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Quantum weak chaos in a degenerate system
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Quantum weak chaos is studied in a perturbed degenerate system: a charged particle interacting with a
monochromatic wave in a transverse magnetic field. The evolution operator for an arbitrary number of periods
of the external field is built and its structure is explored in terms of the quasienergy eigenstates under resonance
conditions(when the wave frequency equals the cyclotron frequeityhe regime of weak classical chaos.

The new phenomenon of diffusion via the quantum separatrices and the influence of chaos on diffusion are
investigated and, in the quasiclassical limit, compared with its classical dynamics. We determine the crossover
from purely quantum diffusion to a diffusion that is the quantum manifestation of classical diffusion along the
stochastic web. This crossover results from the honmonotonic dependence of the characteristic localization
length of the quasienergy states on the wave amplitude. The width of the quantum separatrices was computed
and compared with the width of the classical stochastic web. We give the physical parameters that can be
realized experimentally to show the manifestation of quantum chaos in a nonlinear acoustic resonance.
[S1063-651%98)10412-9

PACS numbdps): 05.45—-a, 03.65-w

I. INTRODUCTION within the framework of the generalized kicked Harper
model[8,9]. Another simple and yet importafespecially to

The problem of quantum chaos in intrinsically degeneratesolid state physigsexample of a degenerate system is that of
systems possesses a number of interesting properties. Thecharged particle moving in a uniform magnetic field and
KoI'mogorov-Arnol'd-Moser (KAM ) theorem in these sys- interacting with a monochromatic wave, propagating perpen-
tems is not applicablgl] and in certain models an arbitrary dicularly to the magnetic field direction under the condition
small perturbation is sufficient to induce an infinite stochas-of cyclotron resonance. This two-dimensional problem is
tic web in phase space. The character of the web is detetantamount to the one-dimensional harmonic oscillator in a
mined by the type of perturbation. When the system is perwave field[3,10]. In our previous worK11] we studied this
turbed by a monochromatic wave, the web widthsystem quantum mechanically, focusing on the resonance ap-
exponentially decreases with increasing acti@amd the mo-  proximation, which appears as the first-order perturbation for
tion is practically localized2]. If the perturbation has the the Floquet Hamiltonian. In the quasiclassical limit the dy-
form of periodicé impulses, the web width is constant and namics in the resonance approximation is globally regular in
the particle, traveling along the web, can diffuse to infinity phase space. The structure of the Floquet spectrum and the
[2] (see also Refd3,4]). In both cases the web inp(x) QE eigenfunctions for the exact and near-resonance cases
phase space has a crystalline or quasicrystalline structureiere obtained and related to the classical phase space struc-
The chaotic motion in these systems has been termed wedlre. The evolution of various representative initial states
chaos since chaos occupies only a small portion of phaseas investigated and the close connection between classical
space(see e.g., Ref{2]). In contrast, in strondor globa) and quantum dynamics at the cyclotron resonance was dem-
chaos, the web structure disappears and most of the phasastrated. In Ref[12] it was shown that the boundaries of
space is filled with chaotic orbits. The peculiar resonancdghe quantum cells act as dynamical barriers to the probability
structure and the appearance of an infinite stochastic wetiow. In the quasiclassical limit the dynamical barriers were
make degenerate systems very attractive objects in which tmund to correspond to the separatrices in classical phase
study quantum manifestations of chaos. space and tunneling through the “guantum separatrices”

The problem of weak and strong chaos has been mainlwas explored numerically.
explored within the context of the kicked harmonic oscillator In the present work we study the dynamical effects of
[5,6]. It has been shown that the time of the classical descripehaos on the above-mentioned system under the condition of
tion of quantum averages is considerably longer for wealcyclotron resonance=w.; (w and w. are the wave and
than for strong chaos. The role of the symmetry of thecyclotron frequencies, respectivelyrhis model seems to be
guasienergyQE) functions was also analyzed in Rgh]. It more closely related to experimental realizations in solid
was found that under certain conditions, quantum diffusiorstate physics than the kicked system. The evolution operator
within the stochastic web was truncated by quantum interferfor an arbitrary number of periods of the external field is
ence effectd6], similar to the case of strong chaos in the built and its structure is explored in terms of the QE eigen-
kicked rotor[7]. The problem of quantum chaos on the sto-states under the conditions of weak chaos. The structure of
chastic web has also been studied intensively in recent yeatBe evolution operator matrix is more complex than the more

