-
ferent temperatures.
nt
e
of

r

f

the universalnature of ther dependence ofGg(r ) for ran-
dom structures. The second property pertains to the cont
ous evolution ofg(r ) from the liquid to the random states a
the temperature is reduced into the supercooled regime.
second property provides further evidence linking the liqu
and random states.

To expound on the first property, we use our MD simu
tions to calculate the pair distribution function for low tem
perature (T<3 K) random states. The pair distributio
functions for four different random valleys are shown in F
2. The potential and kinetic energies for these four valle
are consistent with energies on the random branch~Fig. 3 of
Ref. @7#!, and the system is no longer sampling multip
random valleys~see Fig. 11 of Ref.@7#!, at least for time

FIG. 2. Random structural pair distribution functionGg(r ) for
four different random valleys. The small wiggles on these cur
vanish asN increases.

FIG. 3. The liquid pair distribution function (T5390 K) and
random pair distribution functions (0.002 K<T<201 K). This
figure illustrates the continuous evolution of the random states
the liquid, with increasing temperature.
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2958 PRE 59B. E. CLEMENTS AND D. C. WALLACE
durations relevant in our simulation.
The four gg(r ) are very similar to one another with th

exception of small wiggles that are increasingly pronoun
with decreasingN. When overlaid, one on top of the othe
the fourgg(r ) differ only by these wiggles. The wiggles ar
N dependent, and appear to be absent byN53000. The ori-
gin of the wiggles is clear and will be elaborated on at
end of this subsection.

By reducing the temperature of theN53000 valley below
0.73 K we find essentially no quantitative change in t
shape ofgg(r ). This is also true for the other three rando
valleys. We conclude that theN53000 pair distribution
function has converged to thestructure pair distribution
functionGg(r ), associated with its valleyg. If we ignore, as
we should, the wiggles that arose from finite-size effects,
other three valleys have converged to the sameGg(r ).
Moreover, our investigation, through numerous quenc
into the random valleys, has demonstrated with overwhe
ing evidence, that a singleuniversal Gg(r ) exists~omitting
the smallN wiggles!, which we callGRan(r ). This observa-
tion is in agreement with the prediction of liquid dynami
theory, that random valleys have universal average pro
ties in the largeN limit. @1#

We now turn to the second property of the randomgg(r ).
The random valleys possess order that is much more liq
like than ~micro!crystallinelike, thus it is obvious that on
should study the temperature evolution of these states
the goal of relating the liquid to the random states.

From very low temperatures, for example, 1023 K, up to
near 3 K,gg(r ) is independent of temperature. As just d
cussed, this constant low-T function is an expression o
Gg(r ). Thermal effects become readily noticeable abo
10 K. For example, the height of the first peak, which
approximately 5.3 for temperatures up to 10 K, drops
approximately 5 at 25 K. Figure 3 shows the continuo
evolution of the pair distribution function for the rando
states up to normal liquid temperatures. It is evident fr
this figure that liquid states are properly viewed as a sub
of the random states. This is of course consistent with
notion that the liquid and random states fall on a sin
branch in kinetic energy versus potential energy space.

We now focus on several miscellaneous,albeit relevant
topics regardinggRan(r ).

~i! The random structureGRan(r ) has first, second, third
and so forth, maxima. Inspection of Fig. 2 shows that
second maximum~centered at approximately 13a0) is split
into a first and a second subpeak, and moreover, the
subpeak exceeds the strength of the second subpeak. W
compared to the counterexamples~Secs. II A and II C!, this
behavior of the split-peak strength is characteristicaloneof
the random states. For the bcc case, the broad peak a
same location ingbcc(r ) @Fig. 1~c!#, which comprises the
third- and the fourth-neighbor shells, is also split, but w
the first subpeaklower than the second. We shall return
this point in Sec. II C and then again in Sec. V.

