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Nature of the many-particle potential in the monatomic liquid state:
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Molecular-dynamics calculations have been used to explore and characterize the many-particle potential
underlying the motion of particles in the monatomic liquid state. The potential used accurately represents
metallic sodium at the density of the liquid at melt. It is found that the potential surface is composed of a large
number of stable nearly harmonic valleys, and that these can be classified as random, symmetric, or crystalline.
The random valleys cover by far the major portion of configuration space; they are macroscopically uniform,
i.e., they all have the same structural potential and vibrational spectrum; and they all have microscopically
irregular anharmonicity. The symmetric valleys lie at potential energies below the random valleys, but above
the bcc crystalline valley. The symmetric valleys are not macroscopically uniform, but show scatter in their
structural potentials and their eigenvalue spectra, and the symmetric valleys also have microscopically irregular
anharmonicity. The equilibrium states of our system, from zero temperature up to and including the liquid
states, fall into three groups, random, symmetric, and crystalline, according to which class of potential valley
is mainly visited in the system motion. The random states are well separated from the symmetric and crystal-
line states, on the graph of mean potential energy versus temperature. The random states lie on a single line
over the entire temperature range, and they include the liquid states, demonstrating that the random valleys
dominate the statistical mechanics of the liquid. The present results provide detailed confirmation of the
liquid-dynamics Hamiltonian previously used in equilibrium and nonequilibrium calculations. Further, the
liquid-dynamics prediction of near equality of the log moment of the vibrational spectra, for the liquid and
crystal at the same density, is verified here for the example of sodiBbd63-651X%99)01903-7

PACS numbds): 61.20.Ne, 61.20.Ja, 61.20.Gy

I. INTRODUCTION determined by the logarithmic moment of the vibrational fre-
guenciegdefined in Sec. I). The universal entropy of melt-
The objective of this work is to characterize the many-ing then leads us to concluda) that the number of potential
particle potential underlying the motion of particles in the valleys accessible to the liquid ", for N particles, where
classical monatomic liquid state. Our technique is to analyzé'w=4, and (b), the characteristic temperaturéd, are
molecular-dynamic$MD) calculations for a comprehensive nearly the same for the crystal and the liquid valleys.
set of stable and metastable equilibrium states, from zero N @ real monatomic liquid, the physical particles are ap-
temperature up to and including the liquid, for a fixed densityProximately rigid ion cores, which we call simply “the
and a fixed interatomic potential. From the theory of liquid ©nS:" The stable equilibrium configuration of ions at the
dynamics[1], one expects certain properties of the potentiaIPOttom of a stable many-particle potential valley is called a

surface to be universal for monatomic systems, and thesr%sltjrgr?tit:]rfirml\aﬂtci)cl)icglt?(;ftygt?lr}ggjr((:easlcilrj]Iar::ggZIhsavs?e?r?;enF;Josm
expectations will guide us in formulating an investigative y '

strategy the pioneering work of Stillinger and Weber, we know that
In liquid-dynamics theor§1], it is observed that the mea- amorphous structures exi®,4], and that their potential en-

) . o ; . ergies lie in a band above the crystalline potential energy
sured |on-m_ot|onal specmg h'eat. is very nearkyzJper lon, [5-7]. LaViolette and Stumg8] found a wide variety of
for all classical monatomic liquids at melt. From this we g4\ ctyre symmetries, depending on the interatomic potential

assume that the ions move primarily within one or more,nq the density. These authors denoted noncrystalline struc-
nearly harmonic valleys in the potential surfagg.valley in = {res by the general term “amorphous.” In considering the
this 3N-dimensional space is our generic term for the neighmgtion of ions in monatomic liquids, it became obvious that
borhood of a local minimum in the many-body potential sur-one had to subdivide the amorphous structures into two
face, about which the potential increases in al 8irec-  classes, with different expected properties, as follpljs

tions) It is also observed that the measured constant-volume First, structures with a remnant of crystal symmetry, at
entropy of melting, for normal melting elemen®], is very  least among nearest neighbors, are called “symmetric”
nearly a universal constant valulezA per ion, whereA  structures. The members of this class, though large in num-
=0.80. To interpret this entropy of melting, we need twober, are stillrelatively few, because of the symmetry restric-
results from statistical mechanics: first, the ions in the crystation. Also, since the structure potentf@efined in Eq.(3.9
move entirely within a single nearly harmonic valley in the below] and vibrational frequencies are sensitive to near-
potential surface, and second, the classical entropy per ioneighbor symmetry, the macroscopic averages of these prop-
representing one harmonic valley i&g}In(T/0g)+1], where  erties will show significant variations over the class of sym-
T is the temperature, arfd, is the characteristic temperature metric structures.
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Second, structures with highly random near-neighbor ori- 0.010 T T L A
entations are called “random” structures, and their very ran-
domness implies properties in contrast with symmetric struc- 0.008 - Pf)(;‘]]gII\IUTI;lIAL Z sl ORIGINAL .
tures. First, for largeN, random structures constitute the Y =278 bohr? | %
great majority of all the structures, hence they dominate the ~ 0.006 | - Z 0 .
statistical mechanics of the liquid state. Second, again for & g
largeN, each macroscopic average property is narrowly dis- = o.004 L s 4
. . ~ DAMPED
tributed over the class of random structures, i.e., the random < :
structures are macroscopically uniform. 0.002 L oL ]
Another property of the potential surface often investi- 15 16 (%,Z)m)lg 1
gated by MD calculations is the set of instantaneous normal .,
modes. These are the eigenvalues and eigenvectors of the
potential energy curvature tensor, evaluated at the instanta- 0,002 L . \/ i
neous configuration of the system, as it moves in an equilib- T 5 10 15 20
rium state. The set contains a temperature-dependent lobe of r (bohr)

negative eigenvalues, called the “unstable” modes. Rahman,
Mandell, and McTagug9] estimated the spectrum for an
amorphous system. LaViolette and Stillingel0] showed

that the mean number of negative eigenvalues increas Sd an exponentially damped version of the poterfZaMPED).

strongly with temperature for the crystal, and continues top, . damped potential is used in our MD calculations.
increase after melting to the liquid. Here, since we expect

each valley to be nearly harmoriit], our primary measure

of the potential surface will be the set of ordinastable o apie success in accounting for the properties of metallic
normal modes evaluated at the valley bottéah the struc-  ooqiym Excellent agreement with experiment was obtained
ture). Beyond this harmonic measure, as we find in Sec. lll,. o phonon frequencie$13], for the temperature-
the number of negative elgenva]ues among the mstantaneoagpendem properties of the crysta#,15, and of the liquid,
norrr_la_l modes becom_es an indicator o_f the nature of anha[lﬁl for properties of the crystal under pressf&@], and for
monicity in the potential surface of a single valley. the melting temperature as a function of press[8].