1063-651X/99/561)/294(9)/$15.00 PRE 59 294 ©1999 The American Physical Society



PRE 59 QUANTUM WEAK CHAOS IN A DEGENERATE SYSTEM 295

typical bandlike matrix structure. Thus the usual diagnostics

of quantum chaos predicted by band random matrix theory ihCh=v02, [V mSiN(wt)
[13,14] do not work in the case of weak chaos because only m
a small number of QE eigenstates are affected by the pertur- +VE12,r)1+mCOS( wt)]Cpyme Mot (4

bation. A new phenomenon of diffusion over the quantum

separatrices and the effect of weak chaos on the diffusion arghe matrix elementevglyr)wm (Vg?%+m) describe the transi-

investigated here and compared in the quasiclassical lImi,ns petween the levels of oppositgua) parity and can be
with the dynamics in classical phase space. The Crossovel nressed via the Laguerre polinomials 28]
from purely quantum diffusion to a diffusion that in the qua-

siclassical limit corresponds to classical diffusion within the

¢ : ) - (_1)mhmefh/4 h
stochastic web is determined. The width of the quantum vl = ﬁm+1<_),
separatrices is computed and compared with the width of the 2™ (n+1)---(n+2m+1) 2
classical stochastic web. (5a)

The paper is organized as follows. In Sec. Il the basic
model is introduced. Also in Sec. Il the structures of the (—1)™hme 4

nonstationary Schringer equation and the evolution opera- forL om=

tor in I:IO representation are discussed. In Sec. lll the prop-
erties of the QE eigenstates are described. The phenomen%
of diffusion via the quantum separatrices and the influence o
chaos on the diffusion are investigated numerically in Sec
IV. In Sec.V we draw our conclusions.

h
LZ’"(—), 5b)
2™ /(n+1)---(n+2m) " 12 (
ereh=(ka)? plays the role of an effectivédimension-
es9 Planck constant ara= 7 c/eH is the magnetic length.

For n>1>h the matrix elements can be approximated in
terms of the Bessel functiork, of orderm by [15]

Il. EVOLUTION OPERATOR 1 (—1)Mnmt et
fheami1=5 Jom+1(x/2nh)
. . . . . . n,n+2m+1 2 2m+1 ’
The Hamiltonian of a charged particle in a magnetic field J(n+1)---(n+2m+1)
interacting with a monochromatic wave reads (63
2 1 (_1)mnme—h/4
i @ =2 Jom(y/200).  (6D)
A p+CA A A nn+2m- 5 \/(n+1)..-(n+2m) 2m( )
H= o +vgcogkx—wt)=Hy+V(x,t), (1)

Since the perturbation is periodic in time, Floguet theory

. can be used to describe the time evolution of the system in
Wherem:';mde are, respectively, the mass and charge of thgayms of the QE spectra, and the QE eigenfunctions
particle, p is the momentumk is the wave vectore is the  y(x,t). The QE states are the eigenstates of the evolution
wave frequency, and, is t_he amplitude of the perturbation. operatorJ for one period of oscillation of the external field
We choose the gauge #éfin the formA=(0,Hx,0) so as to T=27lw,
have the magnetic fieltl along thez direction and to have
the momentunp, as an integral of motion. The Hamiltonian R ie T
is equivalent to a one-dimensional simple harmonic oscilla- u(T) zﬁq(x,t):exr( - Tq) y(X,1),
tor perturbed by a monochromatic wave field. Hence the
2;02:3? t:/?/ ;ovgﬁ;egﬁgzrt]réet'dependence of the wave funCtIO\r/]vhich can be defined bisee, for example, Ref16], p. 385

It is convenient to expand the state vector in the harmonic

oscillator basis Po(X,1) =exp( — %) En: CY(t) (%)
JD=3 Cotinexs—iE), @) =exp( _ %) U0, @

wherey,(x) is thenth eigenfunction of the simple harmonic Where the function€{(t) andug(x,t) are periodic in time,

oscillator HamiltonianH, and E,=# w (n+1/2) is the en-  Ya(Xt+T)=Uq(x,1). _

ergy of thenth Landau level. Using Eq2), the nonstation- The coefficient<C(t) are the elgenvectoEs of the operator

ary Schralinger equation U in the representation of the Hamiltonidh, and can be
found by diagonalizing the corresponding matdy . The
following procedure is one way to obtain the matrix elements

=I:|z,b(x,t) 3 [17]. Let the evolution operatoﬂ act on the initial state

CL(0)= 8.0y

d(X,t)

ih P

yields a set of differential-difference equations for the coef-

ficients Cp(t), Unnn(T)Cir®(0) = Uy, o (T) = CO(T). (8)
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The coefficientsCE:O)(T) can be computed numerically by >\/m and this inequality can be treated as an additional
integration of Eq.(4). They form a column in the matrix restrictior! on the bandwidth of the evolutipn operator matrix.
Umn (T). Repetition of this process for initial states, or- AS Vo increases, the number of effective terms increases
0 . n’ , , too. This number was numerically determined by requiring
thogonal' to the Previous Oné,;n (,0): S, N fno, fills relatively small changes in the QE spectrum and in the QE
the matrixUy, ,,(T). Diagonalization of the matrik n(T)  ejgenfunctions after including an additional term to the sum
yields the eigenvalues, and the eigenvecto3y. The num-  (4). The fluctuations did not exceed the accuracy of the
ber of the Landau levels in Egs.(2) and(4) included in our  Runge-Kutta method used for integration of Hg). The
computations is equal to the size of the evolution operatonumerically determined number of effective terms was found
matrix U, (T) and hence to the number of its QE eigen-to be of the order o¥,, in agreement with the speculations
states. presented above. The Runge-Kutta procedure was controlled
Once the eigenvalues, and the eigenvectoG]l are ob- by the normalization conditiol ,|C,,|?=1; the fluctuations
tained, we may write the evolution operator for one periodof this value were smaller than 16.
Um,n(T) in the form[16]