~ii ! The maxima widths exhibited byGRan(r ) are in sharp
contrast to those ofgbcc(r ). GRan(r ) has a very broad firs
neighbor maximum, relative to the crystal~and also to the
symmetric states discussed in Sec. II C!. For example, the
first maximum ofGRan(r ) has a width comparable to that o
the first maximum ofg(r ) for a bcc crystal at a temperatur
d
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near 150 K. The increased width of the maxima ofGRan(r )
are caused by the random placement of atoms, and no
thermal vibrations of atoms about their equilibrium po
tions.

~iii ! In this work we are often in regimes of extreme lo
temperatures where quantum effects should not be ne
gible. The role of quantum effects will be to further broad
and smooth the pair distribution functions. We refer t
reader to Campbell’s review@9# for a comprehensive discus
sion on pair distribution functions in quantum liquids.

~iv! We now return to finite-size effects, discussed abo
that led to the small wiggles observed in Fig. 2. Relative
r 50, each randomgg(r ) can be decomposed into a set
thermally broadenedd functions. One expects the therma
broadened width of eachd function to be on the order o
those in Fig. 1~a!, for the bcc crystal.@Note, the widths of the
wiggles for N5168 in Fig. 2 appear consistent with thed
function widths of Fig. 1~a!.# For N5168, thed functions
are few enough in number such that, even upon averag
over allN particles, they can still be resolved from the bac
ground distribution. However, forN53000, this is no longer
the case, and the number ofd functions is so great that the
are no longer discernible. AsN tends to infinity, we believe
the distribution function will remain smooth even at ze
temperature and asDr→0. Of course, in any real system
quantum effects will additionally smoothGRan(r ).

C. Symmetric states

We now compare and contrastg(r ) for symmetric states
with the bcc and random ones. The overall conclusion is t
g(r ) for any symmetric state is clearly distinguishable fro
g(r ) for any crystal, and from thegRan(r ). We will further
demonstrate thatGg(r ) for any symmetric valleyg is typi-
cally different for each symmetric valley. Consequently,no
universalGSym(r ) exists. We now summarize our findings

First, for each symmetric valley,gg(r ) loses temperature
dependence and converges to a constant curve as the
perature is lowered. Specifically,gg(r ) changes very little
below 10 K, and changes almost imperceptibly below 1
Hence, at these low temperaturesgg(r ) has seemingly con-
verged to the structure pair distribution functio
Gg(r ). Gg(r )’s for three different symmetric structures a
shown in Fig. 4. While this low-temperature convergen
property is essentially the same for symmetric and rand
valleys, it distinguishes a symmetric valley from any cryst
line valley.

Second, for a symmetric valley,Gg(r ) is highly irregular
in the sense that it is composed of a significant numbe
narrow peaks~c.f. Fig. 4!, the number being 50% more tha
for the bcc lattice, out to 20a0 . This composition implies
that the symmetric structure has more symmetry than
random structure but less than the bcc crystal.

Third, the locations and magnitudes of the peaks inGg(r )
differ noticeably from one symmetric valley to another~Fig.
4!. This agrees with the prediction of liquid-dynamics theo
@1# that symmetric structures possess a wide variation in t
average properties, even in the largeN limit. Above a tem-
perature of around 100 K the subpeaks have broadene
the point wheregg(r ) is a rather smooth function of radia
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PRE 59 2959NATURE OF THE MANY-PARTICLE POTENTIAL IN . . .
position r. Figure 5 shows three examples ofg(r ) for states
on the symmetric branch.

Fourth, two more noteworthy features distinguish a
symmetricGg(r ) from the universalGRan(r ). First, the first-
neighbor maximum ofGg(r ) is narrower thanGRan(r ); it is
approximately twice as high and half as wide. Second
Gg(r ), the broad maximum atr'11–15a0 gets resolved
into four to five peaks~Fig. 4!. As demonstrated in Fig. 5
when smoothed by thermal broadening atT*100 K, this
becomes a broad split maximum, with the first subpe
lower in height than the second, like the bcc structure
opposite togg(r ) for a random valley. In this work, we ob
served that allg(r )’s from the symmetric branch had th
characteristic behavior for their second maxima, indicatin
possible universal property of the elevated-temperature s
metric g(r )’s.