o We have Ichosen to work W:}h andinteratﬁmic”potentialHence’ the damped pair potential used here will certainly
that accurately represents metallic sodium. This allows us tg;q|q physically realistic results for metallic sodium ¥
state unambiguously that the properties discussed in th§278a3

S 3.

work are realistic and not an artifact of the form of the cho-
sen potential. FoN atoms in a volume/, the positions of rithm [19], for N particles in a cubical box, with periodic

the ions arerg., for K=1,...N, and in pseudopotential boundary conditions. We used=168 for exploratory cal-
perturbation theory, applicable to nearly-free-electron met-

; culations, N=432 for bcc crystal calculations, andl
als, the total potentiab takes the formj11,12 =500, 1000, and 3000 for final calculations on noncrystal-

line states. The MD time step &= \2Ma3/e?, whereM is
the atomic mass of sodium, @it=7.00<10" 1 s. In the
coming sections, it will be convenient to express the tempo-
ral evolution of certain physical quantities as a function of
the MD iterations, rather than converting to units of time.

Q(V) is a large negative potential, which accounts for most.l_he conversion factor is simplgt. A useful reference time

of the metallic binding, andp(r;V) is an effective ion-ion . . ) U . :
. : . in this study is the mean vibrational period of the particles.
potential, which works through the screening electrons. W . ;
n all states we shall study, crystalline and noncrystalline

xwi;ﬁ(i;htiev (\)/Ioulrl?rf;eps]cr Izgidm‘/s%ai\tjma?ttgzem\s:?nz fgggp;era alike, it is approximately 68t

ture T,,=371 K. At fixed V, Q(V) is constant, so we The system Hamiltonian is denoted
choose the zero of energy here by settfigV)=0. The H=K+, (1.2)
original pair potentia[13], given by pseudopotential theory,

and calibrated to the bulk properties of crystalline sodium at 1

T=0, is shown in Fig. 1. This potential has long-rarigee- K= > z M vﬁ, 1.3
del) oscillations, but these give no significant contribution to K
the statistical mechanics of the liquid state. Therefore, to

gain the numerical advantage of a short-range potential, we o=
use a damped potential that smoothly removes the long-

range oscillations. Our damped potential is obtained by mul-

tiplying the original potential by eXp—c(r—ry)?], wherec where vg is the velocity of particle K, and ¢y,
=0.64,2 andr,=15.08,, for all r=15a,. The damped = ¢(|rc—r.|). During an MD run,K(t) and®(t) are fluc-
potential is also shown in the inset in Fig. 1, and differs fromtuating signals, withC+ ® =constant. When the system is in
the original potential only in the region of the Friedel oscil- equilibrium, stable or metastable, the time average of a fluc-
lations, and only by a magnitude less thar 10Ry. tuating quantity is a physically important measure. We de-

FIG. 1. The sodium potentiab(r) for V= 27818. The inset
shows the pseudopotential form for the potential used in the work
of Ref.[13] (ORIGINAL), which has Friedel oscillations at large

The complete sodium potential in E¢L.1) has had re-

The calculations were carried out using the Verlet algo-

1
() =MW+ 35 2 dlre=riv). @

N| =

bxi (1.4
1
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note the equilibrium time average B{t) by (F(t)), or sim- -0.008
ply (F) when the meaning is obvious. The equilibrium time

average of the kinetic energy per particle is related to the  -0.009
temperature by

LIQUID

3 -0.010
(KIN)=3 kgT. (1.5 E*
In Sec. Il, the equilibrium states of the system are found, ool
and are classified into the two groups of random and sym- & 100 QUENCHES

metric, according to their mean potential energies as function ootk

of mean kinetic energy. It is shown that the localization of

\ RANDOM STATE

™ SYMMETRIC STATE

the system to a small region of configuration space is re- 3 F e
vealed in the mean square displacement as function of time. RANDOM STATE
. . . . . i 1 1 1 i 1
The properties 'of' single potential valleys are examined in 0.014 > 000 10000 15000 20000 23000 30000
Sec. lll, where it is found that both random and symmetric ITERATIONS

valleys are stable, that the random valleys have universal

structure potential and eigenvalue spectrum, and that the FIG. 2. The potential energy per particle as a function of MD
small anharmonic potential is microscopically irregular initerations for 1, 100, and 20 000 quenches from the liquid state. The
both random and symmetric valleys. In Sec. IV, the mearfandom state is short lived during the MD run containing 100
square displacement in equilibrium states is used to separa@i@enches. The final states reached, in all three runs, are long lived.
the motion into diffusive(intervalley) and nondiffusive(in-

travalley) components. Our conclusions are summarized irfollowed by MD runs. During the MD, the fluctuating poten-

Sec. V. tial initially decreases as the system gains kinetic energy,
then it levels off and reaches equilibrium. Sometimes the

Il. EQUILIBRIUM STATES OF THE SYSTEM system stays for awhile in one equilibrium state, then moves

_ to another equilibrium state. This case is illustrated by the

A. Generating the states 100 quench run shown in Fig. 2. The state with the lower

In the course of the MD calculations, we introduce speciapotential shall be referred to as thewer state. In nearly all
iterations for the purpose of cooling or heating the system. Ithe examples observed of a spontaneous change of state dur-

one such iteration, each particle velocity is multiplied by aing an MD run, the system moved to a lower stés illus-
numberé, trated in Fig. 2. It is convenient to make a qualitative sepa-

ration of equilibrium states into “short-lived” states, which
vk—&vk, K=1,...N. (2.1)  spontaneously decay, and “long-lived” states, which remain

stable for as long as we choose to extend the MD calcula-
The iteration is cooling when€¢£<1, and heating whed  tions. The practical matter is that our ability to gather equi-
>1. When¢=1, the iteration is called simply MD, and when |ibrium data is limited by the lifetime of short-lived states,
this proceeds for an uninterrupted set of iterations it is calleind hence our ultimate data for these states is less precise
an MD run. If the heating or cooling iteration is sufficiently than for the long-lived states. In this work, we will investi-
gentle, the system can be maintained near equilibrium, angate the properties of all the equilibrium states of the system,
for this condition we us¢é—1/<107°. The special casé  which we will call simply “states.” Mountain and Bag20]
=0 is called a quench. Repeated quenches move the systafiade similar observations regarding potential energy pla-
down the potential surface along the path of steepest desceméaus and spontaneous transitions to lower-energy States