Ill. SEPARATRIX QUASIENERGY EIGENSTATES

2 = qcax —i
Unnr(T) zq: CoCyr &XR ~i2qT/A). © In this section we discuss the structure of the QE states

that determine the dynamics via Eq$0) and(11). We first
By raisingU, /(T) to degreeM and using the orthogonality consider the resonance approximation, which will be the
of the eigenvector€, one can obtain the evolution opera- starting point for the investigation of quantum chaotic effects
tor that propagates the system towdddperiodsU,, ,,(MT) in next-order approximationgl1,12. The equation for the
by QE eigenstates in the resonance approximation can be ob-
tained by putting the QE eigenfunction in the fof@ into
Eq. (4) and keeping only time-independetitesonance
terms. Thus the set of differential-difference equatighss
transformed into the set of algebraic equations

e MT
Upn(MT)=2, cﬁcgfexp(—i qh ) (10)
q

Given U, ,,(MT), the evolution of any initial stat€,(0)

can be computed by using chgzVO(Vn,n+1Cg+1+Vn,n—lcg—l)i (12
Cn(MT)=2 Unn(MT)C/(0). (11)  whereE,=¢4/fiw is the dimensionless quasienergy. This is
n’ an eigenvalue problem for the Floquet Hamiltonigk?].

Equation(12) is similar to the Harper equation in the sym-
metric gauge of the vector potentidl with periodic off-
diagonal modulation of the matrix elemefi®]. In our case

The expression§l0) and (11) are much more practical for
calculations than the integration of the set of differential

ltaquatlo?s(4)6te§p?ﬁlall¥ Itn thfetlr:mnt—?o, betcauset.they al- the off-diagonal modulation is nonperiodic. The dependence
ow us to obtain the state of the system at any tiiey a of the matrix element¥/, ., on the Landau numbaen is

simple summ_a'gion. There are _only two dimensionless ParaMen 5wn in the upper part of Fig. 1. Due to oscillations of
eters determining the dynamics of the system, namely, th@lmn+l andV, ,_, with n, the Floguet Hamiltonian matrix

dimensionless amplitude of the perturbatiovg=vo/he ¢ determining the QE eigenstaték?) has a cell structure;

and .the effective Planck constdmp’n the argume'nts of the the boundaries of the cell are given by the zeros of the Bessel
matrix element¢5a) and(5b). This is easy to see if we write function [cf. Eq. (6a]. One can easily show that at small

Eq. (4) in dimensionless form by introducing the dimension- values ofE, (Vo<1) the Floguet Hamiltonian matrid2)

less timer=twV,. In this form, the phases of the oscillating can be obt(;inegl from the Floguet matf®. Moreover, as
terms are given by-mr/Vo. Thus the larger the amplltgde will be shown below, the cell structure is maintained even
of the waveV,, the smaller the frequency of the oscillations for very large values ol/, (Vo~10); an extremely strong
and the larger the number of effective terms that partidpat?)erturbation amplitude ig reqouired ,to destroy the cells en-
in the dynamics. Con_sequently, the par_amM@determines tirely. The regions where the matrix elements,,,; are

the nur_nber of effective terms on the right-hand side of Eq‘small [one such region is marked with the recténgle in the
(4)’. Wh'.Ch can be roughly es_t|mated as=Vp. 'I_'he same plot V,, ,+1(n) in Fig. 1] can be referred to as quantum sepa-
estlmat|on yields the bandwidth of the evolut|_on OPeraton rices because in the guasiclassical limit their positions in
matrix (8) or (9). If Vo<1 the resonant terms witm=+ 1 action| correspond to the positions of the classical separa-

dominate the dynamics; they become independent of timg; < 'in oh 61.12. Th ; by th f
since they are being multiplied by sist) or cost). The tﬁgegse'gs%aflﬁﬁcifgafof 'or?]j.er fse are given by the z€ros o

other terms oscillate fast and can be averaged out. Consider- The structure of the QE eigenfunctions can be understood

ation of only these time-independent coefficients constitute h terizi h by it oS nlCY2 and
what we call the resonance approximation. As was shown i y characterizing each one Dy Its centg= Nl i an

