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Critical behavior of binary gaseous mixtures
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The behavior of the kinetic coefficients of binary gaseous mixtures has been studied in a vicinity of the
gas-liquid critical line. It is shown experimentally by the diffusion equalization of concentration that the mutual
diffusion coefficientD depends on the reduced temperatdre=(T—T.)/T., whereT, is the critical tem-
peraturé as a power function with exponemt-1.2 up tor~103—10 * at the approach to the critical point.

The dependenc® ~ 7°€ predicted by the scaling theory should be observed in closest proximity of the critical
point. It is shown that the diffusion equalization of the isotope concentration does not have any peculiarity near
the critical point. Equations of state are proposed for both pure substance and binary mixtures, based on
up-to-date theories. They may be used to calculate the required thermodynamic derivatives for describing the
temperature dependences of kinetic coefficients. The crossover temperatures have been determined. The ex-
periments performed are in good agreement with our theoretical calculdi&i363-651X99)13402-7

PACS numbg(s): 51.20:+d, 05.70.Jk, 64.60.Fr, 64.60.Ht

[. INTRODUCTION left free to its own(external fields being zero including the
gravitational field although it may have a great effect on the
The description of diffusion in nonideal solutions at the properties of solutions near the critical points and upon phase
level of molecular interaction involves considerable prob-stratification. (We further consider one-phase systems un-
lems which are so far unsolved. Moreover, the means tdess otherwise specifigdlhis relaxation process is described
solve them are unknown due to substantial mathematical difin terms of a two-component system using the following
ficulties caused by, e.g., the considerable nonlinearity of thélifferential equation$4]. The equation of continuity is
problem [1,2]. These difficulties are similar to those ob-
served upon calculation of the thermodynamic properties (7_P+V*.( 7)=0 (1.1)
(thermodynamic potentigl®f equilibrium nonideal systems. pv)= '
More difficult is the situation with describing systems near
the critical points of solutions, which are points of second-the Navier-Stokes equation is
order phase transitions. As has been shown, theories such as

mean field theoriege.g., the virial equation of stateare v = - =S -
unsuitable in this case, because the introduction of a minor | ot (v V)U Vot nAv+(L+ 43V (V-v),
parameter is impossible hef8]. A phenomenological ap- 1.2

proach, lacking the advantages of a microscopic description, _ o _
may be used to describe, in general terms, the main features The equation of continuity for the 2nd component with

of the behavior of nonideal systems. concentratiorc; is

The present paper gives the main phenomenological equa-
tions to describe the relation between the thermodynamic d(pC2) - >4 jme) 1.3
properties and the diffusion processes in nonideal systems, at Lpcoo+377], (1.3

reveals the role of the mobility of components, and proposes

the equations of state for these systems. Particular attentidhe equation for entropy production is
is paid to the experiments performed in the region adjacent

to the gas-liquid critical line in which the nonideality of so- gs'm
lutions is quite substantial and is manifested in the range ofT ( ot
solution parametergressurep, mass density, concentra-

tion c, temperaturdl’), which is narrowing with approach to —J(zm'”-VM(m), i,k=1,2,3 (1.9
the critical point of a pure solvent. Experimentally, this

choice is convenient because changing slightly the solutiothe equation for the second component flow is
parameters, we may study the entire region beginning with
the ideal state up to substantially nonideal ones. The main
goal of the study is to describe the relaxation process in a
nonideal solution(for simplicity, in a two-component one
when its minor part is taken from the equilibrium state andthe equation of state is

,k(>.
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k k
J(Zm,v):_pvaC(chqL ?TVTJr Fpr ) (1.5

p=f(cz.p,T), (1.6
* Also at Physics Department, Novosibirsk University, Pirogov st.,
2, Novosibirsk 630090, Russia. and the equation for thermal flux is
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In this caset is the timev is the velocity as a momentum
of solution unit masgmean-mass ratec,=p,/p, c1=1
—C,=p1/p, Wwherec, andc, are the mass fractions of the
first and second componenis; and p, are their mass den-
sities; 77 is the shear viscosity is the bulk viscosity'* is
the viscous stress tensali™) is the density of diffusion
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this paper is the inverse problem, i.e., the problem of deter-

mining the coefficients of mutual diffusion from these ex-
perimentally found functions.

The existence of a mechanical equilibrium allows one to
prove an important theorem concerning the rules of replace-
ment in the diffusion equations of hydrodynamimean-
mas3$ velocity v by other velocities[5]. Using this, it is
convenient to pass to other velocities, namely, to consider

the component particle currents relative to the mean-

numerical velocityw= (N,v 1+ N,v,) whereN; are the mole
concentrations of components amdare the mean velocities

mass flow of the second component relative to the coordinatgs components relative to the laboratory system of coordi-

system, moving with velocityj; s is the entropy of unit
mass;DV'¢ is the coefficient of mutual diffusiork is the
thermal diffusion factork, is the barodiffusion ratiox is

nates(capillary). Besides, we are not interested in the behav-
ior of entropy. In this case, the system of equatighs)
takes the form(index x is omitted for brevity

the coefficient of thermal conductivity; is the absolute tem-
perature; ang(™ is the chemical potentialy((™= u,/m,
—u1/my, wherem, is the particle mass of theh compo-
nent; u; is the chemical potential of thieh component per
one particle.