Let us imagine that the many-particle potential surface ierred to as crystal nucleation in that wofler quenched Rb.
composed of a large number of intersecting valleys, and that Most of the states we observed are metastable. If an origi-
the system in the liquid state moves very rapidly amonghal state spontaneously decays to a new state, during MD
these valleys. If we cool slowly from the liquid, so that the evolution, then the original state is metastable with respect to
system remains near equilibrium, we expect the systemhe new state. Absolute stability is much more difficult to
upon freezing, to settle into a special valley, namely, one agstablish, but for the present purposes it is not necessary to
highly crystalline as possible, compatible with the periodicdo so. Since it is useful to have available a set of crystalline
boundary conditions. On the other hand, a series of quenchegates, for comparison with the amorphous states, we will
will bring the system down within the valley it happens to be apply our computational techniques to the crystalline bcc
moving through when the quenches are initiated. Hencestates at various temperatures. Then, among the states con-
quenching gives us the ability to make a statistical samplingidered here, the stable ones are as follows: the bcc states for
of the valleys through which the system moves. If now theT=0 to around 350 K; a two-phase region from 350 to 371
system is cold, and moves near the bottom of a particulak: and liquid above 371 K.
valley, the system will remain in the same valley during a
series of heating iterations, provided the heating is suffi-
ciently gentle. Hence, heating gives us the ability to explore
the potential surface of a single many-particle valley, at least States are characterized by the time-averaged potential
up to its intersection with a neighboring valley. and Kkinetic energies per particle, denoted, respectively,
Figure 2 shows representative curves of the system poterid/N) and (K/N), where(K/N) is equivalent toT by Eq.

tial (energy during a series of quenches from the liquid, (1.5. For all the states we generated by one or more

B. Energies of the states
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-13.0 - W ] FIG. 4. (®/N) vs the temperaturd for the upper(random)
. states. The melting temperature for this potential is371 K.
g °
358" ¢ . . o o
BCC STATES tion 8( ®/N)~ S(K/N), implying oscillations of the system
within nearly harmonic many-particle valleys. Fifth, at the
14.0 gi?ggo s same mean kinetic energy, the lower group states have a
N=3000 = much lower mean potential energy and show significant scat-
, ter about a single linéFig. 3). Sixth, there is a temperature
145 . L ! ) window T, <T<T,, such that when the system arrives at an
0 05 1.0 L5 20 25 upper state for temperatures outside the window, it stays

<K/N> (mRy) there, but when the system arrives at an upper state for tem-

peratures within the window it subsequently transitions to a

FIG. 3. (®/N) vs (K/N) for the random, symmetric, and bce |ower state. Our findings, foN=500, 1000, and 3000 are
states. The.small hatch .marks on te/N) axis show the spread T,~35 K andT,~200 K. Noticeably different values of
(®/N) obtained for 15 different valleys &t~0. T, and T, might be found either for much longer MD runs,

or for much larger systems, than were studied here. The

guenches from the liquid state, fbk=500, 1000, and 3000, short-lived upper group states within the window are often
(®/IN) is plotted versugK/N) in Fig. 3. The exception is stable long enough to obtain respectable equilibrium data,
that a number of very-low-temperature states are indicategay for 1¢ iterations.
merely by their range of ®/N), since on this plof{/N) We now provide an interpretation of these results which
~0 for those states. A series of quenches moves the systeappears justified, in view of the conjectures of liquid dynam-
down the(®/N) axis, at(X/N)=0. Then during the MD ics theory(summarized in Sec).l At the heart of this inter-
run, &+ X is constant, so a spontaneous change of statpretation is the existence of the two classes of structures,
proceeds along a 45° line in Fig. 3. For illustration, the pathrandom and symmetrigl].
is indicated for a calculation comprising 100 quenches from For states in the upper group, the system moves primarily
the liquid, followed by an MD run during which a spontane- in random valleys, since this group has higher potential en-
ous decay occurs. Figure 3 also shows the data for the bargy than the lower group, at the same kinetic endfgy.
states. 3). Since the quenched liquid nearly always comes to equi-

In Fig. 3, the states reached by quenching from the liquidibrium (short lived or long lived in the upper group, the
fall into clearly separated upper and lower groups. In Fig. 4random valleys apparently cover theajority of configura-
(D/N) versus temperaturEis plotted for states in the upper tion space sampled by the liquid. The continuity of the upper
group, together with liquid states, and intermediate statestates with the liquid state€ig. 4) suggests the random
obtained by cooling less than one full quench from the lig-valleys dominate the statistical mechanics of the liquid. Fi-
uid. Since the data of Fig. 4 conform to a single curve, wenally, the random valleys are approximately harmonic.
will include all these states under the designation of the up- For states in the lower group, the system moves primarily
per group. The significant properties we observed for then symmetric valleys, where the remnant symmetry is re-
states in the upper and lower groups are as follows. sponsible for lowering the potential relative to the upper

First, the upper group states lie on a single line foM\all  group. In principle, symmetric states exist from the lower
with very little scatter(Fig. 4). Second, these upper group branch shown in Fig. 3, down to the crystal states. For ex-
states are stable at high temperatures, being the liquid statesnple, microcrystalline bcc states should lie just slightly
but are only metastable relative to the lower group at lowembove the single-crystal bcc states shown in the graph. How-
temperatures. Third, in the overwhelming majority of ourever, the complete range of symmetric states is not accessible
calculations, following quenches from the liquid, the systemin our calculations, due to limitations arising from the peri-
first came into equilibrium in an upper state. Fourth, alongodic boundary conditions and the small system size. Further,
the curve of Fig. 3, upper states satisfy the incremental relave cannot dismiss the possibility that symmetric states exist
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that lie above the symmetric branch shown in Fig. 3, al-
though they were never observed by us.

These interpretations are consistent with the conjecture:
of liquid- dynamics theory. Henceforth, we will refer to the 09 F
upper group as the random states, and the lower group as tt 08 |

1.0 T T T T
N=168

symmetric states. In the following paper we will use the =~ 7| RANDOM STATE 2
calculated pair distribution functions, interatomic angular 06 1 i
distributions, and other geometric measures among near~
neighbors, to investigate the symmetry properties of the ran-é 05 T
dom and symmetric states. 04 §
03 F T SYMMETRIC STATE
C. Mean square displacement 02 L 4
RANDOM STATE 1
In Sec. IV, the mean square displacement will provide a 01}t .
precise measure of the system motion in equilibrium states 0 L ! ! . L
Here, we want to use this function in a more qualitative way. 0 5000 10000 15000 20000 25000 30000
For general nonequilibrium processes, the mean square dis 45 . : : : :
placemend(t,ty) is 0o N= 168
A= S O-reto 2 @2 5 W Eereme ‘
K g 10t .
; 115 | .
If for a period of time during an MD run, the system moves & _, e ]
only within a fixed small region of configuration space, the SYMMETRIC STATE
fluctuating time signald(t,ty) has a constant mean value 125 ¥ / i
during that period. -13.0 | Wevore T—— l 8
An example is shown in Fig. 5, where from the liquid 135 | BEGIN/ M
state, a series of 800 quenches, followed by an MD run, was RANDOM STATE 2 . '

started at,= 0. The kinetic and potential energies, as wellas 140 o =500 20000 25000 _ 30000
the mean square displacement, are shown for the same ce
culation. One can see the progress of the system energie % i ' T ' '
. . P N=168

during the quenches, during the approach to equilibrium, RANDOM STATE 2
while the system is in an equilibrium state, and when it is 20 L
moving between states. Exactly the same processes can
seen in the curve afi(t,ty) in Fig. 5.d(t,ty) adds two im-

portant pieces of information, however. First that in the equi-
librium states achieved in Fig. %i(t,t;) maintains a con-

stant mean, implying that the motion of the system is 10 |
confined to a small region of configuration space, and sec
ond, when the system spontaneously transitions from one

RANDOM STATE 1

d(t,ty) (bohr?)