Refs.[11,17, the quantum resonance approximation in theits dispersionrq=[,(n—ng)?|C[?]¥2 The plot ofn, ver-

quasiclassical limit in general corresponds to the classica8usay in the resonance approximation is shown on the left-
resonance approximatideee, e.g., Ref18)). Itis necessary hand side of Fig. @); the figures on the right-hand side are
to point out that wherV,=1, the matrix element¥,, ,,,  the Poincaresurfaces of sections for the classical system

~Jm(v2nh) decrease quickly withm in the regionm  with the same parameters. Each point in the pigfo,)
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Vi, n+1 cell. Hereinafter we shall characterize the ‘“localization
length” of the QE functions byo. It was found numeri-
n . : )
T ™ — cally that the most localized eigenfunctions correspond to the
\\/ o= T ' ' largest QE eigenvalue@n absolute valug while the most
%0 100 IS0 200 250 300 350 delocalized states correspond to one of the smallest eigenval-

ues. Calculations with other values of the effective Planck
constanth have shown that the number of delocalized QE

eigenstates increases with increadmgvhich indicates that,

as will be shown below, these states are of a pure quantum

n nature with no classical analogs. A representative delocalized
110 a0 150 eigenfunction, the widest one, marked in Figa)2with an
o arrow, is shown in the lower part of Fig. 1 and its Husimi
” -, function is plotted in Fig. 3. Note that the eigenfunction and

the Husimi function have their maxima in the regions of the
classical separatriceef. Fig. 2a)]. Thus the delocalized
n states can be identified as “separatrix eigenstates.” The Hu-
‘ ‘ simi function in Fig. 3 is symmetrical with respect p—
|'|'|'|"'.'.'|'|"'|" ....................... n,w,lllll| ‘|||\llIIII,I,I,I,I,w,I.u.I. VA AR ALY —p but not symmetrical under the transformatinn> — X,
” Il which turns the Husimi function corresponding to the eigen-
valueE into the one corresponding te E, [see Eq(13)].
The high peaks in Fig. 3 near the separatrix k0 result
from the slowing of the motion of the classical particle,
which in turn increases the probability of finding the particle
in this region. The existence of fully delocalized eigenstates
of the matrixU, (T) is a very interesting, nontrivial fea-
ture. Initially (time M=0), the QE functions, due to their
FIG. 1. Matrix elements/,, ,, in dimensionless units versus completeness, yield a Kroenecker deffg, in Eq. (10). If n
the Landau numben (upper part and the most delocalized QE andn’ belong to different cells, then only a small number of
eigenfunction in the resonance approximatitower par}. The in-  the delocalized QE functions provide the cancellation of
set amplifies a small portion of the QE eigenfunction, marked withterms in Eq.(10). The condition of completendd.0) (at M
brackets. Herén=0.37 andV,=0.002. =0) serves as a good check for our numerical calculations.
At short times M~1) in the resonance approximation,
corresponds to two QE eigenstatés, @nd —E) due to the  whereV,<1, one may take into consideration only the ele-
symmetry of Eq.(12) under the transformation ments along the first off diagonal of the matti, ,,, which
are of the order oE,; the elements in the second off diag-
onal will be of the order of Eq)z and so on. Let us estimate
corresponding to the transformatian- —x in Eq. (7). It is the width An; of the maxima of the separatrix eigenfunc-
seen that almost all the QE eigenfunctions are divided intcEIons where the indeklabels the separatrix number. To this
= end we approximate the matrix elemewif, .., near the

groups with practically the samg, and differentoq. Each  ggparatrices by the linear functiésee the upper part of Fig.
group of states belongs to only one resonant cell because ttle; Vint1= Vo, ng+1+@(N—ng). Hereng is the Landau
nn n

nq for each QE eigenfunction is situated in the center of thestate number where the value of the matrix elemént. 1 is
cell andnqi a4 does not exceed the size of the correspondminimum and a= Ny .1/dn. This approximation is
ing cell [the boundaries of the cells in Fig(é2 are marked
with arrowd. It was shown in Ref[12] that the Husimi
function[20] of a QE state with quasienerdg,>0 is local-
ized in the upper partxt>0) of the phase space and the

Eq— —Eqy, Cl—(-1)"Cg, (13

valid when the separat|x reglcmn is smaller than the total
number of the Landau states in thdn cell n;, An;<n;.
Under this condition, Eq(12) takes the form

Husimi function of a state with- E is situated in the lower Eq q a

part (x<0). Thus each row on the left-hand side of Fi(g)2 V_Ocn:[vno,n0+l+ a(n—=ng)]Cp, 4

corresponds to the two symmetrical classical resonance cells

shown on the right-hand side of Fig(a2 The first row is F[Vngng+1t a(n—nyg—1)]Cd_,. (14

associated with two classical cells near the poixtQ,p

=0), the second row with the next symmetrical cIaSS|caI|:0r the separatrix states, the raig/Vy is of the order of

cells, and so on. The number of the QE eigenfunctions in a#0™® and one can omit the left-hand side of Hg4); the

individual cell equals approximately the number of the Lan-minimal matrix elemen¥,, , ., near the separatrix is also

dau states in this cell. small and may be neglected as well. Under these assump-
Besides the localized eigenfunctioferanged in rows in  tions, Eq.(14) gives the relation between the coefficients