The system of equationdl.1)—(1.7) seems rather com-
plex and cannot be simplified for describing a solution over
the entire critical region because with approach to the critical
point its coefficients display some singularities, {,kr ,k,
—o, D¥¢—-0). However, when experiments are performed
outside of the asymptotic vicinity of this particular point, This system of equations was first proposed [B}. The
according to our investigations, some substantial simplificarelationship between the new and old quantities has the
tions are quite possible for a more concrete problem, namelfform p=p,+p,, n=n;+n,, p;=mn;, c;=N;m;/(N;m;
for studying concentration relaxati¢diffusion). We assume 1+ N,m,), and DWN=D"=D, wheren; is the numerical
that the relaxation of temperature and pressure occurs with @ensity of particles of théth componentn is the total nu-
much higher rate than that of the concentration inhomogenemerical density of particles. In subsequent studies, we shall
ity. In any case, this is the way to perform the experimentyse the concept of the macroscopic mobility of solution com-
e.g., in capillaries whose walls are kept at constant temperasonentsp™. This mobility is defined as the mean velocity of
ture. Thus, it is assumed that the one-dimensional case {fe component, considered as a continuous medigas,
realized and diffusion occurs at a constant temperatlire (jiquid) relative to some system of coordinat@soving, in
=const) and pressurep € const). To avoid misunderstand- this case, with velocityy) under the action of a unit force.
ing, note that the conditionp=const andVp=0 do not  Thus, the component flow and the diffusion coefficient in
mean that we may neglect the hydrodynamic velogitffhe  Egs.(1.9 may be expressed in terms of the mobilit§ and
conditionVp=0 assumes that the system is in the mechanithe chemical potential gradient:

cal equilibrium, that the acceleratioﬁzf/&t) and the viscous

. Ny, 9
nw——=—
X X

WN dN>

n J 0
_+_ —
ot ax(nw) ' ax '’

n=f(N,,T=const, p=cons},

oN
JI3"=nN,(v,—w)=—nD"N ax2

354+ 37%=0.
(1.9

stress tensos'¥ are so small that they are insignificant. Tak- J\QVN: nab3V s, (1.10
ing into account the above conditions, we simplify the sys-
tem of equationg1.1)—(1.7): D= ngz(%) . (1.1
2
ap a - dpcy) 3 —— o
ot T ax (P =0, =7 F i lpCavyt Iz =0, As follows from Eq.(1.10, bY is one of the Onsager
coefficients [5]. When N,—0 we have @u,/dNy), 1
ac, —kgT/N,, by—b%, [7], and we get the known Einstein
I = —pD"E—, relation D =DbjkgT where b}, is the mobility of a single-
component molecule, considered as the Brownian particle.
gs(m With approach to the gas-liquid critical point of the solution,
pT( +vXVs<m)> =,u(m)VJ(2T'”), by —, whereas {u,/JN;), t—0. Thus, in nonideal solu-
at tions the mobility loses its clear physical meaning and usu-
ally the term “macroscopic mobility” is used. Let us now
p=f(c,), T=const, p=const. (1.8 study the systenil.9) which describes the relaxation of the

concentration inhomogeneity in a capillary with definite

Solving the systen{1.8) for the given initial and boundary
conditions, one can determine the unknown functigns
=p(X,1), C=Ca(X,1), vy=v4(xt), andsM=sM(x,t) if

one knows the coefficients in Eq4..8). Of most interest in

boundary and initial conditions. Our purpose is to derive an
expression for the experimentally observed valueslgﬂ‘f
=nN,(v,—w) (the mean flow of the number of particles of
the second component relative to the capillayd ofw (the
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mean numerical velociyin terms of the concentration gra-
diend. Integrating Eqs(1.9) over the capillary length from 0
to x with boundary conditionsdN,/dx); x—o=0 andw(0)
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integrals for various interaction types are shown, e.g[ 2y
For the pressure and chemical potentials we may get the
expression=—(Q/v). The mean values of the densities

=0, we have of component molecules are determined by simple differen-

tiation (n;)=(dQ/duq)t,, (N2)=(dQ/du,)r,. To de-

W(x)=— E (7_” D&_NZ _ fan 5_N2 2 f72_U dx termine the chemical potentials, we gige and £, in terms
n\ N, orl X 0 IX IN3 o ' of (n;) and (n,) and pass to the concentrationd,
('1.12) =(n)/[{ny)+(ny)],N,=1—N,. Hence,
wherev=1/n is the specific volume, 3 1 N, 1 1-Ny 3 [ mkgT
N 5 /.Ll—kBT |n7_|117_§|12— —kBTEH’] 2,n.h2 y
N o[ dn JdN,
JZ(X)Z_HD 1+7 W) (W)
2p.T e Ne Np 1 1—-N2) 3, mekeT
foDﬁszﬁzv q 11 #2=Kel| " a2 5l BigMN 2mh2 |’
"ol ] (ong) e 43 22