SYMMETRIC STATE

CeL e . . Sk END OF QUENCH N
equilibrium state to another, it actually moves some distance / <
in configuration space.

In Sec. lll, we will concentrate on very-low-temperature 0 50'00 |o<|)oo 15(')00 20(')00 25(')00 70000
states. A crucial property of these states, as revealed by the [TERATIONS

graphs ofd(t,ty) versus time, is that they are confined to a o . .
very small region of configuration space. This is not a prop- FIG. 5. The kinetic energy per particléop), potential energy

erty of all equilibrium states, but of only a subset of them, agPer particle(middie), and mean square displacemérattom for an
will be clarified in Sec. IV. N=168 particle system that was initiated by an 800 iteration

guench from the liquid state.

Ill. PROPERTIES OF THE MANY-PARTICLE 2D
POTENTIAL VALLEYS Dﬂﬁ/ :W' (3.1
A. Local dynamical matrix poE
We define the local dynamical matrix as the customary The element® ;5 form the real symmetric B3N lo-

dynamical matrix from lattice dynamic theory, but evaluatedcal dynamical matrix, where “local” expresses the depen-
at any point on the potential surface. The particles are ladence on location. This matrix is diagonalized by a real or-
beledk=1, ... N, Cartesian components arex,y,z, and thogonal transformation, to yield the real eigenvales)f,
the combined indeX,i is =1, ... ,N. Cartesian compo- for A=1,...,3N. When the dynamical matrix is evaluated
nents of the particle positions arg, and the second-order at a local potential minimum, as in lattice dynamics theory,
or harmonic potential coefficients at any spatial location arghe w, are frequencies of the normal modes of vibration of



PRE 59 NATURE OF THE MANY-PARTICLE POTENTIAL N . .. 2947

the N-particle system. In the more general case considered
here, the local eigenvaludg »? remain an important char- ®
acteristic of the potential surface, since they measure the
local curvature in 8l orthogonal directions.
For a translationally invariant system, three of the dy-
namical matrix eigenvalues represent uniform translation,
and hence vanish. In our MD calculations, the three “zero”
eigenvalues are more than 10 orders of magnitude smaller
than the smallest of the remaining eigenvalues. The remain-
ing 3N—3 eigenvalues are called “nonzero,” and can be @
either positive or negative. When taking averages over the
spectrum, the zero eigenvalues are always omitted. For ex- q, q
ample, thenth moment of the frequency distribution, de-
noted(w"), is defined by

1
(w >=m2 oy, (3.2 .

whereX| is over the N—3 nonzero frequencies.

We now examine the many-particle potential surface
within single valleys, hence it is necessary to eliminate the ®
intervalley diffusive motion from the MD system. We do this ?
by analyzing the system at a sufficiently low temperature that
it moves entirely within a single valley. All the analysis of @
the present section is done for states where the system re-
mains in a single valley during an MD run, and one by one,
many different valleys are examined.

=Y AR

9, 1 9B q

B. Stability of the random valleys FIG. 6. Representative projections of the many-body potential

After repeated quenches from the liquid, the system ar-q) along a single normal coordinate The potential inA(B) illus-
trates the case of an unstal¢itable valley.

rives at a low-temperature long-lived random state. Follow-
ing 20 000 quenches, arfdery) long MD runs, for example,
the system comes to equilibrium at approximately 10 K, andspectively, positive or negative eigenvalue, if the system is to
remains in this state for as long as we continue the MD runthe left or to the right of the equilibrium poirm,. Next
Further, the mean square displacement tells us that the sysensider the potential curve shown in Fighp It is stable,
tem is localized to a small region of configuration space. Webut the curve has inflection points @f andq,, with nega-
suspect that the system is moving in a single random valletive curvature betweeq; andq,. If the system has energy
and will prove this conjecture in Sec. IV. Meanwhile, we pelow @, in this mode, a measurement of the local eigen-
would like to determine whether or not this random valley isyajye will always yield a positive result. If the system has
stable. Stability would be proved if we <_301_Jld move the SYS-energy betweedd; and®, in this mode, a measurement of
tem to the valley bottom, i.e., the equilibrium conﬁguraﬂonﬁTe local eigenvalue will yield a positive or negative result,

err;?rrii 2\':](;0;?]35”\]/;”;?&5&2? (tarr]:/galug\éagﬂgteotshigvgyTJanTcl)(r: epending on whether the system is to the left or to the right
' 9 P ) of q;. Finally, if the system has energy greater thbgp in

tunately, as long as we are limited to using numerical PrOCe i mode, the eigenvalue will be found sometimes positive
dures, we can never place the system exactly at that configu- ’ 9 P

ration, hence we can never prove stability. We shall have t@nd sometw_nes negative, but less often negative as the sys-

be satisfied with establishing a preponderance of numericdfM €nerdy increases abodg. In any case, once the system

evidence for stability. is trapped W|th!n thIS valley, t_hen gnder continued q_uenches
Figure 6 shows representative curves of the system pote@d MD runs it will remain in this valley, and while the

tial ® along a single normal coordinatg An N-particle ~ €nergy can only decrease, it is bounded belowdly Our

potential valley is stable if, and only if, the potential is stableconclusion from this discussion (g) the system can exhibit

in all 3N— 3 nontranslational normal coordinates. The poten-2ll positive eigenvalues when it is in an unstable validy,

tial in Fig. 6(@), has zero slope and zero curvaturg@t and ~ negative eigenvalues can appear for a stable valley(@nd

is unstable. If our system contains such a potential in somghe strongest numerical evidence for stability is the freezing

direction, then under continued quenches and MD runs, tweof the system location and energy, under continued quenches

things will happen: First the system will eventually move off and MD runs.

to the right, away frontg, and second, the system potential  Our procedure is to start with a random state, at say 10 K,

will decrease belowd,, having no apparent lower bound. and continue to cool with quenches, interspersed with MD

On the other hand, when a local measurement of the systerans, for a total on the order of $@uenches and 2ao 1¢°

eigenvalue is performed, this normal mode will yield a, re-MD iterations. During each MD run, the kinetic energy
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equilibrates, so we can continue to use temperature to char- 40 - - - - T - .
acterize the states reached.