III. VORONOI DISTRIBUTIONS AT ZERO
TEMPERATURE

We will now make a more detailed study of the config
rational arrangements among near neighbors in random
symmetric structures. This is conveniently done in terms
the Voronoi polyhedra. For a given configuration of the p
ticles, the Voronoi polyhedron for each particle is unique.
construct it draw lines connecting this particle with all oth
particles, bisect each line with a normal plane, and take
smallest polyhedron enclosing the original particle. For a
configuration, the Voronoi polyhedra fill space, and ea
face belongs to two polyhedra. If the configuration of t
particle is a crystal lattice, the Voronoi polyhedra are t
Wigner-Seitz cells. When the meaning is clear, we use
simple term ‘‘polyhedra.’’

At zero temperature, the particles are located at the m
mum of a valley in the many-particle potential surface. T
stable equilibrium configuration is a structure, and we
interested in local geometry of structures, as measured
example, by the number of near neighbors, or the an
formed by near-neighbor triplets. If the system is warm
from zero temperature, these measures of local geometry

FIG. 4. Three low-temperatureGg(r ) for three different sym-
metric structures.
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become broadened by the thermal motion of the partic
Such broadening merely obscures the underlying struct
geometry, and so we eliminate it by working only with M
systems at very low temperatures, atT&1023 K, where our
data accurately represents the conditionT50.

A. Distribution of coordination numbers

The number of faces of a polyhedron is a coordinat
number, but is not simply the number of nearest neighb

FIG. 5. Temperature dependence of the symmetric stateg(r ). In
~a! and ~b! the system is confined to a single symmetric valle
while in ~c! the system exhibits a slow diffusion among symmet
valleys.
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2960 PRE 59B. E. CLEMENTS AND D. C. WALLACE
To see this, consider the primitive cubic lattices of bcc a
fcc structures. For the bcc crystal, the polyhedron has e
hexagonal faces that bisect lines from the central particl
its eight nearest neighbors, and has six square faces tha
sect lines from the central particle to its six second nei
bors. Hence for the bcc crystal, the polyhedron has 14 fa
and the 14 coordinated particles constitute both nearest-
next-nearest neighbors. For an fcc crystal, the polyhed
has 12 rhombic faces that bisect lines from the central p
ticle to its 12 nearest neighbors, and that is all. However,
the fcc crystal, lines from the central particle to its six seco
neighbors pass through the vertices where four faces me
half the distance to the second neighbors. If, for exam
two of the fcc second neighbors are each moved a l
closer to the central particle, then the two vertices of
polyhedron will become small planes, and the number
faces will be 14. For the random and symmetric structu
we find here, the polyhedra have from 12 to 17 faces. Fo
given central particle, the number of its polyhedron faces
called its coordination number, denoted byNv , and the co-
ordinated neighbors are called its Voronoi neighbors.

Figure 6 shows the normalized distribution of coordin
tion numbersP(Nv) for two random structures and for thre
symmetric structures. The universal property of these gra
is thatNv514 is the most prevalent value. Beyond this, t

FIG. 6. DistributionP(Nv) of the Voronoi coordination num-
bersNv for two different random structures~top! and three different
symmetric structures~bottom!.
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distribution for random and symmetric structures are in st
contrast. The random distribution is rather broad, with co
tributions fromNv513 and 15 being at least half the contr
bution fromNv514, and with significant contributions als
from Nv512 and 16. The symmetric distribution is very na
row, being almost entirelyNv514, only very small contribu-
tions from Nv513 and 15, and nothing else of importanc
The distributionsP(Nv) we have found are qualitatively th
same for all random structures on the one hand, and qua
tively the same for all symmetric structures on the oth
hand. As is clear from Fig. 6, given the graph ofP(Nv) for
any noncrystalline structure found in the present study,
can positively identify the structure as random or symmet

B. Angles between Voronoi neighbor pairs

The lines from the central particle to two of its Voron
neighbors intersect at angleu. The distribution of these
angles, normalized so that it is a probability density, is d
notedP(u). Here the normalization is made in terms ofu in
degrees:

E
0

180

P~u! du51. ~3.1!