) ) The equation of the state of a weakly nonideal gaseous
Equatlor’ls(l.lz) and(1.13 show that the velocityv(x)  solution, expressed in terms of concentrations and specific
and flow J;(x) are the nonlocal quantities and are deter-yglume, has the form

mined by the values dD, N,, andn over the entire length

X. Note also that besides the peculiarities observed inthe p 1 1;;/N;\? 1,/ 1=Ng\2 143, Ny(1—N;)
behavior ofD with approach to the critical point of the so- | = PN R + 217, + > 2
lution, the derivatives ofi with respect to concentrations are B v 2.3

also divergent. Obviously, to understand the behavior of the
diffusion procesgthe equalization of concentratipim non- Using these equations, we may derive the derivatives of
ideal solutions, it is necessary not only to know the purelyihe chemical potential and specific volume:

kinetic coefficients (mobilities) but also the equilibrium
properties of these solutions. Therefore we have studied ex-
perimentally both the thermal equation of state and the dif- (

(|11+|22+|12)},
fusion processes in strongly nonideal solutions.

o)ty
MNo N,

(2.9
Il. EQUILIBRIUM THERMODYNAMIC PROPERTIES o 1
AND DIFFUSION NEAR THE GAS-LIQUID CRITICAL (W) =[112(1=Ny)+1,,N,+ 7N2(1—N2)}
LINE OF BINARY SOLUTIONS 2ip,T
Since the driving force of diffusion is the chemical poten- ol 141 (1-Njp)? | N3 | N2(1—Ny)
tial gradient, let us consider the methods of its calculation for 1 227, T :
various cases, i.e., the methods of determination of the 2.5

chemical potential derivative with respect to the component
concentration as well as the dependences of the mixture den- \q,y we consider the limiting case of a strongly nonideal
sity on its composition. We consider first the weakly non-gygiem namely, the two-component solution near the gas-
ideal binary gaseous solution. According[@, its thermo- jiquig critical point of the solvent. By definition, the critical

dynamic potential) is expressed as the partition function |ine of a binary solution is described by the equatifns]
with the terms determined by the system energy levels to

within the second-order terms in series expansion in powers (A1 1dNg) p 1= (IpalINy), =0,

of density:
iy (g IND)p 7=zl IN3)  7=0. (2.6)
— 152 2
Q=—kgTIn| 1+ &0+ &u+ =570 o Two coexisting phases become identical in this line. As is
) ) known [7], in the vicinity of the critical line an increase in
N évzl . évzl (p System susceptibility (IN/du), r—] causes an increase
217 1117 22p ' in fluctuations of the order parametédor our case, a com-

bination of density and concentration; §&8). In this case,

where & =[mkgT/(27h2) 132 exp{u, kT, &,=[mykgT/
(271212 expluakgT},  11,=[dv[exp{—U,/kgT}—1],
l11=fdv[exp{—U1/kgT}—1], and |,,= [dv[exp[—Uy/
kgT}—1].

Uy, Uqq, and U,, are the energies of the interaction

the fluctuations are considered as interactiBglQ]. This
leads to a singular behavior of equilibrium and kinetic values
which cannot be described either by the theory of perturba-
tions or by the theory of mean field, e.g., by the van der
Waals theory{11] or by the Landau theory of second-order

between the molecules of the first and second componentphase transitiong/]. However, the description of the critical
among the molecules of the first component and among thbehavior of such a theory is rather useful. It is simple enough

molecules of the second component, respectively. Thhe

and there is a region which is not too close to the critical
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point in which this theory may be used in some approxima-

E. V. MATIZEN, P. P. BEZVERKHY, AND V. G. MARTYNETS

tion. Let us use it to describe the phenomena occurring near

the gas-liquid critical point of the solvent; later we will pass

to a more general theory.

In the theory of mean fields, the expression for the deriva~
tive of chemical potential with respect to concentration with
allowance for Eqs(2.6) may be expanded in a power series
of solution parameters deviations from the critical values:

( aMZ(p’T7N2)

IN ) =An(N2 = Noo) 2+ AH(T—T,)
2 o

+ALP—Po)- (2.7

However, this expansion is inconvenient for an analysis.

Therefore, if we know the equation of state=p(v,T,N,),

it may be derived in a different forif6]. The free energy of
the unit volumeF (v, T,N,) is the homogeneous function of

particle number:
F= nf(T,U,Nz): n[kBTN2 |n N2+ f*(T,U,Nz)].