We find the following results. The potential of the system
converges towards a minimum value; upon continued ~ 30} .
guenching thedecreasen the potential approaches a value cg
that is essentially zero. Consistent with this, the mean square - )
displacement demonstrates that the system remains confined< 54 _
to a small region in configuration space, and the lower the =
temperature, the smaller the region. These results hold with- 15 T
out fail for every random state we studietl € 500, 1000, ‘
and 3000. We conclude that the low-temperature random

5F 1

25 F b

10 F 1

valleys are stable. 51 .
Some details of these calculations are of interest. First, . l . ' . . .

upon quenching from the equilibrium liquid, the system al- 00 200 400 600 800 1000 1200 1400 1600

ways became trapped in a stable random valley, Nor A

=500, 1000, and 3000. However, for one such run for the
very small 168-particle system, during a series of quenchelsan
from the liquid, the system potential merely paused at th
level of a random state, and then moved down to the level o
a symmetric state. This result suggests that unstable random To obtai . but Simol . f1h
valleys might always be present, but will have no statistical 0 obtain an approximate but simple representation of the
significance except at very small Second, upon sampling complete eigenvalue spectrum, we v_v|II evalu_af[e certain of its
the eigenvalue spectrum during MD runs, we do find negamomems' In _these terms, we can bring precision to our com-
tive eigenvalues, whose number decreases as the temperat fg1son Of. d|_fferent rand_om vaIIeys_. Threg moments th"?‘t
decreases, and we find all positive eigenvalues below a ce 1ave special importance in the classical statistical mechanics

tain temperature, for each valley. However, this alone is no f harmonic vaI:eys aﬁ] the-2, 0, an(tj+2 moments %f Fhet
strong evidence of stability, as noted in the discussion of Fig_requency spectrum. These moments are expressed in terms

6. On the other hand, the fluctuations of the eigenvaluegf three characteristic temperaturés,,n=-2,0,2, defined

provide insight into the small-scale nature of the potentialas follows:
surface, as will be discussed shortly.

We made a set of accurate measurements for ten different
random valleys, five each for 500- and 1000-particle sys-
tems. In each case, the minimum potential reached, and Inkg® o= {In% w), (3.5
maintained throughout subsequent quenches and MD runs, is
the static structure potentidl,. For all the random valleys, 5 1/
®, lies in a very narrow range, with mean and variance ke®2=[3((hw)9)]™, (3.9
given by

FIG. 7. Eigenvalue$ wf, as a function ok, for five different
dom valleys. These spectra were calculated at low temperatures
102 K or lesg where all the eigenvalues are positive.

kg ®_,=[3((fiw)~ 3] (3.9

where(f(w)) denotes an average tfw) over the frequency
spectrum, as in Eq3.2. We note that® _, is extremely
sensitive to small variations in the lowest frequendigs,
i.e., in the lowest dynamical-matrix eigenvaIlMSwf.

For 500- and 1000- particle systems, at temperatures of
1072 K down to 10 °® K, we studied the fluctuations in
®,. The fluctuations as the system moves within a single
random valley are quite small, while fluctuations from valley
to valley are larger. We expect the intervalley fluctuations to

Let us now inquire about the overall shape of the randon@pproach zero abl—o, and the statistics we have fd¢
valleys. This shape is measured in the harmdoizvature =500 and 1000 do support this expectation. For each of the
approximation by the eigenvalue spectrum. We therefore exsentral moments of the harmonic frequency spectrum, the
amine the eigenvalue spectrum calculated at well-separatedean and variance over our reference set of ten different
instances during low-temperature MD runs, and for therandom valleys, five each witN=500 and 1000, are given
present analysis, we take only examples where all eigenvaby
ues are positive. This condition is satisfied by all the random
states we studied, at temperatures of‘ioﬁ and below. 0,=154.0:0.1 K, ©,=98.7+0.1 K,

The most notable property from the outset is that the overall 3.7)
eigenvalue spectrum for random valleys is universal. It is
practically the same for different locations in a given valley;
for different valleys; and for differenN. The eigenvalue
spectra for five different valleys are shown in Fig. 7. TheseThese results may be considered to represent a universal ran-
spectra deviate from each other by an amount not more thashom valley, evaluated at the structure, i.e., at the valley bot-
the pen width of the drawn curves. tom.

®,/N=—-0.01352-0.00002 Ry/particle. (3.3
We are not able to find any statistically meanindfudlepen-
dence in our data fo®, although in keeping with the pre-

diction of liquid-dynamics theory, we presume the width of
the ® distribution goes to zero ds— o [1].

C. Eigenvalue spectrum of the random valleys

0_,=114x4 K.
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D. Negative eigenvalues and anharmonicity 0.014 T T T T T T T
Consider a stable valley the equilibrium configuration of ootz | i
which is given by the set of coordinateR;, for B
=1,...,N. When the system is in this valley, the particle 0.010 | i
position coordinates; are conveniently expressed in terms
of the displacements, defined by 0.008 |- .
o BCC STATES
rg=Rg+ug. (3.8 0.006 |- .
Within the valley, the potential can be written 0.004 - RANDOM STATES .
O({rg))=Po+Pp+ Py, (3.9 0.002 } -
where the structure potential &,=®({R4}), the harmonic 0.000 . . | . - . .
potent|a| |S 0 20 40 60 80 100 120 140 160
T (K)
1 . . -
‘PH=§E Dppr Ug Ugr, (3.10 FIG. 8. The mean fraction of negative eigenvalues for low-
BB’ temperature random states and for bcc states. The curves are for the

S . rpose of guiding the eye.
and the anharmonicity is expressed . The potential purp guiding Y

coefficientsd g5, constitute the dynamical matrix at equilib-
rium, and the transformation that diagonalizes this matri
puts® in the form

a property should, by all means, vary from valley to valley.
*Hence the picture emerges that the anharmonic potehjjal
for random valleys contains a contribution that is micro-

1 scopically bumpy, and that varies from valley to valley. On
Dy :EE Mw? g2, (3.1)  the other hand, a increases, and correspondingly in-

A creases, a common trend begins to emerge for the random

valleys. Our results fof _ versusT for two random valleys
are graphed in Fig. 8.
A further perspective is gained by doing the same analysis
the bcc crystalline states. For our system, the bcc struc-

where each normal mode coordingtgis a linear combina-
tion of theuyg.
Now consider our MD system, in equilibrium, moving for

only.V\{|th!n this single stable valley, and suppose the anharture is stable, hence_=0 for the bcc state af=0. Upon
monicity is such tha has the shape shown in Fighg, for . )
) . heating the crystal to states at higher temperatureste-
one or more of the normal coordinaigg. If the system is at :
. mains zero up to 52 K, but theffe. departs from zero, and
very low temperature, the motion covers only a very small. : . .
. , .Increases as temperature continues to increase. The curve is
region near the valley bottom, and the eigenvalue, for this

mode, is always positive. If the temperature is increased, thghOWn in Fig. 8. The stability of the bcc valley can be ap-

svstem moves over a larger portion of the vallev surface anBreciated from the fact that the bcc states remain stable in
y gerp y '~ our MD calculations up to temperatures around 350 K.

we expect to find at first an occasional negative eigenvaluei_,|ence the bce results provide an excellent example of the

then more negative eigenvalues, as the temperature Commus%?uation anticipated in our discussion of the stability of val-

to increase. This is indeed our qualitative finding, but the . :
. - leys, namely of the appearance of negative eigenvalues for a
details are rather surprising.