Fig. 2(@)], there are a small numbé8—4 % of delocalized cd,

states that cannot be assigned to any particular cell; they are

represented by the scattered points. These QE eigenfunctions g _ .M m—2 1

X ] ; ) : Clipm=——=—=-5Cd . (15
have large dispersions, witr, exceeding the size of one o m+1m-1 2 Mo



298 DEMIKHOVSKII, KAMENEV, AND LUNA-ACOSTA PRE 59

Q 20 40 60 B8O 10Q 12Q

— (©

. .
200 J R 07
1 & 2t
4 ® -
] .
—=] SE N
] % 2
100 J e N
] » .My *
—>] w
- & *,k‘“*.
] ¥ -
—] - A SLIT
U_
0 20 40 60 80 100 120 -16 16

FIG. 2. Plot of the dispersions, versusﬁq for the QE eigenfunctions with=1,2, ... N for h=0.37,N=381, and different values of
Vy: (8 Vp=0.002,(b) Vy=6, and(c) V=13 (left-hand sid¢ and classical phase space for the same parameigis-hand sidg

Here Cﬁo_l is the magnitude of the QE eigenfunction in the accuracy. The latter method is nonperturbative and allows us
maximum andm (here oddl is the distance from the maxi- t© obtain the solutions at anyot necessarily smalampli-
mum (see the inset in Fig.)1The reduced equatiofl5) is tude V,. In the following discussion this approach will be
independent of the parameters and cell number; as a consésed to investigate quantum chaos in our system.
guence, the separatrix widthn; should be the same for all In order to incorporate chaos one must increase the per-
cells. This was confirmed by our numerical calculations disturbation amplitude. The structure of the QE eigenfunctions
cussed below. In the quasiclassical limit, when:0 and in the presence of weak chaos is shown in Fig&) 2nd
n;—oe, the relative width of the quantum separatix; /n; 2(c). Note the qualitative difference from the results obtained
tends to zero, consistent with the classical dynamics. for the resonance approximati¢fkig. 2(@)]. Increasing the

To conclude our discussion on the structure of the QBperturbation amplitude to the valug,=6 [Fig. 2(b)] gives
eigenstates in the resonance approximation it is necessary ttise to a change in the separatrix eigenstates: Their disper-
point out that the numerical results obtained by using twesions o, decrease on the average. In contrast, localized
different approaches, the Floquet Hamiltonian formalismeigenfunctiongarranged in rowsare slightly affected by the
[16] in Eqg. (12) and the Floquet formalism af,—0 de-  perturbation, resulting in a small splitting of the rows. This is
scribed in Sec. Il, lead to the same results with very highn close agreement with the classical behavior, namely, the
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C:O(M)=% ClCI exp(—iEqM), (16)

where time is measured in the number of external field peri-
odsM. The value of theth oscillating term is determined by
thenth andnyth amplitudes of thgth QE eigenfunctiorC .

A transition from thength to thenth Landau level will occur
provided both coefficient€ andCﬁ(’)‘ in Eq. (16) are large.

If we consider the transitions between the quantum separa-
trices, then the main contribution to the evolution comes
from the separatrix QE eigenfunctions as they have their
maxima at the various separatrix regions and the diffusion
a5 over the quantum separatrices is due to their delocalization.
The number of separatrix QE eigenfunctions is very small,
FIG. 3. Husimi function corresponding to the QE eigenstatebut their effect on the diffusion via the separatrices is crucial
plotted in Fig. 1. because localized QE eigenfunctions have minima in the vi-
fginity of the separatrices and do not contribute to this pro-
cess.

region around the classical separatrix is first and most a

fected by an increase &fo. First, let us look at the diffusion over the quantum sepa-

A further.mcrease_of\/o to the valueV,=13 .[F'g' 20)] ratrices in the resonance approximation where the system
leads to an increase in the number of delocalized states ar;ia

on average, the localization length grows again. The mo ossesses no chaos. To this en_d, we place an initial state
drastic effect of chaos on the quasienergy eigenfunctions Wa_s”(o)_ 5_”’“0 in the separa_tn_x region anq fOI_IOW the evolu-
observed in the region of Hilbert space corresponding tdion of this state for a sufficiently long time in order to de-
completely chaotic motion in classical phase splke first termine the position in Hilbert space of the quantum particle
two cells on the right-hand side of Fig(c2]. The chaos of at timet—o. The largest characteristic time in the system is
the corresponding QE eigenfunctions is manifested in thémax=27/ @min, Where wp;, is the minimal distance be-

apparent random character of the depende_Q‘(e ): each tween the effective QE eigenvalues, i.e., the eigenvalues cor-
QE eigenfunction spans both cells so that theq ’cannot breesponding to the eigenstates that constitute the initial state
9 P Y nd determine the dynamics. As shown above, in our case

assigned to any particular one. Furthermore, our numeric% . . . ;

experiments show that the dependencefon the Landau e effective e|genstates are the sep'aratr_lx ones. After a tlme

numbem in the chaotic area is also very irregular. Note that tmax the dynamics enters into a quasistationary regime and it
y Irreguiar. '{s convenient to time average the probability in the regdion

