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Critical behavior of binary gaseous mixtures

E. V. Matizen, P. P. Bezverkhy,* and V. G. Martynets
Laboratory of Low Temperature Physics, Institute of Inorganic Chemistry, Novosibirsk, Russia

~Received 14 July 1998!

The behavior of the kinetic coefficients of binary gaseous mixtures has been studied in a vicinity of the
gas-liquid critical line. It is shown experimentally by the diffusion equalization of concentration that the mutual
diffusion coefficientD depends on the reduced temperaturet@t5(T2Tc)/Tc , whereTc is the critical tem-
perature# as a power function with exponentg;1.2 up tot;1023–1024 at the approach to the critical point.
The dependenceD;t0.6 predicted by the scaling theory should be observed in closest proximity of the critical
point. It is shown that the diffusion equalization of the isotope concentration does not have any peculiarity near
the critical point. Equations of state are proposed for both pure substance and binary mixtures, based on
up-to-date theories. They may be used to calculate the required thermodynamic derivatives for describing the
temperature dependences of kinetic coefficients. The crossover temperatures have been determined. The ex-
periments performed are in good agreement with our theoretical calculations.@S1063-651X~99!13402-0#

PACS number~s!: 51.20.1d, 05.70.Jk, 64.60.Fr, 64.60.Ht
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I. INTRODUCTION

The description of diffusion in nonideal solutions at t
level of molecular interaction involves considerable pro
lems which are so far unsolved. Moreover, the means
solve them are unknown due to substantial mathematical
ficulties caused by, e.g., the considerable nonlinearity of
problem @1,2#. These difficulties are similar to those ob
served upon calculation of the thermodynamic proper
~thermodynamic potentials! of equilibrium nonideal systems
More difficult is the situation with describing systems ne
the critical points of solutions, which are points of secon
order phase transitions. As has been shown, theories su
mean field theories~e.g., the virial equation of state! are
unsuitable in this case, because the introduction of a m
parameter is impossible here@3#. A phenomenological ap
proach, lacking the advantages of a microscopic descript
may be used to describe, in general terms, the main feat
of the behavior of nonideal systems.

The present paper gives the main phenomenological e
tions to describe the relation between the thermodyna
properties and the diffusion processes in nonideal syste
reveals the role of the mobility of components, and propo
the equations of state for these systems. Particular atten
is paid to the experiments performed in the region adjac
to the gas-liquid critical line in which the nonideality of so
lutions is quite substantial and is manifested in the range
solution parameters~pressurep, mass densityr, concentra-
tion c, temperatureT), which is narrowing with approach to
the critical point of a pure solvent. Experimentally, th
choice is convenient because changing slightly the solu
parameters, we may study the entire region beginning w
the ideal state up to substantially nonideal ones. The m
goal of the study is to describe the relaxation process i
nonideal solution~for simplicity, in a two-component one!
when its minor part is taken from the equilibrium state a

*Also at Physics Department, Novosibirsk University, Pirogov
2, Novosibirsk 630090, Russia.
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left free to its own~external fields being zero including th
gravitational field although it may have a great effect on
properties of solutions near the critical points and upon ph
stratification!. ~We further consider one-phase systems u
less otherwise specified.! This relaxation process is describe
in terms of a two-component system using the followi
differential equations@4#. The equation of continuity is

]r

]t
1¹W •~rvW !50, ~1.1!

the Navier-Stokes equation is

rF]vW

]t
1~vW •¹W !vW G52¹W p1hDvW 1~z1h/3!¹W ~¹W •vW !,

~1.2!

The equation of continuity for the 2nd component wi
concentrationc2 is

]~rc2!

]t
52¹W •@rc2vW 1JW2

~m,v !#, ~1.3!

the equation for entropy production is

rTS ]s~m!

]t
1vW •¹W s~m!D 5s ik

]~vW ! i

]xk
1¹W •~qT

W2m~m!JW2
~m,v !!

2JW2
~m,v !

•¹W m~m!, i ,k51,2,3 ~1.4!

the equation for the second component flow is

J2
~m,v !52rDv,cS ¹c21

kT

T
¹T1

kp

p
¹pD , ~1.5!

the equation of state is

p5 f ~c2 ,r,T!, ~1.6!

and the equation for thermal flux is
,
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qT
W5FkTS ]m~m!

]c2
D

p,T

2TS ]m~m!

]T D
p,c

1m~m!G•JW2
~m,v !1l¹W T.

~1.7!

In this case,t is the time;vW is the velocity as a momentum
of solution unit mass~mean-mass rate!; c25r2 /r, c151
2c25r1 /r, wherec1 and c2 are the mass fractions of th
first and second components;r1 andr2 are their mass den
sities;h is the shear viscosity;z is the bulk viscosity;s ik is
the viscous stress tensor;JW2

(m,v) is the density of diffusion
mass flow of the second component relative to the coordin
system, moving with velocityvW ; s is the entropy of unit
mass;Dv,c is the coefficient of mutual diffusion;kT is the
thermal diffusion factor;kp is the barodiffusion ratio;l is
the coefficient of thermal conductivity;T is the absolute tem
perature; andm (m) is the chemical potential (m (m)5m2 /m2
2m1 /m1 , wheremi is the particle mass of thei th compo-
nent; m i is the chemical potential of thei th component per
one particle!.

The system of equations~1.1!–~1.7! seems rather com
plex and cannot be simplified for describing a solution o
the entire critical region because with approach to the crit
point its coefficients display some singularities (h,z,kT ,kp
→`, Dv,c→0). However, when experiments are perform
outside of the asymptotic vicinity of this particular poin
according to our investigations, some substantial simplifi
tions are quite possible for a more concrete problem, nam
for studying concentration relaxation~diffusion!. We assume
that the relaxation of temperature and pressure occurs w
much higher rate than that of the concentration inhomoge
ity. In any case, this is the way to perform the experime
e.g., in capillaries whose walls are kept at constant temp
ture. Thus, it is assumed that the one-dimensional cas
realized and diffusion occurs at a constant temperatureT
5const) and pressure (p5const). To avoid misunderstand
ing, note that the conditionsp5const and¹p50 do not
mean that we may neglect the hydrodynamic velocityvW . The
condition¹p50 assumes that the system is in the mecha
cal equilibrium, that the acceleration (]vW /]t) and the viscous
stress tensors ik are so small that they are insignificant. Ta
ing into account the above conditions, we simplify the s
tem of equations~1.1!–~1.7!:

]r

]t
1

]

]x
~rvx!50,

]~rc2!

]t
1

]

]x
@rc2vx1J2x

~m,v !#50,

J2x
~m,v !52rDv,c

]c2

]x
,

rTS ]s~m!