Letn_ be the number of negative eigenvalues in a give system moving in a single stable anharmonic valley. Further,

. . "the bec curve off _ versusT is smooth, suggesting 5 for
calculation of the eigenvalue spectrum, and for an MD run ; L .

. ; L the bcc crystal is a smooth function, in contrast to the micro-
with the system in an equilibrium state, kgt_) be the av-

erage for a number of uncorrelated determinations_of To scopically bumpy character @b, for the random valleys.
remove the leadind\ dependence, we define the mean frac-

tion of negative eigenvalues as E. Crystal and symmetric valleys
Because we already have an extensive understanding of
f= (n-) . (3.12 the bcc valley, the bece states will often serve us as a refer-
- 3N-3 ence point in our present work. For the system we are study-

) ing, accurate values of the harmonic parameters of the bcc
Our results for random valleys are as follows. First, for apgtential valley are as follows:

given random valley, negative eigenvalues begin to appear at

very low temperature, in the range of 19-10 ! K, and $y=-0.014415 Ry, 0,=151.4 K,
the curve off_ versusT is irregular, not a smooth curve. (3.13
This irregular temperature dependence presumably results 0,=99.65 K, 0_,=121.4 K.

from a few small low-lying “bumps” in the potential curve,

similar to that illustrated in Fig. ®). Second, at modest These values are in accurate agreement with much earlier
temperatures, of say 10 K or less, the data are signifi- work on the lattice-dynamic properties of crystalline sodium
cantly different from one random valley to another. But for[14,17).

such temperature$,_ is on the order of 102 or less, hence Of the noncrystalline valleys we observé@ndom and

f _ measures a microscopic property of each valley, and suckymmetrig, the random valleys are apparently the only sig-
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nificant contributors to the liquid statistical mechanics, and

for that reason we have placed major emphasis on uncover- 60 ! ' ' ' ' ' '

ing the properties of the random valleys. Still, the symmetric Toaek T

valleys, through their contrasting properties, will help us to 0T T=326K - §
further understand the random valleys. In addition, the sym- % T=275K - g
metric valleys are expected to have a role in the description 2 40 Rk T

of amorphous solids. T-149K -
Though our investigation of symmetric valleys is far from 30 | E
exhaustive, the following properties are established. First, -

d(t)

the symmetric valleys we have found are stable. Second, 20 | i
different symmetric valleys exhibit nominal differences in -
their macroscopic average properties, specifically in their 1ok T
values of®, and ®, for n=—2,0,2. This difference is in
contrast to the accurate macroscopic uniformity of the ran- o e Sttt
dom valleys. Finally, on increasing the temperature from 0 500 1000 1500 2000 2500 3000 3500 4000

very low values, negative eigenvalues begin to appear at ITERATIONS

rather low temperatures for symmetric valleys. From this we |G, 9. The mean square displacement for the liquid state (
conclude that the symmetric valleys, like the random ones=390 K), and for a set of diffusing random states (149K
have a microscopically bumpy anharmonic potential. <356 K).

It is of interest to compare our calculation Bf, for the
liquid state with the experimentally measured self-diffusion
A. Diffusing states in liquid sodium. From a set of 11 calculations &t
7401 K, we find Dy=5.80+0.20(10 ° cn¥/s). Experi-

surface in stable anharmonic valleys. We now take the firsfnent for “qﬁ'd so:mm at Ithel same tem@r:erature and 1dbar
step in studying the motion of the system, when it is confine®€SSure, where the actual volume Is ajatom, compare

to a single valley, and when it moves from valley to valley, !0 0Ur _present volume of 2#/atom, gives D
in various equilibrium states. For this purpose, we study the= 5-3(10 °cn?/s) [22]. The discrepancy is in the range to be

IV. DIFFUSIVE AND NONDIFFUSIVE MOTION

In the last section, we studied the shape of the potenti

mean square displacement, defined in 3. expected from combined errors of theory and experiment.
For equilibrium statesd(t,ty) depends only on—tg, so
we use the notation B. Nondiffusing states

1 At temperaturesT<100 K, the random states exhibit
d(t)= &N E [r(t)—r(0)]2. (4.2 Dy =0, at least to the accuracy available in our MD calcu-
K lations. States witlD,,=0 are called nondiffusing states.

Figure 11a) showsd(t) for a set of nondiffusing random

In genera| formﬂ(t) increases from zero at=0, then fluc- states, while bcc states, for Comparison, are shown in Flg
tuates about linear dependencetofihe initial increase from  11(b). In curves such as these, weditt), after its initial rise
zero is the “ballistic” regime, lasting less than half of a
mean vibrational period. We fit the linear regime to a straight 7 ' ' ' ' ' ' ' '
line D, +Dyt, defining the intercepD, and the slopé®,, .
In statistical mechanics, one shof&i] that D, is the self- 6r N=3%, ¢
diffusion coefficientD. However, most of our states are
metastable, hence they do not sample all of configuration
space, so we use the subscriptto indicate thatD,, mea-
sures the self diffusion only within a metastable state.
Figure 9 showsl(t) for a set of random states, including
the liquid. The curves show a uniform decrease in slope as
temperature decreases. Our interpretation of Fig. 9 is that thex
system is moving among random valleys, for the liquid and
random states alike, but the intervalley motion becomes 1L
slower as temperature decreases. This behavior is made mor
precise in Fig. 10, wher®,, versusT is plotted for the 0 ‘ Le @ . L L : L
random states shown in Fig. 9, plus several lower- 0 50 100 150 200 250 300 350 400 450
temperature states. Figure 10 shows, by a different measure, T(K)
the same property we o_bse_:rved in Fig. 4, that the enFire col- kG 10. Temperature dependence of the sBpg, of thed(t)
lection of randomand liquid states conform to a single cyrve for diffusing and nondiffusingy =0) random states as a
temperature-dependent behavior. function of temperature. The size of the error bar on the last data
States havingl(t) curves such as those shown in Fig. 9, point is representative of the size of the uncertainty for all the
with Dy>0, are called diffusing states. From Fig. 10, thediffusing states. Uncertainties i®,, for the nondiffusing states
random states are diffusing states o 100 K. range from 10° at 100 K to 10° at 1 K, in the units graphed.