. i ; ; S
3;;;;23 (fl"’(l:s’esl'lzallvﬁﬁlses’rﬁaellrt%gﬂggno?ﬁ;_e;r:z;tenvfr:gl;fscelgtmax in order to eliminate the influence of fluctuations and
y: exclude transient effects.

appear to be more affected than thost_a with larger . The results of this procedure are plotted in Figs) 4nd
In Figs. b) and Zc) there are no points corresponding to 4(b) for the saméh as in Fig. 2 and for two different values

two eigenfunctions as there are in Figagbecause of the Ef Vy; the initial state, marked with a large arrow, was situ-

sgbstan'ual influence of the nonresonant terms on'aII t_he Qated at the Landau level,=20 in the second cell near the
eigenstates. Recall that in the resonance approximation tfbe

: oundary of the first one. From Fig(a} one may note that
system has the symmetry defined by Et3). Weak chaos o - . -
lifts this symmetry and splits the rows on the left-hand sidesthe time-averaged probability distributi¢f,) in the classi

. : : cally inaccessible cellgeven in the resonance approxima-
of Figs. 4b) and Zc). The third and fifth rows correspond to _; ) N
mixed phase space dynamics, shown on the right-hand sidggn’ whereV,—0) is comparable to that of the initigec-

- ond cell. It was numerically confirmed that if an initial state
of Figs. Zb) and Zc). o ) :
gs. 2b) 40) CnO(O) is situated anywhere in the central region of a reso-
IV. QUANTUM DIFFUSION VIA THE SEPARATRICES nance cell, then only an exponentially small part of a wave

) . ) packet tunnels to the neighboring cells and a logarithmic
The quantum dynamical manifestations of weak chaos argca|e(in the probability distributionis necessary in order to
studied in this section by means of the nonperturbative tecr}'ecognize the tunneling phenomendr]. The second prin-
nique based on the Floquet formalism discussed in Sec. II. Igjpa| point is the observation that the probability distribution
the regime of weak chaos only a small portion of phase spacg, Fig. 4(a) is highest around the boundaries of the quantum
is chaotic. Correspondingly, in the quantum model, only &egonance cells, always being relatively small in the central
small number of the eigenstates are affedtsee Sec. I).  regions. Thus anomalously intensive tunneling takes place

However, we expect to detect the influence of weak chaos ogp|y petween the quantum separatrices and we may refer to
the dynamics if we consider the diffusion along the separatiyhis process as “diffusion via the quantum separatrices.”
ces. This intuition is based on the fact that the diffusion viarnjs effect is reminiscent of the diffusion of a classical par-
the separatrices is governed by the separatrix QE eigenstatggye within the stochastic web. That idea is supported by the
which are the ones mainly affected by the perturbation. Iny,simj function of the initiallys-like wave packet after evo-
order to check this, let us consider the evolution of an initialjytion during a rescaled time=3000[see Fig. ). This
state C°(0)= &y, Which is described bysee Eqs(10)  figure reminds us of the web structure in its corresponding
and(11)] classical phase space. However, this effect is of a pure quan-
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FIG. 4. Time-averaged probability distributi¢®,) versusn for
h=0.37,N=381, anda) V,=0.002 andb) V,=6. Averaging was
performed over 300 times in the region 3608<6000 (r=V,t; t

is measured in units of the external field peride-27/w). The
separatrix positions are marked with arrows.

-15 15

tum nature as the classical particle in the resonance approxi-

g:ﬁg?.n has no possibility of penetrating one cell from an_and initial conditions as in Fig. 4 atdimensionless time 7
The effect of weak chaos on the diffusion over the sepa-_ 3000, Cr(0)= 8y No=20, and(@) Vo =0.002 antb) V=6,
ratrices is illustrated in Fig.(®). Inspection of Figs. &) and o )
4(b) shows that an increase of the amplitude leads to a ded are the same as in Figsa#and 4b)]. We see from Fig. 6
crease of the diffusion rate. This effect of chaos on quanturfhat the diffusion over the separatrices \4§=6 is sup-
diffusion is rather unexpected: The increase in the perturbaPressed in comparison to the resonance case, consistent with
tion inhibits tunneling instead of intensifying it. This is a the dynamical picture of Fig. 4. The data shown in Fig. 6
direct consequence of the partial localization of the separa@llow us to estimate the effective time of saturation of the
trix QE eigenfunctions of Fig.(®) caused by the presence of Probability distribution 7, a,=Votmax- As the wave packet
weak chaos in the vicinity of the separatrix. This quantum
weak chaos effect is manifested in the plot of the Husimi 5o,
function of the wave packett:n(0)=5mno after evolution