]t
1vx¹s~m!D 5m~m!¹J2x

~m,v ! ,

r5 f ~c2!, T5const, p5const. ~1.8!

Solving the system~1.8! for the given initial and boundary
conditions, one can determine the unknown functionsr
5r(x,t), c25c2(x,t), vx5vx(x,t), ands(m)5s(m)(x,t) if
one knows the coefficients in Eqs.~1.8!. Of most interest in
te

r
l

-
ly,

a
e-
t,
a-
is

i-

-

this paper is the inverse problem, i.e., the problem of de
mining the coefficients of mutual diffusion from these e
perimentally found functions.

The existence of a mechanical equilibrium allows one
prove an important theorem concerning the rules of repla
ment in the diffusion equations of hydrodynamic~mean-
mass! velocity vW by other velocities@5#. Using this, it is
convenient to pass to other velocities, namely, to cons
the component particle currents relative to the me
numerical velocityw5(N1v11N2v2) whereNi are the mole
concentrations of components andv i are the mean velocities
of components relative to the laboratory system of coor
nates~capillary!. Besides, we are not interested in the beh
ior of entropy. In this case, the system of equations~1.8!
takes the form~index x is omitted for brevity!

]n

]t
1

]

]x
~nw!50, n

]N2

]t
1nw

]N2

]x
5

]

]x
nDwN

]N2

]x
,

n5 f ~N2 ,T5const, p5const!,

J2
nw5nN2~v22w!52nDwN

]N2

]x
, J2

nw1J1
nw50.

~1.9!

This system of equations was first proposed by@6#. The
relationship between the new and old quantities has
form r5r11r2 , n5n11n2 , r i5mini , ci5Nimi /(N1m1
1N2m2), and DwN5Dv,c5D, where ni is the numerical
density of particles of thei th component;n is the total nu-
merical density of particles. In subsequent studies, we s
use the concept of the macroscopic mobility of solution co
ponents,bw. This mobility is defined as the mean velocity o
the component, considered as a continuous medium~gas,
liquid! relative to some system of coordinates~moving, in
this case, with velocityw) under the action of a unit force
Thus, the component flow and the diffusion coefficient
Eqs.~1.9! may be expressed in terms of the mobilitybw and
the chemical potential gradient:

J2
wN5n2b2

w¹m2 , ~1.10!

D5b2
wN2S ]m2

]N2
D

p,T

. ~1.11!

As follows from Eq. ~1.10!, b2
w is one of the Onsage

coefficients @5#. When N2→0 we have (]m2 /]N2)p,T

→kBT/N2 , b2
w→b20

w @7#, and we get the known Einstei
relation D5b20

w kBT where b20
w is the mobility of a single-

component molecule, considered as the Brownian parti
With approach to the gas-liquid critical point of the solutio
b2

w→`, whereas (]m2 /]N2)p,T→0. Thus, in nonideal solu-
tions the mobility loses its clear physical meaning and u
ally the term ‘‘macroscopic mobility’’ is used. Let us now
study the system~1.9! which describes the relaxation of th
concentration inhomogeneity in a capillary with defini
boundary and initial conditions. Our purpose is to derive
expression for the experimentally observed values ofJ2

wN

5nN2(v22w) ~the mean flow of the number of particles o
the second component relative to the capillary! and ofw ~the
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mean numerical velocity! in terms of the concentration gra
dient!. Integrating Eqs.~1.9! over the capillary length from 0
to x with boundary conditions (]N2 /]x) t,x5050 andw(0)
50, we have

w~x!52
1

nS ]n

]N2
D

p,T
S D

]N2

]x D2E
0

x

nDS ]N2

]x D 2S ]2v

]N2
2D

p,T

dx,

~1.12!

wherev51/n is the specific volume,

J2
N~x!52nDF11

N2

n S ]n

]N2
D

p,T
G S ]N2

]x D
2nN2E

0

x

nDS ]N2

]x D 2S ]2v

]N2
2D

p,T

dx. ~1.13!

Equations~1.12! and ~1.13! show that the velocityw(x)
and flow J2

N(x) are the nonlocal quantities and are det
mined by the values ofD, N2 , andn over the entire length
x. Note also that besides the peculiarities observed in
behavior ofD with approach to the critical point of the so
lution, the derivatives ofn with respect to concentrations a
also divergent. Obviously, to understand the behavior of
diffusion process~the equalization of concentration! in non-
ideal solutions, it is necessary not only to know the pur
kinetic coefficients ~mobilities! but also the equilibrium
properties of these solutions. Therefore we have studied
perimentally both the thermal equation of state and the
fusion processes in strongly nonideal solutions.

II. EQUILIBRIUM THERMODYNAMIC PROPERTIES
AND DIFFUSION NEAR THE GAS-LIQUID CRITICAL

LINE OF BINARY SOLUTIONS

Since the driving force of diffusion is the chemical pote
tial gradient, let us consider the methods of its calculation
various cases, i.e., the methods of determination of
chemical potential derivative with respect to the compon
concentration as well as the dependences of the mixture
sity on its composition. We consider first the weakly no
ideal binary gaseous solution. According to@7#, its thermo-
dynamic potentialV is expressed as the partition functio
with the terms determined by the system energy levels
within the second-order terms in series expansion in pow
of density:

V52kBT lnF11j1v1j2v1
j1j2

2!
v2I 12

1
j1

2

2!
v2I 111

j2
2

2!
v2I 22G , ~2.1!

where j15@m1kBT/(2p\2)#3/2exp$m1 /kBT%, j25@m2kBT/
(2p\2)#3/2exp$m2 /kBT%, I 125*dv@exp$2U12/kBT%21#,
I 115*dv@exp$2U11/kBT%21#, and I 225*dv@exp$2U22/
kBT%21#.

U12, U11, and U22 are the energies of the interactio
between the molecules of the first and second compone
among the molecules of the first component and among
molecules of the second component, respectively. TheI i j
-

e

e

y

x-
f-

r
e
t
n-

-

to
rs

ts,
e

integrals for various interaction types are shown, e.g., by@2#.
For the pressure and chemical potentials we may get
expressionsp52(V/v). The mean values of the densitie
of component molecules are determined by simple differ
tiation ^n1&5(dV/dm1)T,v , ^n2&5(dV/dm2)T,v . To de-
termine the chemical potentials, we givej1 andj2 in terms
of ^n1& and ^n2& and pass to the concentrationsN1
5^n1&/@^n1&1^n2&#,N2512N1 . Hence,

m15kBTS ln
N1

v
2I 11

N1

v
2

1

2
I 12

12N1

v D2kBT
3

2
lnS m1kBT

2p\2 D ,

m25kBTS ln
N2

v
2I 22

N2

v
2

1

2
I 12

12N2

v D2kBT
3

2
lnS m2kBT

2p\2 D .