Obviously, for a given polyhedron, the set of angles w
exhibit some dependence on the number of faces, since a
very least, the more the faces present, the smaller the an
will tend to be. It is therefore of interest to classify the pol
hedra according to their number of faces, and to evalu
P(u) separately for each class.

Figure 7 shows a set of fiveP(u) distributions for random
structures, and eachP(u) representing polyhedra with fixe
Nv , for Nv512–16. Each graph showsP(u) for two differ-
ent random structures, one each with 500 and 1000 partic
We notice that the two distributions in each graph are ess
tially identical, differing only in their fluctuations. Henc
Fig. 7 demonstrates once again that different random val
are macroscopically identical up to fluctuations, or equiv
lently, are macroscopically identical in the limitN→`. The
larger fluctuations atNv512 and 16 result from having
fewer samples of polyhedra with these coordination nu
bers.

The general characteristics ofP(u) for the random struc-
tures, as seen in Fig. 7, are a broad distribution, with pe
around 60 and 120, and with movement toward sma
angles asNv increases. For the peak at 60, rather symme
in shape atNv512, a small shoulder at smaller angle, sa
approximately 50, appears atNv513, and this shoulder
grows and moves to still smaller angles asNv increases, until
at Nv516 the whole feature becomes a band in the ra
40–60. Again, starting atNv512, where broad peaks ar
present at approximately 120 and 170, a similar developm
through the appearance and growth of new shoulders mo
these peaks, respectively, to approximately 100 and 14
Nv516.

Figure 8 shows a set of threeP(u) distributions, corre-
sponding toNv513, 14, and 15 for a single symmetric stru
ture. Again, the larger fluctuations atNv513 and 15 result



PRE 59 2961NATURE OF THE MANY-PARTICLE POTENTIAL IN . . .
FIG. 7. Distribution of angular correlationsP(u) between Voronoi neighbors for two different random structures (u in degrees!.
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from having fewer samples of polyhedra with these coor
nation numbers. AtNv513,P(u) has major peaks at 60, 90
120, and 180. Upon increasingNv to 14, new peaks appea
above 60 and below 120, at approximately 65 and 115,
spectively. But then, upon increasingNv to 15, those two
peaks recede, and others appear below 60 and above 12
approximately 45 and 135, respectively. Through this evo
tion, the peaks at 60, 90, 120, and 180 remain intact.

In the symmetric graphs of Fig. 8, the narrowness of
peaks, and their appearance and disappearance with cha
Nv , suggests that the structure is composed of a set of l
clusters of different symmetries, and with significant ran
of angular distortions among clusters. We may notice t
the angles 60, 90, 120, and 180 appear among nearest n
bors for fcc; 90 and 180 appear among nearest and n
i-

e-

, at
-

e
ing
al

e
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xt-

nearest neighbors for bcc; 45 and 135 appear among ne
and next-nearest neighbors for fcc; while 65 and 115 do
appear among nearest and next-nearest neighbors for e
fcc or bcc. However, the symmetricP(u) in Fig. 8 represents
T50, while theT50 distribution for a crystal structure is
set ofd functions, so clearly, any local bcc crystalline sym
metry that might be present is strongly distorted in the sy
metric structure.

It was shown in the last section, by comparison of the p
distribution functions, that the symmetric structures are
ticeably different from one another~see Fig. 4!. We can see
this again in Fig. 9, which showsP(u) at Nv514 for three
different symmetric structures. The threeP(u) are qualita-
tively similar, with all showing the same main peaks
around 60, 90, 120, and 180, but the three exhibit quan
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tive differences that are well outside the fluctuations. Th
differences are a notable property of symmetric structu
and apparently survive asN→`.

Compared to the randomP(u) distributions, the symmet
ric P(u) are sharper and more detailed, that is, they exh
more and narrower peaks. In addition, the prominent sh
peak at 90 in the symmetric structure, and the weaker pea
180, are never seen in the random structure. In the pre
work, the general sharpness ofP(u) is sufficient to distin-
guish the symmetric structures from the random structu
Given a single graph ofP(u), for anyNv shown for random
structures in Fig. 7, or for anyNv shown for a symmetric

FIG. 8. Distribution of angular correlationsP(u) between
Voronoi neighbors for a symmetric structure~u in degrees!.
e
s,

it
rp
at
nt

e.

structure in Fig. 8, we can positively identify the structure
random or symmetric.