Hence,
IF
2| n,

Differentiating Eq.(2.8) with respect toN,, we get the ex-
pression for §u,/dN,), 1 in the general form

=f —v(&f/&v)T’N-f— (1_ Nz)(&f/aNz)T‘U .
U,Ng

(2.9

(aﬂz) _1_N2k T(l N, (19p/t9N2)3,T
0”N2 p,T N2 B kBT _(ﬁp/av)NyT
+ (0. T.N) ] 2.9

In this casef* (v,T,N,) is the free energy per one par-
ticle, andfy\= (&Zf*/é’Ng)U,T. When we know the equation
of state, the chemical potential may also be found using the

formula[12]
p2(p,T) = pa(p=17T)
RT
|(N)+lfp N (?v) RTOI
=In = |v ——|dp.
PN RT/, l&sz,T D p
(2.10
For instance, for the van der Waals equation
_ RT a 21
or, in the dimensionless form,
p*=8T*/(3v* —b*)—3a*/v*? (2.12

a*=ala;, b*=b/b,, p*=p/p., T"=TIT., v*=vlv,
po=a,/(270%), T,=8a,/(27Rb,), andv.=3b;, where
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a=a1Ni+2a12N1(1—N1)+a2(1—N1)2,
b=b;N2+2b,N;(1—N;)+by(1—Np)?,  (2.13

the derivative §u,/JN,), v has the form
N2Ns fﬂ)

RT | N,/ .
&
N,N2 N2/, 8T*
T*2 (ap) 30* —b*
) N
d?b* (db*/dN,)2 9d%a*/dN3
+
dN3  3v*—b* v*
(2.14

If the equation of state is given as the expansion into a Rozen
series[13] (see alsd6]) (N,=N),

+A A PP+ AN+ Ar2AT?+ AyNAT

+A1,2ATAp?+ Ay,2NAp?+ A aAp?, (2.15
then we have
o
N/ o
1-N N ( A2+ 2A\AN, Av
=——KkgT|1— :
N keT\ — Ay,N— A7, AT—3A, 3402
(2.1
dv AN+ 2AN, Av
(m) = O ~. (219
p, T _ANUN_ATUAT_SAUSAU

Deriving Egs.(2.14—(2.17), we neglected the terms of the
fourth order and the derivativi, which near the gas-liquid
critical point of the solvent is small compared with other
terms of Eq.(2.9).

According to humerous investigatiorisee, e.g., the re-
view in [10]; also see[14-19 and our paper$20-25),
equations of the typ€.11),(2.19, belonging to some of the
so-called mean field theories, are inadequate for experimen-
tal results in close vicinity of the critical point. We propose
more complex equations of state to describe the singular be-
havior of thermodynamic quantities near the gas-liquid criti-
cal point of the solvent. These equations are based on the
hypotheses of scaling invariance, isomorphism, and confor-
mal invariance of fluctuating quantitid$,26,27; see also
[28,29.

For a pure solvent with allowance for nonasymptotic cor-
rections our equation of state has the fdi30]

Ap=(p—=pc)pc=A1+bA;,
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r=(T—T¢)/T.=(1—ab) X(h,—bh,), p=w({,h7RT,
0=(Slv—=S./v) T /Ip.=aA;+A,, p=w%+Ap,
AM:(M_MC)/pCUC:(1_ab)71(hl_ah2)- (218) T:[R(ao‘i‘alg_aoﬁ;)]il,

In this caseAp, 7, o, and Ay are the reduced mass .
density, temperature, entropy, and chemical potential of the N={+{(1-Dlota0,)/p=v,]. (2.20

system;a andb are constantsh,, A, hy, andh, are the The subscript denotes differentiation with respect to a corre-

quantities, cor_res_pondmg to magnetic moment, redu_ced _e'%'ponding variablep, and u, are the chemical potentials of
tropy, magnetic field, and redu_ce_d temperature of this ISiINGhe first and second components; akg and K, are the
lattice, r_espectwely; the sub_s_cnp_us the critical value. The dimensionless constants, determined by the critical values of
expressions for these quantities in terms of parametersl entropy for pure component§34]. Unlike the Leung-
0, introduced by[31] for a “linear model,” which solves Griffiths equation we have Writtén dowfi35] w= "9
conveniently the problem of equation analyticity at a critical sing reg__ ~ L~ -
point, have the fornfwith nonasymptotic correction firstin- +@ = @ =C({)+dor+lor+ (O, Ap=1({)(As
troduced by[32] and[33] and modified by us +bAg), Ay=dmldhy, Ap=dmldhy, c({)=Cotc1l, f({)
=fo+ 1L, andw™"9=1f({)w(h,7). A; andA, are the same
_ 8 Eg B+A as in Egs.(2.18 and the thermodynamic potential as a
Ar=grio— 1" %e(0), function of the variables of the “linear model” has the form

A,=Agrt=(sy—s,02)+ Egri-**5Q,, T=Agre=%(zo+ 2,0%+2,0%) + Egre = ¢ A(py+ p,6?).