~2.2!

The equation of the state of a weakly nonideal gase
solution, expressed in terms of concentrations and spe
volume, has the form

p

kBT
5

1

v
1

I 11

2 S N1

v D 2

1
I 22

2 S 12N1

v D 2

1
I 12

2

N1~12N1!

v2
.

~2.3!

Using these equations, we may derive the derivatives
the chemical potential and specific volume:

S ]m2

]N2
D

p,T

5
kBT

N2
F12

N2~12N2!

v
~ I 111I 221I 12!G ,

~2.4!

S ]v
]N2

D
p,T

5F I 11~12N2!1I 22N21
I 12

2
N2~12N2!G

3F11I 11

~12N2!2

v
1I 22

N2
2

v
1I 12

N2~12N2!

v G .
~2.5!

Now we consider the limiting case of a strongly nonide
system, namely, the two-component solution near the g
liquid critical point of the solvent. By definition, the critica
line of a binary solution is described by the equations@7,8#

~]m1 /]N1!p,T5~]m2 /]N2!p,T50,

~]2m1 /]N1
2!p,T5~]2m2 /]N2

2!p,T50. ~2.6!

Two coexisting phases become identical in this line. As
known @7#, in the vicinity of the critical line an increase in
system susceptibility@(]N/]m)p,T→`# causes an increas
in fluctuations of the order parameter~for our case, a com-
bination of density and concentration; see@9#!. In this case,
the fluctuations are considered as interacting@3,10#. This
leads to a singular behavior of equilibrium and kinetic valu
which cannot be described either by the theory of pertur
tions or by the theory of mean field, e.g., by the van d
Waals theory@11# or by the Landau theory of second-ord
phase transitions@7#. However, the description of the critica
behavior of such a theory is rather useful. It is simple enou
and there is a region which is not too close to the criti
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point in which this theory may be used in some approxim
tion. Let us use it to describe the phenomena occurring n
the gas-liquid critical point of the solvent; later we will pa
to a more general theory.

In the theory of mean fields, the expression for the deri
tive of chemical potential with respect to concentration w
allowance for Eqs.~2.6! may be expanded in a power seri
of solution parameters deviations from the critical values

S ]m2~p,T,N2!

]N2
D

p,T

5ANN8 ~N22N2c!
21AT8~T2Tc!

1Ap8~p2pc!. ~2.7!

However, this expansion is inconvenient for an analy
Therefore, if we know the equation of statep5p(v,T,N2),
it may be derived in a different form@6#. The free energy of
the unit volumeF(v,T,N2) is the homogeneous function o
particle number:

F5n f~T,v,N2!5n@kBTN2 ln N21 f * ~T,v,N2!#.

Hence,

m25S ]F

]n2
D

T,v,n1

5 f 2v~] f /]v !T,N1~12N2!~] f /]N2!T,v .

~2.8!

Differentiating Eq.~2.8! with respect toN2 , we get the ex-
pression for (]m2 /]N2)p,T in the general form

S ]m2

]N2
D

p,T

5
12N2

N2
kBTH 12

N2

kBTF ~]p/]N2!v,T
2

2~]p/]v !N,T

1 f NN* ~v,T,N2!G J . ~2.9!

In this casef * (v,T,N2) is the free energy per one pa
ticle, andf NN* 5(]2f * /]N2

2)v,T . When we know the equation
of state, the chemical potential may also be found using
formula @12#

m2~p,T!2m2
0~p51,T!

RT

5 ln~pN2!1
1

RTE0

pFv1N1S ]v
]N2

D
p,T

2
RT

p Gdp.

~2.10!

For instance, for the van der Waals equation

p5
RT

v2b
2

a

v2
~2.11!

or, in the dimensionless form,

p* 58T* /~3v* 2b* !23a* /v* 2, ~2.12!

a* 5a/a1 , b* 5b/b1 , p* 5p/pc , T* 5T/Tc , v* 5v/vc ,
pc5a1/(27b1

2) , Tc58a1/(27Rb1) , andvc53b1 , where
-
ar

-

.

e

a5a1N1
212a12N1~12N1!1a2~12N1!2,

b5b1N1
212b12N1~12N1!1b2~12N1!2, ~2.13!

the derivative (]m2 /]N2)p,T has the form

N2N1

RT S ]m2

]N2
D

p,T

512
N2N1

2

T* 2 5 S ]p*

]N2
D

T,v

2S ]p*

]v*
D

T,N

2
8T*

3v* 2b*

3Fd2b*

dN2
2

1
~db* /dN2!2

3v* 2b*
1

9d2a* /dN2
2

v*
G 6 .

~2.14!

If the equation of state is given as the expansion into a Ro
series@13# ~see also@6#! (N2[N),

Dp5~p2pc!5ANN1ATDT1ANrNDr1ATrDTDr

1Ar3Dr31AN2N21AT2DT21ANTNDT

1ATr2DTDr21ANr2NDr21Ar4Dr4, ~2.15!

then we have

S ]m2

]N D
p,T

5
12N

N
kBTF12

N

kBTS AN
2 12ANANvDv

2ANvN2ATvDT23Av3Dv2D G ,

~2.16!

S ]v
]ND

p,T

5
AN12ANvDv

2ANvN2ATvDT23Av3Dv2
. ~2.17!

Deriving Eqs.~2.14!–~2.17!, we neglected the terms of th
fourth order and the derivativef NN* which near the gas-liquid
critical point of the solvent is small compared with oth
terms of Eq.~2.9!.

According to numerous investigations~see, e.g., the re
view in @10#; also see@14–19# and our papers@20–25#!,
equations of the type~2.11!,~2.15!, belonging to some of the
so-called mean field theories, are inadequate for experim
tal results in close vicinity of the critical point. We propos
more complex equations of state to describe the singular
havior of thermodynamic quantities near the gas-liquid cr
cal point of the solvent. These equations are based on
hypotheses of scaling invariance, isomorphism, and con
mal invariance of fluctuating quantities@3,26,27#; see also
@28,29#.

For a pure solvent with allowance for nonasymptotic c
rections our equation of state has the form@30#

Dr5~r2rc!/rc5A11bA2 ,
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t5~T2Tc!/Tc5~12ab!21~h22bh1!,

s5~S/v2Sc /vc!Tc /pc5aA11A2 ,

Dm5~m2mc!/pcvc5~12ab!21~h12ah2!. ~2.18!