C. Number of edges per face

The number of edges per face proves a most interes
statistical measure. This measure is presented in Fig. 10
the form of a bar graph of the number of faces which ha
3,4, . . . ,7edges. Graphs are shown for a random structu
and a symmetric structure, each with 1000 particles. Aga
the data are shown separately for polyhedra with 12–
faces. The normalization is such that the total number
faces in each separate bar graph, labeled byNv , is the total
number of faces in the set of polyhedra withNv faces, for the
structure in question. The one exception is the symme
graph forNv514, which was reduced by a factor of 20,
scale away the approximately 20-fold majority ofNv514
polyhedra in the symmetric structure~see Fig. 6!.

The universal properties we have found, for both rand
and symmetric structures, are the number of edges runs f
3 to 9, while most faces have four, five or six edges. Here
similarity ends, and a stark difference between random
symmetric again appears. For the random structure, the
jority of the faces have five edges, but a significant num
have four and six edges, while for the symmetric structu
there are relatively few five-edged faces, and many m
four- and six-edged faces. Indeed among all the symme
structure polyhedra, only 10% of the faces have five edg
This remarkable difference in the relative numbers of fo
five and six edges clearly distinguishes random and symm
ric structures. Once again we can say, given a single grap
the number of faces versus edges per face, forNv512 to 16,
i.e., given a single graph such as the ten shown in Fig. 10
can positively identify the structure as random or symmet

In the random graphs in Fig. 10, there is a small b
meaningful evolution asNv increases. The number of six
edged faces is well below the number of five-edged face
Nv512, but increases relatively asNv increases, until the
two are about the same atNv515 and 16. In the symmetric
graphs in Fig. 10, noteworthy evolution with increasingNv is
not apparent.

FIG. 9. Over-laid distributions of angular correlationsP(u) be-
tween Voronoi neighbors for three different symmetric structures~u
in degrees!.



ax
r-
t
e
os
n
e

fi-
os

e
o
th

on

r
re
us
n

ou

-
ous
one
old

on

to
or-

r-
ary
s to
he
d
nts

si-

and
e
id-
er-

nal

to

tal
ere
eri-
on
ck-
not
ard
for
re-
-

of
o,
ture

the
ten-
we
o in

ture

ss
o-

Å
the
e

n-
se

t

r a

m

PRE 59 2963NATURE OF THE MANY-PARTICLE POTENTIAL IN . . .
IV. COMPARISONS WITH EXPERIMENT

It has long been recognized that the split second m
mum in g(r ) is an indication that a material may be amo
phous. Extensive experimental work has been done to de
mine g(r ) for many different amorphous alloys and a less
number of amorphous monatomic metals. The goal, in th
earlier studies, was to uncover the underlying configuratio
order characteristic of amorphous materials. While these
forts are too many to review here, we will mention a suf
cient number of them to obviate the relation between th
efforts and the present theory.

We mention from the outset that we will not be concern
with amorphous alloys, but rather restrict ourselves to am
phous monatomic systems. The configurational order of
former requires investigating the partial pair distributi
functions gab(ura2rbu) for speciesa and b ~in a binary
alloy g11, g22, and g12). Since this case is beyond ou
present scope of interest, we make no mention of the
evance of our present work to alloys. Unfortunately, beca
of the relative ease of stabilizing amorphous alloys, ma
more experimental results exist for them than for amorph
monatomic systems.