(105cm?/s)

M
394
T
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T T T T T T T T T 1
0.015  RANDOM STATES A =8N ; [uﬁ(t)+uﬁ(0)]>,
4.3
f% where the last line follows because the cross terms
~ 0010 uk(t)-uk(0) average to zero. Now il —, the two sums
- become equal, so that at finité they differ by a term of
< relative ordeMN 1, which we neglect, and thus
0.005
T=142K 4 1 )
(dt) =55 {2 uk®). (4.4
. 3N\ K
00 200 400 600 500 1000 1200 1400 1600 1800 2000
ITERATIONS Our system is constrained to zero center-of-mass motion,
— T T—T— T T which meansX g uk(t) =0. We indicate the constrained sum
0.24 BCC STATES B with a prime, asSy, and transform to normal coordinates,
T=1421K whereX; means to omit the three modes of uniform trans-
~ 020 lation, havingw, =0. Then Eq.(4.4) becomes
£
2 016 K
z (3 @) (3 @), 45
S o 3N-3\ ¢ K 3N=-3\ & M T
0.08
With the system in equilibrium within a single harmonic
0.04 valley, we have
0'00 1 1 ) 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
ITERATIONS 2 kgT
(R()y=—7, Ar=1,....N-3. (4.6)
M wy

FIG. 11. The mean square displacemd(it) for three nondif-
fusing random and bcc states.

Hence(d(t)) contains the-2 moment of the frequency dis-
from zero, to a horizontal line. From this line we get the tribution, (w~2) as defined in Eq(3.2), and this can be
intercept value, which for nondiffusing states is the long-expressed in terms of the characteristic tempera€ure,

time time average odi(t): from Eq.(3.4), to yield the final result
t)=—"—"7. 4.
(day Mkg®2,

For completeness, on our graph@f; versusT, the random
states for which we observddy,, =0 are also indicated in To make a systematic study of nondiffusing states, we
Fig. 10. brought the system to equilibrium states on the random, sym-
The propertyD, =0 tells us the system is trapped within metric, and bcc branches, using both heating and cooling
some region of configuration space. In the present case, wsrocedures. As noted in Sec. Il, the random states are long
suspect the system is trapped in a single valley in the potenived for T<35 K. Since the random valleys have a univer-
tial energy surface. This hypothesis can be tested in the hasal harmonic shape, and, in particular, a universal value for
monic approximation, which should be quite accurate. Fo® _,, then all random valleys should conform to a single
motion in a single valley, particl& has equilibrium position theoretical expression fob,, namely, that given by Eq.

Rk, and instantaneous positionk(t)=Rg+uk(t). Then (4.7) with ® _,=114 K. Inserting the numbers gives for
(d(t)) is expressed from Ed4.1), and is evaluated as fol- random valleys
lows, fort beyond the ballistic regime.

D,(a5)=0.001 74 (K). (4.8
1 .
d(t)) = — () —re(0)12), Figure 12 shows our MD results f@,, evaluated from
(a(®) 6N<; (= r«(0)] > thed(t) curves in Fig. 1{a), and additional such curves, for

random states at temperatures up to 35 K. The data of Fig. 12
are obtained from two different random valleys, fbr
_ i<2 [uK(t)—uK(O)]2>, =500 and 1000, and hence further demonstrate the unifor-
6N\ | mity of different random valleys in their macroscopic prop-
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0.35 ; r T —
0.09 T T T . . T s
008 | T 3 1 0.30 | §
007 % | 4 o2} 4
~ g | = )
} 0.06 Q~1 - S 020} ) .. |
2 005} ] ] - s
0 a 015 | : o -
g 004 Yo 04 08 12 16 1 7
T (K) o010 L o BCC STATES . i
0.03 | 7 SYMMETRIC STATES o
N=500 « " THEORY (BCC)
0.02 | . L i
N = 0.05 / THEORY (SYM) -
0.01 | -
0 1 1 1 1
0 ) \ \ \ \ \ 0 50 100 150 200 250
0 5 10 15 20 25 30 35 T (K)
T (K)

FIG. 13. Same as Fig. 12 but for nondiffusing bcc and symmet-
FIG. 12. Intercept®, for nondiffusing random states. The the- ric states. The theoretical curves labeled THEORCC) and
oretical curve labeled THEORY is the harmonic approximationTHEORY (SYM) are the single-valley harmonic approximation for
given by Eq.(4.8). The inset shows the highly linear behavior of bcc[Eq. (4.9)], and for a single symmetric vallg¥Eq. (4.10].
D,, and its good fit to the harmonic theory, in the snialilegime.

erties. Notice that each point plotted in Fig. 12 represents a OUr conclusion at this point is that for every state having
separate random state, hence each point is independent céwm =0, random, symmetric, or crystalline, the system moves
firmation of the theoretical expression, E@.7) or (4.8.  Within a single nearly harmonic potential valley.

From the graph of Fig. 12, there can be no doubt that, for

every nondiffusing random state we studied, the system is V. SUMMARY OF CONCLUSIONS
moving entirely within a single nearly harmonic random val- .
ley g y g y We have used MD calculations to probe that part of the

many-particle potential surface that is visited by the mon-

Again as noted in Sec. (b), random states above 35 K atomic liquid. We have used techniques of cooling and heat-
generally live long enough to obtain respectable MD data.Hg the system, and MD runs to establish equilibrium. Our

We examined such states at temperatures up to 88 K, an

found the same behavior as described above, but with Iargéeraéceﬂtaat;%msoﬁvﬁgtgﬁizesggiuamsy;t(tar?; t(;]:rt];i acr)lf ?rc]:gu“r altjcia ertp-
scatter in the results, name®,, =0, andD, agrees with the ’ Y d

: : : ; melt, and withN =432 for bcc states, and=500, 1000, and
'Er;eé;]retlcal single-harmonic valley expressideq. (4.7) of 3000 for noncrystalline states. Our conclusions are organized