In this case,Dr, t, s, and Dm are the reduced mas
density, temperature, entropy, and chemical potential of
system;a andb are constants;A1 , A2 , h1 , andh2 are the
quantities, corresponding to magnetic moment, reduced
tropy, magnetic field, and reduced temperature of this Is
lattice, respectively; the subscriptc is the critical value. The
expressions for these quantities in terms of parametersr and
u, introduced by@31# for a ‘‘linear model,’’ which solves
conveniently the problem of equation analyticity at a critic
point, have the form~with nonasymptotic correction first in
troduced by@32# and @33# and modified by us!

A15grbu2
Eg

A
r b1Dw~u!,

A25Agr12a~s02s2u2!1Egr12a1DQ0 ,

h15Arg1b~u2u3!, h25r ~12B2u2!, ~2.19!

whereg, b, anda are the critical indices of compressibi
ity, boundary curve~binodal!, and thermal capacity, respe
tively; D is the index of nonasymptotic corrections; the c
efficients A,g,E are the fitting quantities; s05g(g
21)/2B2a(12a), s252g(122b)/2a, Q052(g1
D)/2B2(12a1D), andB25(g22b)/g(122b),

w~u!5
u@12B2u2~122b!#

11u2@B2~2g12b21!23#1u4B2~322g12b!
.

The areas of changing parameters are 0<r<`,21<u
<11. For the one-component order parameter, which ho
for the critical points of liquids,a50.11, b50.325, g
51.24, andD50.45. These values of the critical indice
were theoretically obtained by@26# and were confirmed by
numerous measurements~see, e.g.,@10#!. Note that only two
of these are independent because are related viaa12b1g
52.

The pressure is expressed in terms of these paramete

Dp5~p2pc!/pc5~ScTc /pcvc2a!t1Arg1b~u2u3!

1Erg1b1D1Agr22a~z01z2u21z4u4!

1Egr22a1D~p01p2u2!.

In this casez05(g22b2gaB2)/2B2a(12a)(22a),
z25@aB2(2g12b21)2g12b#/2B2a(12a), z45(g1b
23/2)/a, p052(g1D)/2B2(12a1D)(22a1D), and
p25(122b)/2(12a1D).

To derive the equation of state of the binary solution,
quantities defining of the system state are convenient to
press in terms of some parametersz, t̃, andh which include
the regular parts~the Leung-Griffiths equation! @34#. This
parametric equation of state is written as

m12m25RT ln$@z/~12z!#K2 /K1% ,
e

n-
g

l

-

s

as

e
x-

p5v~z,h,t̃ !RT,

r5vh
reg1Dr,

T5@R~a01a1z2a0t̃ !#21,

N5z1z~12z!@vz1a1vt!/r2v1]. ~2.20!

The subscript denotes differentiation with respect to a co
sponding variable;m1 andm2 are the chemical potentials o
the first and second components; andK1 and K2 are the
dimensionless constants, determined by the critical value
entropy for pure components@34#. Unlike the Leung-
Griffiths equation we have written down@35# v5v reg

1vsing, v reg5c(z)1d0t̃1 l 0t̃21 f (z)h, Dr5 f (z)(A1
1bA2), A15]p/]h1 , A25]p/]h2 , c(z)5c01c1z, f (z)
5 f 01 f 1z, andvsing5 f (z)p(h,t̃). A1 andA2 are the same
as in Eqs.~2.18! and the thermodynamic potentialp as a
function of the variables of the ‘‘linear model’’ has the form

p5Agr22a~z01z2u21z4u4!1Egr22a1D~p01p2u2!.

Parameterst̃ and z display a clear physical meaning:t̃
51/(RTc)21/(RT), z5K1 exp(m1 /RT)/@K1 exp(m1 /RT)
1K2 exp(m2 /RT)#. Parameterh is more complex:

h5 ln@K1exp~m1 /RT!1K2 exp~m2 /RT!#

2b01b1z1b2z~12z!1g0t̃.

Expressingt̃ andh in terms of parametersr andu, we get

t̃5a0@r ~12B2u2!2bArg1b~u2u3!#,

h5Arg12b~u2u3!. ~2.21!

Hence,

r5 f ~z!F11grbu2
Eg

A
r b1Dw~u!1bAgr12a~s01s2u2!G ,

wherew(u) is the same as in Eqs.~2.19!. The coefficients
ai , A, g, E, b, bi , ci , Ki , d0 , g0 , l 0 , f i , and v1
are the fitting constants. The quantities ofTc ,rc , andpc are
determined by the vanishing of the singular terms of eq
tions. The ranges of the parameters variation are 0<r<`,
21<u<11, and 0<z<1. Our equation differs from
Leung-Griffiths equation by the introduction of addition
terms in the expressions forp and t̃. The nonasymptotic
correction is taken into account by terms containing the c
stantE and indexD, and the conformal invariance of fluc
tuating quantities is taken into consideration by terms wit
constantb.

The resulting equations are difficult to analyze. Their a
vantage, however, is in the fact that they are based on
fundamental principles of the up-to-date theory of seco
order phase transitions, hold for any vicinity of the critic
point, and may be sewed~matched smoothly! with the virial
equation of state at a sufficient amount of terms in regu
functions. Simplifications are possible in studying real s
tems. In this case, however, the degree of errors, arising f
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these simplifications, is always clear. An important peculi
ity of these equations is that they give expressions for
thermodynamic potentials~chemical potentials! of compo-
nents and, thus, we may simultaneously determine m
properties to characterize the system~the diagrams of state
p-T-N, the behavior of boundary curve diameter, therm
capacity, compressibility depending on three variables,
termining the system stater, T, N or p, r, N).

The above theory needed verification or, more precis
determination of the physical meaning of the corollaries
its equations. With the accumulation of experimental da
the theory improved. The experimental investigations n
the gas-liquid critical point of the solvent had two main pu
poses. The first one was to study the dependence of pres
on the temperature, volume, and concentration of binary
lutions (p,r,T,N dependences!. The second one was t
study diffusion in order to determine the constants of eq
tions, to establish the regions of the applicability of the
equations, and to explain the peculiarities of the behavio
nonideal solutions.

For the first purpose the original apparatus was create
obtain thep,v,T,N data. One of these@36# is a piezometer
with variable volume in the form of a cylinder with a plung
located horizontally in a thermostat. It contained windows
observe phase stratification and critical opalescence.
pressure was measured using a standard dead weight g
and a pressure detector, based on the measurement of
phirine membrane deformation determined by the resista
of a doping semiconductor strip, deposited on the membr
@37#. Variations in volume were measured using a mic
scopic screw which moved the plunger. The temperature
determined by means of a high-precision platinum resista
thermometer. A magnetic mixer was used to establish e
librium in the piezometer. The piezometer characteristics
listed in Table I. This apparatus was used to study pure C2
@20,21# and the solutions CO2-4He @38,39#, CO2-Ne
@40,41,35#, CO2-Ar @36#, CO2-Kr @42#, and CO2-Xe @43#
near the gas-liquid critical point of CO2.