hy=Ar"*8(6—6%), h,=r(1—B26?), (2.19 Parameters and ¢ display a clear physical meaning:
=1/(RT,) - L(RT), =K exp(u/RT)/[K; expu, /RT)
wherey, B, anda are the critical indices of compressibil- +Kzexp(u,/RT)]. Parameteh is more complex:
ity, boundary curvegbinoda), and thermal capacity, respec-
tively; A is the index of nonasymptotic corrections; the co- h=In[Kiexp(u1/RT) + Ky explua/RT)]
efficients A,g,E are the fitting quantities;sy=y(vy _ _ ~
—1)/B2a(1—a), S;=—y(1-2B)2a, Qu=—(y+ bo+b1{+bol(1-{)+gor.
201 _ 2 (o _ ~
A)/2B*(1=a+A), andB"=(y=26)/v(1-2p), Expressingr andh in terms of parametensand ¢, we get
6[1-B26%(1-2pB)]

1+ 6 B4(2y+2B8—1)—3]+6*BX3—2y+2p8)

T=ay[r(1-B26%)—bArA(6-6°)],

e(0)=

h=Ar"*28(9— 63). (2.21
The areas of changing parameters arer@<oo,—1<6
<+ 1. For the one-component order parameter, which holdéience,
for the critical points of liquids,a=0.11, 8=0.325, y
=1.24, andA=0.45. These values of the critical indices
were theoretically obtained by26] and were confirmed by
numerous measuremerigee, e.g.[10]). Note that only two
of these are independent because are related vidB+y  Where¢(0) is the same as in Eq$2.19. The coefficients
=2, a, A g, E, b, b, ¢, K;, dg, 9o, lp, i, and v,
The pressure is expressed in terms of these parameters &g the fitting constants. The quantitiesTgf,p., andp, are
determined by the vanishing of the singular terms of equa-
Ap=(p—Pc)/pc=(ScTc/pevc—a)T+Ar" A(6—6°) tions. The ranges of the parameters variation afa €,
—1=<#=<+1, and G<¢=<1. Our equation differs from
Leung-Griffiths equation by the introduction of additional

+Egr2 A (po+p,6?). terms in the expressions far and 7. The nonasymptotic
correction is taken into account by terms containing the con-
In this casezy=(y— 28— yaB?®)/2B’a(1-a)(2— ), stantE and indexA, and the conformal invariance of fluc-
z,=[aB?(2y+2B8—1)—y+2B)2B%a(1—a), z;=(y+B tuating quantities is taken into consideration by terms with a
=32)la, po=-—(y+A)/2B*(1—a+A)(2—a+A), and constantb.
pP>=(1-2B)/12(1— a+A). The resulting equations are difficult to analyze. Their ad-
To derive the equation of state of the binary solution, thevantage, however, is in the fact that they are based on the
quantities defining of the system state are convenient to eXundamental principles of the up-to-date theory of second-
press in terms of some parametérs}‘-, andh which include  order phase transitions, hold for any vicinity of the critical
the regular partsthe Leung-Griffiths equation[34]. This  point, and may be seweghatched smoothjywith the virial
parametric equation of state is written as equation of state at a sufficient amount of terms in regular
functions. Simplifications are possible in studying real sys-
pm1— mo=RTIN{[Z/(1-)]K5 /K }, tems. In this case, however, the degree of errors, arising from

E
p=F()|1+grfo— Tgrﬁ*Ago(a)erAgrl*“(soJr s,6%) |,

+ErTATAL AQriT U (zo+ 2,02+ 2,6%)
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TABLE I. The piezometer characteristics. thermal equations of staf@.18 and(2.20. Besides, the data
on “He were also used to determine the coefficients of the
Measured Absolute Parameter's  caloric equation of state, derived by us using the same hy-
interval error sensibility pothesed23]. As an example, we give the results of data
P (MPa) 0-10 4001 4x10°5-4x 104  approximation for the CONe solution[40,41,33 by the
T (K) 275-330 +0.001 2104 method of minimization of quadrauc_functlona[ with respect
V (cmd) 14-20 L ax 10~ 2% 10-4 to pressure. The data were obtained within the ranges