during the timer=3000[see Fig. B)]. Hereinafter the time

t is measured in units of. The third separatrix is not as 40 n‘l

clearly defined as in Fig.(8) or in Fig. 3, being partially e g 109 M BE
destroyed by chaos. The Husimi function looks like the clas- ‘ Y iUyl
sical density distribution within the stochastic web in phase3000 ARG ‘ 1
space(see Fig. 5.7 in Ref2]). The fourth and fifth separa- !
trices are absent and the Husimi function appears to be mor,, fy
localized than in the resonance approximation. The structure | ]
of the Husimi function within the first two cells is irregular, ) V,=6
consistent with the more developéabt weak chaos in this g0 il

region. '

The phenomenon of localization becomes more evident in -
Fig. 6, where we show the evolution of the squared disper- 0 fr ey
sion o as a function of the rescaled time=Vt. The two s0e 1000 1500 20 2500 300
chosen values of the perturbation amplitudg correspond, FIG. 6. Dynamics of the squared dispersiof( ) for the same
respectively, to the resonance approximation and the regimgarameters and initial conditions as in Figé)4nd 4b) in units of
of weak chaogthe values oh and initial conditions in Fig. dimensionless time.

FIG. 5. Husimi functions of the states for the same parameters

o)

V,=0.002
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FIG. 8. Widths of the quantum separatricks; versus the per-
turbation amplitudeV, for the same parameters, initial conditions,
and separatrices as in Fig. 7.

FIG. 7. Diffusion rateP; of an initially é-like wave packet,
placed ainy= 20, from the initial(first) separatrix to the ith one for
i=3,4,5 as a function of the perturbation amplitidg. h=0.37

andN=401. sensitive to changes in the structure of the QE eigenfunc-

in Fig. 6 for Vo=0.002 spreads over all the separatrices, thd!OnS. _ _

effective time in this case is defined by the minimal distance NOW consider the plots of the widthisn; versus the wave
between the separatrix QE eigenvalues; in the presence 8MmplitudeVo shown in Figs. &)—8(c) for the same param-
weak chaosVy=6) 7mayis Mainly determined by the mini-  €ters, initial con<_j|t|ops, and separatrices as in Fig. 7. The
mal distance between the QE eigenvalues within the initiafata, presented in Fig. 8 have the following interesting fea-
cell because the probability distribution does not evolve tgfures. (i) Consistent with the above consideratigsse Eq.
the other cells. The separatrix QE eigenvalues are situatéd9], the widths of the quantum separatrices/gt<V are
near the center of the spectrum where the spectrum is deng@proximately the same for all the separatrices and for all
and the distances between these levels are smdllagt Vvalues ofh (the latter was confirmed by our calculations with
Thus a large difference in the values®f,yin the two cases Other values oh). (ii) On average, the widthan; do not

of Fig. 6 arises from the different types of effective eigen-change significantly witt/, until the amplitude of the per-

states that determine the dynamics, namety,, (Vo
=0.002p> 7,2 Vo= 6).

turbation reaches some valifg, after which theAn; begin
to grow monotonically. Thus, in the regiafy <V, classical

We will now show that the diffusion rate can be charac-chaos does not affect the width of the quantum separatrices

terized by two parameters of the probability distributi®p

in the neighborhood of each separatiix These are the
maxima ofP,,, denoted byP;, and its widthAn; . Plots such
as Fig. 4a) suggest that the distributioR,, in the neighbor-

hood of the separatrix averaged over time, may be approxi-

mated by a Gaussian curve. Then the maxipéwidth An;)

(but does affect the diffusion rate in Fig). Tiii) The thresh-

old V{ in the plot of An;(V,) is the same as the threshold
(position of the minimumin the plot of P;(V,) in Fig. 7. At

that point the width of the quantum separatrix exceeds the
width of the classical stochastic webH;, which can be
approximated by2]

is given by the heightwidth) of the corresponding Gaussian.
Plots of P; as a function of the perturbation amplitudig AH; o . (2hm)Y? 77