Another low-temperature setup@44# was employed to
measure thep-v-T dependences of4He near the gas-liquid
critical point. In this setup the density was measured by
dielectric permeability of helium using the capacity metho
The pressure was measured by means of a mercury ma
eter and the temperature was measured by a semicond
model resistance thermometer. The gas density was d
mined to within6231023%. The mercury manometer wit
a sensitivity of 0.05 Torr allowed us to measure press
over the range of 1530–2030 Torr with an absolute erro
60.1 Torr. The temperature in a measuring cell was c
trolled to within 61024 K.

Using the data obtained, we determined the coefficient

TABLE I. The piezometer characteristics.

Measured Absolute Parameter’s
interval error sensibility

P ~MPa! 0-10 60.01 4310252431024

T ~K! 275-330 60.001 231024

V ~cm3! 14-20 6431024 231024

m ~g! 200 6131024 131024
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thermal equations of state~2.18! and~2.20!. Besides, the data
on 4He were also used to determine the coefficients of
caloric equation of state, derived by us using the same
potheses@23#. As an example, we give the results of da
approximation for the CO2-Ne solution @40,41,35# by the
method of minimization of quadratic functional with respe
to pressure. The data were obtained within the ran
302.15 K <T<309.65 K, 392 kg/m3<r<568 kg/m3,
0<N<5.076 mol % Ne, and 7.2 MPa<p<9.4 MPa.
These results are a053.9544531024 kmol/kJ, m0
52.920 30 kmol/m3, f 0510.6346 kmol/m3, g51.193
60.04, A56.2660.6, E52.164.6, b520.05060.076,v1
52.2960.90, a15(6.8264.6)31025 kmol/kJ, c1534.7
624 kmol/m3, d05(44.2460.3)3103 kPa, l 05(24.9
61.0)3108 kJ2/kmol/m3, f 1523.7616 kmol/m3, a50.11,
b50.325,g51.24, andD50.45. The mean-square errors
the approximation of pressure, density, temperature,
concentration weredp50.0015 MPa,dr50.005 kmol/m3

('0.2 kg/m3), dT50.0031 K, anddN50.02 mol % Ne.
The errors were calculated for a confidence coefficient
0.68.

The given accuracy of approximation by this scali
equation is higher than that by the equation of state~2.15!
and is close to the accuracy of the experimental data.

To reach the second purpose, we have mainly studied
temperature dependences of diffusion coefficients for
densities close to the critical ones with approach to the c
cal temperature as well as their dependences on conce
tion and density.

The diffusion coefficients were measured in the syste
CO2-40Ar @45–47#, CO2-40Ar-36Ar @48#, CO2-Ne @49–51#,
4He-D2 @52–54#, and 3He-4He @24,25#. To obtain data on
the first four solutions, we used the method of capillari
Diffusion in the 3He-4He solution has been studied using t
method of the measurement of horizontal solution layer
pacity. The first method is used to measure the mean solu
concentration in a capillary, depending on the time when o
of the capillary ends is closed, and the other is connecte
a large volume with different concentration. The valves,
cated at capillary ends, were used to fill the diffusion c
with gases, to create the concentration difference, and to
the mixture to mass spectrometer for analysis. A large
volume with a magnetic mixer contained enough gas
maintain constant pressure and concentration at the open
of the capillary during the diffusion. Thus, diffusion oc
curred under constant boundary conditions. The cell w
thermostated at the required experimental temperature. In
second method@55,56# the diffusion cell consisted of a
copper block with a cylindrical cavity with a mino
height/diameter ratio. In the upper section of the cell th
was a flat capacitor to measure variations in the solut
density and concentration. The concentration gradient in
cell was initially produced by fast heating from the tempe
ture at which the solution separates into liquid and va
phases to the experimental temperature, corresponding to
one-phase state region@56,25#.

As has been mentioned, diffusion near the critical poin
described by a set of nonlinear equations. It is rather diffic
to solve these equations, i.e., to determine the depende
of concentration in the capillary on the time and coordina
More difficult is the problem of the determination of th
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diffusion coefficient by experimental dependencesN2
5 f (x,t) @47,49–51#. However, at sufficiently small concen
tration differences Eqs.~1.8! and~1.9! may be linearized and
the diffusion coefficient may be determined using the F
law @45,46#. Obviously, the closer the binary solution is
the critical point, the smaller is the concentration different
Therefore, in these experiments one should carefully cho
the maximum value of the difference, basing the choice
the required measurement accuracy and on the estimatio
terms by the known equations of state.

For large times the solution to Fick’s equation

]N2

]t
5D

]2N2

]x2
~T5const, p5const! ~2.22!

is well known,

N2~ t !2N2
v5A exp~2t/tp!, ~2.23!

FIG. 1. Temperature dependences of the coefficients of mu
diffusion in CO2-Ne (N250.036) and CO2-Ar (N250.043) solu-
tions near the gas-liquid critical point of CO2 . CO2-Ne: special
crosses, experiment.~1! D/D0 whereD is described by Eq.~3.5!,
and D059.331023 m2 s21; ~2! Eq. ~3.6!; ~3! D/D0

5(]m/]N)p,T where (]m/]N)p,T is given on the critical isochore
according to Eq.~2.16!; ~4! on the isochore close to the critical on
CO2-Ar: simple crosses, experiment;~5! calculation similar to that
for curve 3.

FIG. 2. The dependence of the coefficient of mutual diffusion
the solutions of He isotopes on the reduced temperature at the
ous densities and concentrations. Circles, experiment; solid li
the results obtained by using Eq.~3.3!. ~1! For molar fraction of
3He, N50.007, the deviation of density from the critical on
Dn/nc50.05; ~2! N50.046, n5nc ; ~3! N50.108, Dn/nc50.02;
~4! N50.205, n5nc . The dot-dashed continuation of curves 1 a
4, the calculated behavior ofD for n5nc . ~5! The results obtained
by usingD5kBT/6pr ch.
k

.
se
n
of

wheretp54l 2/p2D; N2(t) is the mean concentration in th
capillary; N2

v is the equilibrium concentration in the volum
and, initially, at the open end of the capillary; andl is the
capillary length. The diffusion coefficientD involved in Eq.
~2.23! is calculated in the system of coordinates, movi
with mean numerical velocityw. Experimentally, the deter
mination ofD asDwN in terms of Eq.~2.23! is preferable.