302.15 K <T=309.65K, 392 kg/m=p=<568 kg/n?,
0<N=<b5.076 mol % Ne, and 7.2 MRap<9.4 MPa.
These results are ay=3.95445<10 % kmol/kJ, m,
these simplifications, is always clear. An important peculiar-=2.92030 kmol/mM,  f,=10.6346 kmol/m, g=1.193
ity of these equations is that they give expressions for thet 0.04, A=6.26+0.6, E=2.1+4.6, b=—0.050+0.076,v,
thermodynamic potentialéchemical potentialsof compo-  =2.29+0.90, a,;=(6.82+4.6)x10 ° kmol/kJ, c,=34.7
nents and, thus, we may simultaneously determine many 24 kmol/n?, do=(44.24-0.3)x10° kPa, l,=(—4.9
properties to characterize the systétime diagrams of state +1.0)x10° kF/kmol/m?®, f;=23.7=16 kmol/n?, «=0.11,
p-T-N, the behavior of boundary curve diameter, thermalB=0.325,y=1.24, andA =0.45. The mean-square errors in
capacity, compressibility depending on three variables, dethe approximation of pressure, density, temperature, and
termining the system stajg T, N orp, p, N). concentration weredp=0.0015 MPagp=0.005 kmol/ni
The above theory needed verification or, more precisely(~0.2 kg/nt), 6T=0.0031 K, andéN=0.02 mol % Ne.
determination of the physical meaning of the corollaries ofThe errors were calculated for a confidence coefficient of
its equations. With the accumulation of experimental data(.68.
the theory improved. The experimental investigations near The given accuracy of approximation by this scaling
the gas-liquid critical point of the solvent had two main pur- equation is higher than that by the equation of st@é5
poses. The first one was to study the dependence of pressuard is close to the accuracy of the experimental data.
on the temperature, volume, and concentration of binary so- To reach the second purpose, we have mainly studied the
lutions (p,p,T,N dependencgs The second one was to temperature dependences of diffusion coefficients for the
study diffusion in order to determine the constants of equaeensities close to the critical ones with approach to the criti-
tions, to establish the regions of the applicability of thesecal temperature as well as their dependences on concentra-
equations, and to explain the peculiarities of the behavior ofion and density.
nonideal solutions. The diffusion coefficients were measured in the systems
For the first purpose the original apparatus was created t60,-*°Ar [45-47, CO,-*°Ar-36Ar [48], CO,-Ne [49-51],
obtain thep,v,T,N data. One of thesg36] is a piezometer “He-D, [52—54, and *He-*He [24,25. To obtain data on
with variable volume in the form of a cylinder with a plunger the first four solutions, we used the method of capillaries.
located horizontally in a thermostat. It contained windows toDiffusion in the *He-*He solution has been studied using the
observe phase stratification and critical opalescence. Th@ethod of the measurement of horizontal solution layer ca-
pressure was measured using a standard dead weight gayggity. The first method is used to measure the mean solution
and a pressure detector, based on the measurement of sapncentration in a capillary, depending on the time when one
phirine membrane deformation determined by the resistancef the capillary ends is closed, and the other is connected to
of a doping semiconductor strip, deposited on the membrana large volume with different concentration. The valves, lo-
[37]. Variations in volume were measured using a micro-cated at capillary ends, were used to fill the diffusion cell
scopic screw which moved the plunger. The temperature wagith gases, to create the concentration difference, and to pass
determined by means of a high-precision platinum resistancthe mixture to mass spectrometer for analysis. A large cell
thermometer. A magnetic mixer was used to establish equivolume with a magnetic mixer contained enough gas to
librium in the piezometer. The piezometer characteristics arenaintain constant pressure and concentration at the open end
listed in Table I. This apparatus was used to study purg COof the capillary during the diffusion. Thus, diffusion oc-
[20,21] and the solutions CgE*He [38,39, CO,-Ne curred under constant boundary conditions. The cell was
[40,41,39, CO,-Ar [36], CO,-Kr [42], and CQ-Xe [43] thermostated at the required experimental temperature. In the
near the gas-liquid critical point of GO second method55,56 the diffusion cell consisted of a
Another low-temperature setupt4] was employed to copper block with a cylindrical cavity with a minor
measure the-v-T dependences ofHe near the gas-liquid height/diameter ratio. In the upper section of the cell there
critical point. In this setup the density was measured by thevas a flat capacitor to measure variations in the solution
dielectric permeability of helium using the capacity method.density and concentration. The concentration gradient in the
The pressure was measured by means of a mercury manorell was initially produced by fast heating from the tempera-
eter and the temperature was measured by a semiconductoire at which the solution separates into liquid and vapor
model resistance thermometer. The gas density was detgphases to the experimental temperature, corresponding to the
mined to within=2x 10" 3%. The mercury manometer with one-phase state regi$6,25.
a sensitivity of 0.05 Torr allowed us to measure pressure As has been mentioned, diffusion near the critical point is
over the range of 1530—2030 Torr with an absolute error oflescribed by a set of nonlinear equations. It is rather difficult
+0.1 Torr. The temperature in a measuring cell was conito solve these equations, i.e., to determine the dependences
trolled to within =104 K. of concentration in the capillary on the time and coordinate.
Using the data obtained, we determined the coefficients d¥ore difficult is the problem of the determination of the

m (g) 200 +1x10°% 1x10™4
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FIG. 1. Temperature dependences of the coefficients of mutual
diffusion in CO,-Ne (N,=0.036) and C@QAr (N,=0.043) solu-
tions near the gas-liquid critical point of GO CO,-Ne: special
crosses, experimenfl) D/Dy whereD is described by Eq3.5),
and Dy=9.3x10"° m?’s™!; (20 Eq. (3.6; (3 D/D,
=(dulIN)p 1+ where @ul/dN), 1 is given on the critical isochore
according to Eq(2.16); (4) on the isochore close to the critical one.
CO,-Ar: simple crosses, experimergB) calculation similar to that
for curve 3.