i T ; i ; =2"glt— X expg | — =
give a measure of the diffusion rate. An inspection of Fig. 7 how. VAh2 F{( 2) '
reveals an exponential decrease of the diffusion rate up to the 0 17)
valueVy=6 (V| depends o). This provides further evi-
dence of the suppression of quantum diffusion over the sepayheren; is the center of théth cell and the quantithn in
ratrices due to weak chaos. A further increas¥@fesults in  the quasiclassical limit becomes the actiomhe results of
a growth of the diffusion rate, which can be explained by theour calculations using Eq17) are presented in Figs(&—
average increase in the localization length discussed in Seg(c) with dashed lines. The discrepancy between the quan-
1. Such behavior as a function of amplitude corresponds tqum and classical curves may presumably be attributed to the
the classical situation. The minimum in the CUNQ is the approximate character of E(L7), which is valid only in the
crossover from the quantum to the classical diffusion. Thecase of an exponentially thin separatrix. Nonetheless, the
further the boundary of the resonant cell is from the bound+rend of the quantum curves is qualitatively the same as the
ary where the initial state was situated, the smaller the minielassical behavior.
mum is in the corresponding curve because chaos destroys a
larger number of delocalized separatrix eigenfunctions that
contribute to the diffusion. We speculate that the oscillations
of the curves in Fig. 7 arise from the fact that the diffusion The numerical data and qualitative analysis presented in
over the quantum separatrices is determined by a small nunthis paper allow us to make the following conclusions about
ber of (separatrix QE eigenstates and turn out to be verythe nature of quantum weak chaos. In the quantum resonance

5/2(2h r.li)1/2
Voh

V. CONCLUSION
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approximation we investigated the resonance structure cfuppression of quantum diffusion via the separatrices. At
Hilbert space and also the new phenomenom of quanturarge values of perturbation/,>V;, we have observed a
diffusion via the separatrix. We remark that this quantumrecovery of the diffusion that was associated in the quasiclas-
diffusion has no classical analog because classically, the osical limit with the growth of the classical stochastic web in
bits are confined to resonance cells. In quantum mechanicphase space.
this diffusion results from tunneling across the quantum |t is necessary to point out that the parameters chosen in
separatrices. An accidental intersection of levels of differenbur numerical experiments correspond to actual experimental
cells (associated with the overlap of QE functipngith ei-  sjtuations. Acoustic cyclotron resonance can be observed in a
genvaluesE, <V, leads to the formation of delocalized QE two-dimensional electron gas in semiconductor heterostruc-
eigenfunctions. In other words, the cell structure of the evotures subject to a transverse magnetic field and in the field of
lution operator matrixand the Floquet Hamiltonian matjix a longitudinal sound wave. In order to observe this phenom-
gives rise to a long-range coupling between states of differenon the electron relaxation timg must be large enough to
ent cells. The dynamical manifestation of this effect is ansatisfy the inequalityv,7,>1. Under this condition and un-
anomalously large diffusion rate between the cells via theler the condition of cyclotron resonance, one can choose
quantum separatrices. For sufficiently large value¥othe  parameters that allow the Fermi leva! to be placed at the
nonresonant terms may be considered as an effective randdsoundary(quantum separatjixoetween the first and second
perturbation that inhibits the long-range interaction, therebyells. That is, the argument of the Bessel function
localizing the QE eigenstates. Ji(kay2ng) must coincide with the first zero of the Bessel
When the perturbation becomes strong enough diffusiofynctionJ; . In order to create this situation in an experiment
is recovered, but now it is of a completely different nature.one can choose the following experimental parameters: The
Namely, for large values of the perturbation we observe agound wave frequency should be of the order of 10 GHz, the
analog of the classical diffusion within the stochastic Web-magnetic fieldH=2x10° Oe, the effective electron mass
This is demonstrated by comparing the widths of the classimp* =0.7m,, and the electron concentratigvi=10** cm 2.
cal and quantum separatrices. The structure of the quasiefrhese parameters give= 0.4 andny,=ng=20. The value of
ergy eigenstates that explains the diffusion is also diffe_rent;ghe parameteV, is determined by the deformation iy
In the resonance case they have.the regular form, which is. kug, Whereuy is the acoustic wave amplitude. Thus the
maintained over several cells of Hilbert space, while at larggjue v,=10 corresponds to the wave deformati@ny
Vy such states are destroyed and diffusion takes place be-1g-4_10"5. \When the proposed parameters are realized in
cause the localization lengths of many QE eigenstates inan experiment we predict that quantum chaos will be mani-

crease on the average. . fested as, for example, an attenuation of the sound wave.
In this paper the evolution operator propagating the sys-

tem toward an arbitrary number of periods of the external

field is built in the Hamiltoniarﬂo basis. Its eigenstat¢QE
eigenstatesare explored under the condition of resonance in  We thank Felix Izrailev for illuminating discussions. This
the regime of weak chaos. In the new phenomenon of diffuwork was performed with the support of INCASrant No.
sion over the quantum separatrices it was found that a small7-2-15 and the Russian Foundation for Basic Research
number of delocalized separatrix QE eigenstates play théGrant No. 98-02-16412 G.A.L.-A. acknowledges partial
dominant role. It was shown that weak quantum chaos leadsupport from CONACYT (Mexico) under Grant No.

to the localization of the separatrix eigenstates and hence #6163-E.
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