III. INTERPRETATION OF RESULTS

The main experimental data on the study of kinetic co
ficients are shown in Fig. 1–5. Figures 1 and 2 demonst
that with approach to the critical point the diffusion coef
cient D tends to zero. This diffusion behavior was first o
served by@8# ~see also@57#! in binary liquid solutions near
the critical points of mixing. Let us consider experiments
the CO2-40Ar system@48#, performed using the method o
capillary, to understand the physical meaning of this p
nomenon, i.e., the problem of the relationship between
macroscopic mobility and the mobility of separate mo
ecules. For this aim, the different concentrations of isoto
relative to each other and to CO2 were produced in the cap
illary and in the cell volume. When the capillary was open

al

ri-
s,

FIG. 3. The temperature dependences of the reduced diffu
coefficient (D/D0) which determine the times of the equalization
isotopic Ar content~1!, the times of the equalization of Ar concen
tration in CO2(2), andnear the gas-liquid critical point of CO2-Ar
with N54.8 mol % of Ar. The curve shows calculations by formu
D/D05(]m/]N)p,TN/kT where (]m/]N)p,T was calculated by us-
ing Eq. ~2.16!.

FIG. 4. The dependence of thermal conductivity of3He-4He
solution on the reduced temperature near the gas-liquid crit
point. The solid line corresponds to Eqs.~3.8! for l in which the
terms, decaying with approach to the critical point, are neglec
The dotted line corresponds to the passage to the limiting beha
(l;const). The circles denote the experimental data@61#.
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~connected to the cell!, the mutual diffusion of argon and
CO2 proceeded parallel to the equalization of argon isoto
concentration. Figure 3 depicts the dependence of a red
diffusion coefficientD/D0 on temperaturet5(T2Tc)/Tc
where

D05
0.1496

s12
2 V~1,1!n

F ~m11m2!kBT

m1m2
G1/2

. ~3.1!

For Eq. ~3.1! the s12
2 , V (1,1), m1 , andm2 quantities were

taken from@2# for argon and CO2; the mean molar fraction
of Ar was N250.048 withn5nc56.531027 m23. As fol-
lows from Fig. 3, the diffusion coefficients of argon and CO2
decrease many times whereas that responsible for the e
ization of the isotopic concentration of argon in CO2 is tem-
perature independent and equal toD0 , corresponding the
limit of rarefied gases but with a density equal to the criti
density. Thus, it is assumed thatD05b0kBT, whereb0 is the
mobility of separate molecules and has the form@2#

b05
0.1496

s12
2 V~1,1!n

F ~m11m2!

m1m2
G1/2

~kBT!21/2 ~3.2!

and no peculiarities in any vicinity of the critical point. Thu
for the region studied (t.1023), the component mobility is
assumed to have no peculiarities and to be equal to the q
tity calculated by the theory of rarefied gases with dens
almost equal to the critical value. This is of fundamen
importance because either a decrease in the diffusion co
cient near the critical point or an increase in the relaxat
time of the inhomogeneities of the concentration of solut
components is caused not by the slowing down Brown
motion of molecules but by a decrease in the thermodyna
force due to some mean field which prevents the equaliza
of concentration. This mean field is similar in its action
the gravitational field which also prevents from the vertic
equalization of the concentration gradient in the solution

FIG. 5. The dependence of thermal diffusion factorkT of
3He-4He solution on the reduced temperature. The solid line co
sponds to the calculation according to formula~3.8! for kT . The
dotted line corresponds to the passage to the limiting behaviorkT

;tn). The circles correspond to experimental data@61#.
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Thus, calculating the thermodynamic force, i.e., t
(]m2 /]N2)p,T derivative, using one of the equations of sta
the data obtained may be approximated by the expressio

D5N2b0~]m2 /]N2!p,T , ~3.3!

whereb0 is calculated by Eq.~3.2!. Equation~3.3! was veri-
fied by experimental investigations of the solutions CO2-Ar
~Fig. 3!, CO2-Ne ~Fig. 1!, 3He-4He ~Fig. 2!, and D2-4He.
Note that the above results are valid only for the region t
is not too close to the gas-liquid critical point of the solve
The studies indicate~see@10#! that over the entire region o
the critical state of solutions, the macroscopic mobility~the
Onzager coefficient! has a important peculiarity which ha
no relation to the mobility of separate molecules. In the g
eral case, the diffusion coefficient may be given as follow

D5
kBT~bsing1breg!

kBT

N2
S ]N2

]m2
D

p,T

sing

1
kBT

N2
S ]N2

]m2
D

p,T

reg . ~3.4!

The superscripts denote the singular and regular parts o
values. According to the theory of critical phenomena@10#,
on the critical isochores we have (]N/]m)p,T

sing;t2g, bsing

;t2g1n, whereg andn are the critical indices of both the
compressibility and correlation radius, respectivelyg
51.24, n50.62). With approach to the critical point,bsing

→`, (]m2 /]N2)p,T
sing→0 and in the limit

D→N2bsing~]m2 /]N2!p,T
sing;tg2g1n;t0.62. ~3.5!

This relation determines the limiting behavior of the diff
sion coefficient with approach to the critical point. It wa
verified in many experiments, mainly, by measuring t
width of the Rayleigh line in liquid solutions@10#. However,
according to present-day investigations, near the gas-liq
critical point of the solvent within a temperature range of t
states (1023,t<1), excluding the closest vicinity of the
critical point, we may neglect the termbsing(bsing!breg). In a
particular case, which may be of use to us in subsequ
estimations, on the isochore at a critical concentration
solution, it is assumed that

~]N2 /]m2!p,T
reg5N2 /kBT,

~]N2 /]m2!p,T
sing5a8~N1N2!et2g,

D5bregkBT/„11a8~N1N2!et2g
… ; ~3.6!

herea8,e were found from the state equation (e;1).
Using our experimental results on diffusion, we estima

the behavior of other critical coefficients within this regio
The fluxes of components,Jm, and of heat,q, are determined
using the gradients¹m and¹T @4#:

J~m,v !52L j m¹m~m!2L jT¹T,

q2mJ~m,v !52Lqm¹m~m!2LqT¹T,

where the Onzager coefficientL j m is related to the compo
nent mobility in the mean-numerical reference system via
equationbw5L j mr2/@n3(m1m2)2N1N2#. According to the

-
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scaling theory of critical phenomena@58,59#, the kinetic co-
efficients near the critical point have the form

L j m5asing1a reg5
kBTc

6phr c
r~]c2 /]m~m!!p,T1a reg,

L jT5Lqm /T5bsing1b reg5
kBTc

6phr c
rS ]c2

]T D
p,m

1b reg

52~]m~m!/]T!p,ca
sing1b reg,

LqT5gsing1g reg5
kBTc

6phr c
rT~]s~m!/]T!m,p1g reg

5T~]m~m!/]c2!p,T~]s~m!/]T!m,pasing1g reg, ~3.7!

where r c is the correlation radius,h is the shear viscosity
and s(m) is the entropy of unit mass. Equations~3.7! show
that the singular parts of transfer coefficients may be
pressed in terms ofasing. Thus, the transfer coefficients, in
volved in the basic hydrodynamic equations, have the fo

l5~LqTL j m2L jT
2 T!/L j m

5
asing

asing1a regH asingCp,cS ]m~m!