FIG. 10. Distribution of number of edges per Voronoi face fo
random ~top! and symmetric~bottom! structure. Both structures
haveN51000. The random structure is at 0.0005 K and the sy
metric one is at 0.013 05 K.
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The review of Angell@10# lists various experimental tech
niques used to structurally arrest materials in amorph
states. The experimental work discussed below relies on
such technique, namely, vapor deposition onto an ultrac
substrate. In summary, these investigators~1! experimentally
obtained supercooled states of various liquid metals~and al-
loys!; ~2! carried out scattering experiments using electr
diffraction and then extracted the scattering intensityI (k);
and ~3! having obtained an amorphous state, attempted
elucidate the underlying configurational order of the am
phous state by comparing the experimentalI (k), or its asso-
ciated g(r ), to hypothesized theoretical models of amo
phous materials. While the details of the experiments v
from investigator to investigator, the essence of each wa
create thin films (20–1000 Å) by vapor deposition of t
material onto either liquid-nitrogen or liquid-helium coole
substrates of various inert compositions. The experime
were done in ultrahigh vacuum (1025–1029 torr), and im-
purity contamination was extremely low. The rate of depo
tion was typically in the Å s21 range.

One of the earlier papers on this study was by Davies
Grundy@11#. Noncrystalline films of Ni, Co, and Co-P wer
obtained by vapor deposition of these materials onto liqu
nitrogen cooled collodion substrates. The films were gen
ally metastable to crystallization and thus all configuratio
aspects of the study were performedin situ. The ambient
pressure was 1025 torr and the film thicknesses reached up
1000 Å thick. Davies and Grundy then extractedg(r ) for
these materials. Initial attempts to explain their experimen
scattering functions in terms of fcc and hcp crystallites w
unsuccessful. The authors also concluded that their exp
mental intensity curves could not be obtained by diffracti
from small distorted fcc and hcp crystals arising from sta
ing faults. They also concluded that the packing was
consistent with models of dense random packing of h
spheres~DRPHS!, though the agreement was better than
the microcrystalline models. We refer the reader to the
view of Finney@12# for a discussion of DRPHS and its de
rivative models. What is of special interest to us is theg(r )
determined by Davies and Grundy as displayed in Fig. 2
Ref. @11#. The split second maximum for both Ni and C
characteristic of amorphous materials, has the same struc
as we have found for supercooled Na. The intensity of
first subpeak of the split second maximum exceeds the in
sity of the second subpeak. By immediate inspection,
expect that Davies and Grundy have arrested Ni and C
the amorphousrandomstate.

This work was soon followed by Ichikawa’s@13# thin film
studies on amorphous Ni and Fe, again by low-tempera
condensation~liquid helium temperatures!, in a high vacuum
(P51026 torr), in conjunction with an electron diffraction
study. The substrate was polyvinyl formvar, film thickne
reached 90 Å for Fe, and 20 Å for Ni, and the rate of dep
sition was 0.5–1.0 Å s21. Many Ni films froze into fcc lat-
tices when the film thickness was allowed to grow to 30
or more. Indeed, further work showed that increasing
impurity concentration in Ni facilitates the formation of th
amorphous phase@14#.

Upon analysis of the configurational order, Ichikawa co
cluded that Ni and Fe pack most consistently with den
random packing models@13#. Accordingly, he concluded tha

-
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these materials can not be described as an assembla
minute crystals with bcc and fcc structure.

Of special interest to us is Fig. 4 in Ref.@13#, which
shows his Ni and Feg(r ). Once again, these exhibit th
same structure as we found for supercooled Na: the sec
maximum ofg(r ) is split, and first subpeak exceeds the s
ond subpeak.

The existence of an amorphous phase in Mn, Cr, plus
and Co films, was then proven by Leung and Wright@15#.
We call to the readers attention, their experimental scatte
functions, shown in Fig. 2 of Ref.@15#, which again have the
same split maximum structure as those of the previous
investigations. Failure to obtain agreement between exp
ment and microcrystalline models was extended by Le
and Wright to include fcc, strained and unstrained bcc,
with and without stacking faults, even also complex cu
structureA15. This finding was taken as evidence that t
amorphous structure is a distinct phase and has no lo
range order. It is interesting to note that Leung and Wri
@15# also attempted to describe the underlying configu
tional order as being one that is seeded by both regular
irregular icosahedra; again these attempts were unsucce
This was also found to be the case by Wantanabe and M
@16#. This finding is also consistent with the extensive rec
work of LaViolette @6#.