FIG. 3. The temperature dependences of the reduced diffusion
coefficient ©/D) which determine the times of the equalization of
isotopic Ar conten{1), the times of the equalization of Ar concen-
tration in CG(2), andnear the gas-liquid critical point of GAr
with N=4.8 mol % of Ar. The curve shows calculations by formula
D/Do=(du!IN), tN/KT where @u/IN), + was calculated by us-
ing Eq.(2.16).

diffusion coefficient by experimental dependencés, wheret,=412/7D; Ny(t) is the mean concentration in the
=f(x,t) [47,49-51. However, at sufficiently small concen- capillary; N3 is the equilibrium concentration in the volume
tration differences Eq¢1.8) and(1.9) may be linearized and and, initially, at the open end of the capillary; ahds the
the diffusion coefficient may be determined using the Fickcapillary length. The diffusion coefficie involved in Eq.
law [45,46). Obviously, the closer the binary solution is to (2.23 is calculated in the system of coordinates, moving
the critical point, the smaller is the concentration differential. with mean numerical velocity. Experimentally, the deter-
Therefore, in these experiments one should carefully choos@ination of D asD*" in terms of Eq.(2.23) is preferable.

the maximum value of the difference, basing the choice on

the required measurement accuracy and on the estimation of IIl. INTERPRETATION OF RESULTS
terms by the known equations of state.
For large times the solution to Fick's equation The main experimental data on the study of kinetic coef-
ficients are shown in Fig. 1-5. Figures 1 and 2 demonstrate
N, 3*N, that with approach to the critical point the diffusion coeffi-
-t D 2 (T=const, p=cons) (222  cientD tends to zero. This diffusion behavior was first ob-

served by[8] (see alsd57]) in binary liquid solutions near
the critical points of mixing. Let us consider experiments on
the CGQ-*°Ar system[48], performed using the method of
No(t) —N5=Aexp —t/t,), (2.23 capillary, to understand the physical meaning of this phe-
nomenon, i.e., the problem of the relationship between the
macroscopic mobility and the mobility of separate mol-
ecules. For this aim, the different concentrations of isotopes
relative to each other and to G@vere produced in the cap-
illary and in the cell volume. When the capillary was opened

is well known,

-2
<
s
g |-y
- —
| | | 4T
-4 -3 2 -1 o
lOth _5 1 1
FIG. 2. The dependence of the coefficient of mutual diffusion in -4 -3 -2 -1
the solutions of He isotopes on the reduced temperature at the vari- 10g:(T)
ous densities and concentrations. Circles, experiment; solid lines,
the results obtained by using E.3). (1) For molar fraction of FIG. 4. The dependence of thermal conductivity #ie*He

3He, N=0.007, the deviation of density from the critical one, solution on the reduced temperature near the gas-liquid critical
An/n.=0.05; (2) N=0.046, n=n; (3) N=0.108, An/n.=0.02; point. The solid line corresponds to Ed8.8) for A in which the

(4) N=0.205, n=n,. The dot-dashed continuation of curves 1 and terms, decaying with approach to the critical point, are neglected.
4, the calculated behavior @f for n=n.. (5) The results obtained The dotted line corresponds to the passage to the limiting behavior
by usingD =kgT/67r . 7. (A~const). The circles denote the experimental déafd.
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3 Thus, calculating the thermodynamic force, i.e., the
(du219Ny), 1 derivative, using one of the equations of state,
() the data obtained may be approximated by the expression

2 D =Nabo(dpa/N2)p 1, 3.3

whereb, is calculated by Eq(3.2). Equation(3.3) was veri-
fied by experimental investigations of the solutions &%
(Fig. 3, CO,-Ne (Fig. 1), *He-*He (Fig. 2), and D-*He.
Note that the above results are valid only for the region that
is not too close to the gas-liquid critical point of the solvent.
The studies indicatésee[10]) that over the entire region of
the critical state of solutions, the macroscopic mobilitye
0 T ' Onzager coefficienthas a important peculiarity which has
4 3 2 - no relation to the mobility of separate molecules. In the gen-
log,(x) eral case, the diffusion coefficient may be given as follows:

FIG. 5. The dependence of thermal diffusion factor of D= KgT(b*"%+b"9)
3He-*He solution on the reduced temperature. The solid line corre- o kgT[IN,\S"9 kgT[aN,\"™9"
sponds to the calculation according to form(&8) for k. The N_( a—) 3—)
dotted line corresponds to the passage to the limiting behakior ( 2\ 02 M2
~7%). The circles correspond to experimental déia].