]c2
D

p,T

1Ta regS ]m~m!

]T D
p,c

2

12Tb regS ]m~m!

]T D
p,c

1a regCp,cS ]m~m!

]c2
D

p,T

1g reg1~g rega reg2Tb reg2
!/asingJ ,

kT5
T~]c2 /]m~m!!p,T

asing1a reg
@b reg1a reg~]m~m!/]T!p,c#,

D5~asing1a reg!~]m~m!/]c2!p,T /r,

kp5pS ]~1/r!

]m~m! D
p,T

52pS ]~1/r!

]T D
p,m

S ]T

]m~m!D
p,r

,

k5~LqTL j m2L jT
2 T!/L j mCp,cr5l/~asing1a reg!rCp,c ,

~3.8!

whereCp,c is the heat capacity andk is the coefficient of
thermal diffusivity. As has been shown above, near the c
cal point of a pure solvent within the region studied, we m
neglect the termbsing and, hence,asing. As a result, the ex-
pressions for, e.g.,kT and l will be the power lawsl
;t2n, kT;t2g. The dependences obtained forkT and l
may be compared with the available experimental data on
thermodiffusion relation and thermal conductivity for th
3He-4He solutions@60,61#. A comparison of the results i
shown in Figs. 4 and 5.

As follows from the figures, there is fair agreement b
tween our results and the experimental data of@60# and@61#
within experimental error and the above estimations. Th
-

i-
y

he

-

s,

our notion about the behavior of kinetic coefficients has be
confirmed experimentally. We may also obtain the functio
dependences for other kinetic coefficients within the stud
temperature range , taking into account their interrelati
Thus, in this temperature range the kinetic coefficients are
the form

D;tg, l;t2n, k;t2n,

kT;t2g, kp;t2g, b;const. ~3.9!

According to the scaling theory, the limiting~asymptotic!
critical behavior of these coefficients is determined as@10#

D;tn, l;const, k;tn,

kT;t2n, kp;t2g, b;t2n. ~3.10!

Taking into account the fact that the critical indexg.1.2
andn.0.6, then the temperature dependences of these c
ficients differ dramatically in these two regions.

Now let us estimate the temperature regions in which
kinetic coefficients must display the dependences~3.9! and
~3.10! on the critical isochore in the solution with concentr
tion N2 . We perform estimations for the dependenceD
5 f (t) which is sure to hold for other critical coefficients. A
follows from Eqs.~3.4! and ~3.8! there are two crossove
temperaturest1 and t2 at which D changes its behavio
~critical index!. Experimentally, these crossover tempe
tures@t5(T2Tc)/Tc# differ by orders of magnitude.

The first temperature range up to temperaturet1 deter-
mines by the inequality

~]N2 /]m2!sing!~]N2 /]m2!reg. ~3.11!

Thus, t1 is determined by the equality~3.11!. Taking into
account Eqs.~3.6!, we have

t15$a@~12N2!N2#e%1/g. ~3.12!

The crossover temperaturet2 may be obtained taking into
account the fact that the second change in the behavior oD
occurs forbsing'breg ~or asing5a reg). The value ofbreg may
be estimated as

breg51/6phr 0 ~3.13!

wherer 0 is of the order of a molecule size. Thus, accordi
to Eqs.~3.6!, we get

r 0kBT

r cN2
~]N2 /]m2!p,T

sing'1. ~3.14!

It is usually assumed@10# that r c'r 0t2n. Hence,

t25$a@~12N2!N2#e%1/~g2n!. ~3.15!

Equations~3.12! and ~3.15! show thatt1 and t2 are deter-
mined using the coefficient of proportionality~‘‘amplitude’’ !
of the scaling dependence of compressibility on temperat
For instance, for the3He-4He solutions the crossover tem
peraturest1 andt2 , calculated using the equation of state
@34#, are
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N2~3He!50.01, 0.10, 0.50, 0.80,

t153.031026, 1.431024, 8.531024, 3.931024,

t251.031023, 8.831023, 2.531022, 1.631022,

which is in agreement with our measurements of the dif
sion coefficientD. Note that as follows from Figs. 4 and 5, i
the regiont,1024, i.e., whereasing.a reg, there is a ten-
dency to the limiting asymptotic dependences at a crit
point ~3.10!.

Note that according to the known equations of state in
region we may determine not only the temperature dep
dences of these kinetic coefficients but also their dep
dences on volume and concentration.

IV. WIDTH OF THE RAYLEIGH LINE

It is interesting to use our concepts obtained to interp
experiments on the determination of the width of the R
leigh line in the 3He-4He solution. The normalized autoco
relation function of the scattered light intensity near the g
liquid critical point of the binary solution, measure
experimentally, is written as@62#

g~2!~ t !511@g~1!~ t !#2. ~4.1!

According to@63#, the first-order autocorrelation function fo
binary solutions has the form

g~1!~ t !5

S1p

G1
exp~2G1t !1

S2p

G2
exp~2G2t !

S1p/G11S2p/G2
, ~4.2!

whereS1 andS2 are the functions of equilibrium thermody
namic properties and of kinetic coefficients;G6 is the in-
verse time of the relaxation of critical fluctuations and
related to the width of the Rayleigh line:

G65
1

2
k2
„k1D~11AR!6$@k1D~12AR!#224kD%1/2

…,

~4.3!

wherek is the change in the wave vector upon scattering,
AR5(kT

2/TCp,c)(]m (m)/]c2)p,T . Knowing the values of
k, D, andAR , we may calculate the values ofG1 andG2

and compare them with the experimental data in Table
@65# on the 3He-4He solution. The quantities ofkT and l
were taken from@61# and the quantities of the heat capac
Cp,c2Cv,c were obtained using the caloric equation of st
which was derived by using the same hypothesis as for E
~2.18!. The experimental values ofCv,c were taken from
@64#. The diffusion coefficient was estimated using the fo
mula taking into account only the regular component mo
ity:

D/D051Y F11
RT

c2
~]c2 /]m~m!!p,TG . ~4.4!