For the bcc valley, Eq(3.13 lists ® _,=121.4 K, and into five major points, as follpws.
this together with Eq(4.7) gives the harmonic result (1) The potential surface is composed of a large number

of stable nearly harmonic valleys. We should emphasize that
every valley we examined, without exception, was found to
be both stable and approximately harmonic. Stability is
shown, to numerical accuracy, by finding that the system
freezes to a configuration that is permanent under continued
quenching and MD runs. The nearly harmonic character of
the valleys is indicated by two observed properties. First, that
. the slope of ®/N) versus(K/N) is approximately unity for
Graphs ofd(t) for the bce states, similar to the ones showny,e random states, the symmetric states, and the bcc states, as
in Fig. 11, haveDy =0, and yield the set oD, plotted in  ghown in Fig. 3, strongly suggests that the system moves
Fig. 13. These values @, are in excellent agregment with among nearly harmonic valleys in each of these groups of
Eq. (4.9 at low temperatures, and the slight drift Of be-  giates. This same property of the liquid states, expressed in
low Eq. (4.9 at higher temperatures is presumably a result O form that the ion motional specific heat is approximately
anharmonicity. _ _ , 3kg per atom, was taken as evidence of nearly harmonic
We also made a series of calculations for a single symy,jieys in our original formulation of liquid dynamids].
metric valley that has® ,=118 K. Up to 212 K, the gecond, when the system is moving within a single valley, as
graphs ofd(t) haveDy=0. Here again the values @, igicated by the propert,,=0, the time average of the
obtained fromd(t) are in excellent agreement with the mean square displacement is in accurate agreement with har-
single-harmonic valley equation, E(t.7), as shown in Fig.  mgnic theory, Eq(4.7), and this is strong evidence that the
13, where the theoretical curve is particular valley in question is nearly harmonic. Figure 12
shows this property for random valleys to 35 K, and the
same result holds with a little more scattbecause the states
5 are short livegito approximately 100 K. Figure 13 shows the
Di(a5)=0.00167 (K). (4.10  nearly harmonic property for the bce valley to 143 K, and for

D,(a5)=0.00153F (K). (4.9
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a single symmetric valley to 212 K. random state it showB,, small but nonzero, indicating the

(2) Stable valleys have previously been observed in comsystem is moving among random valleys. The system con-
puter simulations, and have been classified as crystalline dinues this motion until it encounters a symmetric valley,
amorphoug3-10]. Here we find the amorphous class is fur- Where it loses potential energy and becomes trapped.
ther subdivided into two groups, which we call random and For T=200 K, random states are long lived and show
symmetric. To express the properties of these valleys, weubstantial diffusior{largeD),). We presume the system is
recall Egs.(3.8—(3.11), where the potential surface is ex- moving rapidly among potential valleys, both random and
panded about the minimum of a given valley, in the formsymmetric, and the system has sufficient energy that it can-
d=P,+P,+D,. D, is the potential at equilibriuntat the  not become trapped in a symmetric valley. This description
structure, @, is the harmonic potential, of second order in includes the liquid states at>371 K.
displacements from equilibrium, and diagonalized to a sum For 0 K<T=200 K, symmetric states are long lived,
of squares of normal coordinates, ai is the anharmonic and in each symmetric staf®, =0, and the system moves
potential. An important measure &, is the spectrum of its  Within a single symmetric valley. Some irregular movement
eigenvalues, and three key moments of this spectrum ar@mong valleys, which we have not yet analyzed, takes place
contained in the three characteristic temperatdgsn= N symmetric states above 200 K.

—2,0,2, which we studied extensively. In bcc statesDy =0 and the system moves within a

The important properties of the random valleys are listecsingle bcc valley. This was verified by our MD calculations
in three statements. First, they are macroscopically uniform{0 143 K, and presumably continues to hold to approximately
i.e., they all have virtually the same value ®f, virtually 350 K.
the same eigen\/a|ue Spectrum @f_' , and they all have (4) In order to construct |IC|U|d dynamics theory, in such a
small anharmonicity. Second, on the microscopic lese], form that the partition function and free energy could actu-
has a contribution that is irregular at very small scale, andlly be evaluated, it was necessary to make a simple but
that differs from one random valley to another. Third, thePhysically realistic model of the many-particle potential sur-
random valleys cover by far the major portion of configura-face[1]. The above description of the potential surface, re-
tion space, hence they dominate the statistical mechanics &flting from the present extensive computer calculations,
the liquid state. confirms the simple liquid-dynamics model in excruciating

The important properties of symmetric valleys are mostdetail. This means further that the universal-random-valley
conveniently listed by making comparisons with the randomPotential parameters, specificallp, and ©, for n
valleys. First, the symmetric valleys lie at lower potential, = —2,0,2, as calculated here for metallic sodium at the den-
i.e., they have a lower value df,, as shown in Fig. 3, and sity of the liquid at melt, are the essential parameters for the
they are not macroscopically uniform, but instead have diquid-dynamics theory of sodium at that density. We could
noticeable scatter in their potential paramet®sand ®,,. imagine that this same procedure will be successful in evalu-
These properties presumably result from some remnant diting the liquid-dynamic parameters for other elements as
crystalline symmetry, present in symmetric valleys but not inwell. ) .
random ones. Second, on the microscopic lese|,in sym- (5) The present calculations allow us to test two predic-
metric valleys also has a contribution which is irregular at ations of liquid-dynamics theory1]. The first prediction,
very small scale. Third, the symmetric valleys cover a relabased strongly on the universality of the constant-volume
tively small portion of configuration space, hence they do no€ntropy of melting for normal melting elements, is that the
contribute to the statistical mechanics of the liquid state. ~characteristic temperatuf®, for the crystal, and for the ran-

(3) The equilibrium states of our system, from zero tem-dom valleys, should be nearly the same at the same density,
perature up to and including the liquid states, conform to thé&ay, Wwithin 5%. Here we find®q(bcc)=99.65 K, and
above description of the potential surface. We make the fol@o(random)=98.7 K, in remarkable confirmation of the
lowing interpretation of the observed motion of our system.prediction.

For T=35 K, random states are long lived, and in each The second prediction, based on approximating both crys-
random staté,,=0, and the system moves within a single tal and random valleys as purely harmonic, is ttiaf for
random valley. The system has not enough energy to géandom valleys should lie abow@, for the crystal at the
over the lowest ridge enclosing its valley within the time of same density, by the amourt,AS, where AS is the
our MD run. We presume the systewould get out of its ~ constant-volume entropy of melting. Experiment for sodium
random valley, if we could continue the MD run for a suffi- givesT,AS=1.7 mRy/atom at density of the liquid at melt
cient (very long) time. [23]. On the other hand, from our present calculati¢sese

For 35 K<T=<100 K, random states are short-lived Fig. 3, @, (random lies above ®, (bcg by
states and decay into symmetric states, though while the sy§-92 mRy/atom. The sizable error of the liquid-dynamics
tem is in a random state it shoviy, =0, and it appears to prediction is due to the anharmonicity of the random states,
move within a single random valley. In fact, we presume theas revealed in the graph ¢fb/N) versusT in Fig. 4. It
system is actually moving from one random valley to an-remains to be learned whether such large anharmonicity is
other, but at such a slow rate that the motion cannot b&isual or exceptional among the elements.
distinguished in our MD data, until the system arrives at a
symmetric valley, where it loses potential energy and be- ACKNOWLEDGMENT
comes trapped.

For 100 K=T=200 K, random states are short lived This work was supported, in part, by the Department of
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