Leung and Wright@15# also summarize indirect evidenc
of a distinct amorphous phase. Their evidence includes re
tivity, magnetoresistence, and magneto-optical meas
ments in Co; magnetization measurements in Fe; and M
bauer hyperfine field and Hall measurements in amorph
cobalt.

Next we mention early MD calculations by Rahma
Mandell, and McTague@17# dealing with Lennard-Jones pa
ticles quenched to low temperatures~13 K for argon!. They
again found the split second maximum ing(r ) ~Fig. 1, Ref.
@17#! with the relative height of the first subpeak of the sp
second maximum being greater than the second subp
Once again, this is consistent with our picture that the sys
had been arrested in arandom amorphous state. Rahma
Mandell, and McTague@17# noted the comparison of the
g(r ) with models derived from DRPHS, but also rightful
point out the relevance of the soft-core portion of the pot
tial. Further discussion into the importance of the soft c
was given by Finney@12#, who pointed out that the mediocr
agreement achieved by using DRPHS could be improved
using random packing with more realistic potentials.

More recently, Ullo and Yip@18# carried out a detailed
study of supercooled soft-sphere fluids using MD simu
tions. Their interest centered on uncovering a phys
mechanism responsible for a theoretically proposed tra
tion, distinct from the glass transition, predicted to occur
supercooled liquids. In the process of their study, Ullo a
Yip calculated pair distribution functions for high densitie
At a temperature corresponding to 72 K for argon, and d
sities approaching 0.7 of the hexagonal close-packing d
sity, the second maximum ong(r ) split in a manor that is
consistent with our universalgRan(r ), and characteristic o
dense random packing. We expect qualitatively similar fin
ings would hold for the density dependence of supercoo
liquid sodium.

The experiments just reviewed leave little doubt th
of
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many monatomic systems exist that can be arrested in
amorphous state characterized with pair distribution fu
tions that closely match ourgRan(r ) for supercooled Na. We
believe that it is a small step to make the statement that th
experiments have arrested the structure inrandom valleys.
This view is supported by~1! the rapid cooling processe
required to escape crystallization either in a perfect crysta
a microcrystalline state~our symmetric states!; and ~2! the
extensive work done by these investigators indicating ato
random packing arrangements. Sodium, however, was o
ously not in the list of elements that have been arrested in
random amorphous state. Insight into the reason for thi
given by Angell, Clarke, and Woodcock@19#, who examined
the role of the interatomic potential in the formation of amo
phous states. These authors assert that it is more difficu
amorphously arrest elements with softer cores~like the alkali
metals withr 26) than it is with elements with harder core
~like the transition metals withr 212), because soft-core par
ticles can move past each other more easily and thus
their way to the crystalline state. This simple picture is c
tainly consistent with known experimental results. While it
possible in our MD simulation to arrest the alkali meta
such as Na, in random valleys, quench times possible in
laboratory are far too long to escape crystallization.

V. CONCLUSIONS

Reference@7# considered energetics, stability, and kine
properties of the random and symmetric states. Our purp
here was to investigate the atomic configurational order
these states. Omitting details, we summarize our most im
tant conclusions as follows:~i! Both the pair distribution
function and information on local positional order extract
from the Voronoi polyhedra support the hypothesis that r
dom valleys have universal properties~in the limit of large
N), consistent with the hypothesis of liquid-dynamics theo
@1#. ~ii ! The symmetric valleys do not share these univer
properties.~iii ! Given a graph ofGg(r ), one can positively
identify its class as random, symmetric, or crystalline.~iv!
Given a graph of the~1! distribution of Voronoi coordination
numbersNv , or ~2! the angular distributionP(u), for any
Nv , or ~3! the distribution of number of faces versus edg
per face, as a function ofNv , we can positively identify the
structure as random or symmetric.~v! For sodium the ran-
dom pair distribution function has a split second maximu
that is characteristic of many amorphous materials. We fi
that the first subpeak of the split maximum structure of
exceeds the second subpeak. Experiments have shown t
also be the case for amorphous Ni, Co, Cr, Fe, and Mn.
believe that these experiments indicate that the random s
ture has been observed in the laboratory for the transi
metals.
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