The (]c2 /]m (m))p,T quantity was determined using the equ
tion of state by@34#. Figure 6 shows the calculated temper
ture dependences of theG1 andG2 values~the solid lines!.
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It is seen thatG1@G2 with t,1022. The calculations per-
formed forS1 andS2 show that within the same temperatu
range they are almost the same. Thus, the second ter
square brackets of expression~4.2! is more important than
the first. Experimentally, this is manifested in the existen
of the only time of the relaxation of critical fluctuations. Th
conclusion coincides with the results obtained by@65#. The
experimental data on theG2 values used from Table I o
@65# ~open circles, Fig. 6!. Figure 6 shows that the curv
calculated forG2 by taking into account our measuremen
of the coefficient of mutual diffusion and the experimen
data given by@65# are in fair agreement and their behavi
do not correspond to the limiting critical behavior. Neverth
less, the conclusion about the practical independence of
diffusion coefficients of helium isotope solutions on comp
sition, drawn by@65#, contradicts our measurements show
in Fig. 1. The fact is that according to@65#, the width of the
Rayleigh line does not coincide with the diffusion coef
cient. The width of this line depends not only onD but also
on k andAR . Thus, in a given case, the competition betwe
these quantities in expression~4.3! leads to this indepen
dence of the Rayleigh line on concentration although
diffusion coefficient depends on concentration. This assum
tion has been verified numerically@25#. Figure 7 shows the
temperature dependences ofD obtained with allowance for
our measurements using Eq.~3.3! and for the estimations

FIG. 6. The width of the Lorentzian components of the Rayle
line depending on the reduced temperature for the3He-4He solution
with 3He concentrationN250.79. The solid line corresponds to th
result obtained by formula~4.3!. The circles correspond to exper
mental values by@65#.

FIG. 7. The dependence of the coefficient of mutual diffusi
for 3He-4He solution with 3He concentrationN250.79 on the re-
duced temperature. The straight line corresponds to the coeffic
of thermal diffusivity of 3He. The circles are the experimental da
by @65#.
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obtained by@65#. The open circles were taken from Table
of @65#. The solid line is the result of our calculations pe
formed by Eq.~4.4! for N250.79, taking into accountD0

vc

obtained from our measurements@25#. For comparison Fig. 7
shows the dependence of the coefficient of thermal diffus
ity k for pure 3He @66# ~the straight line in the figure!. Figure
7 shows agreement between the solid line and the cir
which indicates again the consistency between our data
the determination ofD and the experimental data by@65#.
Note that the quantityD for the solution withN250.79 and
the quantityk for pure 3He @66# are close to each other i
the region of comparison, but exhibit different temperatu
dependences.

The interpretation of dynamic light scattering experime
is not simple near the critical points of mixtures. It w
shown recently in the theoretical work of@67# that the physi-
cal meaning of the prevalent coefficients in expression~4.3!
changes as one considers states in the vicinity of diffe
points on the critical locus.

V. CONCLUSION

Our investigation indicates that the isothermal proce
occurring in nonideal gaseous solutions, is mainly de
mined by the peculiarities of the thermodynamic force rat
than by those of the Onzager coefficient~mobility!. Even in
the vicinity of the gas-liquid critical point of the solution, a
least for the low concentrations of one of the compone
the behavior ofDwN depends on (]m2 /]N2)p,T . The mobil-
-
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gh
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rk

-

-
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e
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nt

s,
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ity, in this case, may be calculated assuming the gase
solution to be ideal. Thus, the Mayer formula is a good a
proximation@68#,

D5~N2 /kBT!~N2D11N1D2!~]m2 /]N2!p,T ,

where we assumeD1'kBT/r 1h, D2'kBT/r 2h; r i is the
effective radii of the molecules, andh is the solution shear
viscosity. Note that this formula holds for the entire expe
mental region up to the gas-liquid critical line of the solutio
Near the gas-liquid critical point of the solution, the oth
kinetic coefficients may be expressed in terms of both
singular part of the mobility and the corresponding regu
parts which weakly depend on the reduced temperature
that this dependence may be neglected. To calculate
(]m2 /]N2)p,T derivative for the general case, one shou
know the equation of the solution state. Some types of eq
tions are given in Sec. II. The crossover temperatures
determined at which the form of the power law dependen
of the kinetic coefficients vary in the critical region. Usin
the concepts developed in this paper, we explain the t
perature dependences of the kinetic coefficients observed
perimentally. Thus, the present paper develops concept
the behavior of the kinetic coefficients in nonideal bina
gaseous solutions, including the region located near the
liquid critical point. These concepts are based on the fun
mental principles of the theory of second-order phase tra
tions.
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skii, Zh. Éksp. Teor. Fiz.63, 2157 ~1972! @Sov. Phys. JETP
36, 1140~1973!#.

@19# M. A. Anisimov, A. T. Berestov, L. C. Veksler, B. A. Koval-
chuk, and B. A. Smirnov, Zh. E´ ksp. Teor. Fiz.66, 742 ~1974!
@Sov. Phys. JETP39, 359 ~1974!#.

@20# V. G. Martynets and E. V. Matizen, Sov. Phys. JETP40, 301
~1975!.

@21# V. G. Martynets and E. V. Matizen, Sov. Phys. JETP40, 507
~1975!.

@22# V. F. Kukarin, V. G. Martynets, E. V. Matizen, and A. G
Sartakov, Sov. J. Low Temp. Phys.7, 725 ~1981!.

@23# V. G. Martynets, E. V. Matizen, and A. G. Sartakov, Sov.
Low Temp. Phys.10, 262 ~1984!.



.

d.

-

o
su
ro

b.

n
F
ro
ta

z.

.

.

.

.

k

.

.

d.

.-

on-
sub-
rop-

.

.

-

-

2938 PRE 59E. V. MATIZEN, P. P. BEZVERKHY, AND V. G. MARTYNETS
@24# R. I. Efremova and E. V. Matizen, JETP Lett.41, 510 ~1985!.
@25# R. I. Efremova and E. V. Matizen, Zh. Eksp. Teor. Fiz.91, 149

~1986! @Sov. Phys. JETP64, 86 ~1986!#.
@26# Kenneth G. Wilson and J. Kogut, Phys. Rep., Phys. Lett.12C,

75 ~1974!.
@27# Shang-keng Ma,Modern Theory of Critical Phenomena~Ben-

jamin, London, 1976!.
@28# M. A. Anisimov, E. E. Gorodetskii, V. D. Kulikov, A. A.

Povodyrev, and J. V. Sengers, Physica A220, 277 ~1995!.
@29# E. E. Gorodetskii, V. D. Kulikov, L. V. Fedyunina, and M. A
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