(3.9

p.T N2 p.T

The superscripts denote the singular and regular parts of the

e values. According to the theory of critical phenoméa8],
(connected to the c¢ll the mutual diffusion of argon and on the critical isochores we have?m/aﬂ)f,"’}9~ 77 psing

CO, proceeded parallel to the equalization of argon isotope”™ ~ 7, o D,
concentration. Figure 3 depicts the dependence of a reduc%%;;res's\i’mﬁ;e Vaggd Zo?;glg':iir?mrlggildgdI(:r:pogckt)i?/g};h?
SJE;Jf;Oﬂ coefficientD/Do on temperaturer=(T—Tc)/T =1.24, v=0.62). With approach to the critical poirh$"

—o, (IualINy)5¥—0 and in the limit
_0.1496 [(m;+my)kgT|"?

= DHNZbSing(&/LglﬂNz)Si’qg~ Trtr_ 062 (35
0529(1,1)“[ m;m;

0 (3.

This relation determines the limiting behavior of the diffu-
sion coefficient with approach to the critical point. It was

2 (1,1) i
For Eq.(3.J) the o7, 0+, my, andm, quantities were verified in many experiments, mainly, by measuring the

taken from[2] for argon and C@); the mean molar fraction .ot the Rayleigh line in liquid solutior&L0]. However,

— ithn=n.= 7 m3 -
I(:)fwAsrf\rAcl)zri‘r? II;IiZ g .(t)r?sgivflft:s?onnc?oe?f.i?;ig ofrgr 'O:‘ergl €0 according to present-day investigations, near the gas-liquid
9.3 9 C(itical point of the solvent within a temperature range of the

Qec_rease many times whereas that responsn?le f(_)r the €AU%tates (103<7<1), excluding the closest vicinity of the
ization of the isotopic concentration of argon in £ tem- itical boi | h SiNg pSindeg pre
erature independent and equal Dg, corresponding the critical point, we may neglect the ter « S ). Ina
I?mit of rarefied gases but with a dens,it equal to the criticalpartlcm"Jlr case, which may be of use to us in subsequent
) 9 = y €d ; estimations, on the isochore at a critical concentration of
density. Thus, it is assumed tHag=bokgT, whereb, is the L
" solution, it is assumed that
mobility of separate molecules and has the fgéh
(N2 /dp2) 5 3=No/KgT,
0.1496 [(my+my) | 7,2
0= 2 (kBT) ! (32) (¢9N /(? )sing_a/ N N )5 -
crle(l'l)n[ m;m, 21012)p T (NyNp)er™7,

— hre ! [P .
and no peculiarities in any vicinity of the critical point. Thus, D=b"kgT/(1+a’"(NiNo)“7™7); (3.6

for the region studied{> 1(_)*3_)_, the component mobility is  parea’ e were found from the state equatioa1).
assumed to have no peculiarities and to be equal to the quan- ging our experimental results on diffusion, we estimate
tity calculated by the theory of rarefied gases with densityne pehavior of other critical coefficients within this region.

almost equal to the critical value. This is of fundamentalpq fuxes of componentd™, and of heatg, are determined
importance because either a decrease in the diffusion Coeﬁtijsing the gradients andvT [4]: '

cient near the critical point or an increase in the relaxation

time of the inhomogeneities of the concentration of solution Jmu) = _ I—j;LV,U«(m)_ L7V,
components is caused not by the slowing down Brownian
motion of molecules but by a decrease in the thermodynamic q—pd™v)=— LqMV,u(m)— LqrVT,

force due to some mean field which prevents the equalization

of concentration. This mean field is similar in its action to where the Onzager coefficient, is related to the compo-
the gravitational field which also prevents from the verticalnent mobility in the mean-numerical reference system via the
equalization of the concentration gradient in the solution. equationb”=L;,p?/[n*(m;m,)N;N,]. According to the
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scaling theory of critical phenomerf&8,59, the kinetic co-  our notion about the behavior of kinetic coefficients has been
efficients near the critical point have the form confirmed experimentally. We may also obtain the functional
dependences for other kinetic coefficients within the studied
temperature range , taking into account their interrelation.
Thus, in this temperature range the kinetic coefficients are of

L qsingy grea X8 Te (9C,1au ™) 1+ a'®
in 67777I’cp 2l0 p. T )

the form

L-=L. /T= singy greg— kBTC & + greg — -

iT=Lau./T=8 B _67777I’Cp aT o B D~7", N~777 «k~77,
=—(au'™1T), a9+ BreY, kr~777, k,~7"7, b~const. (3.9
_ keT According to the scaling theory, the limitingsymptoti¢

Lqr=7""%+ 7“39:67”; pT(&S(m)/ﬁT)M'p-i- yres critical behavior of these coefficients is determined Hj
[

:T((7,U«<m)/t“702)p'T(é’S(m)/(?T)M'paSing-i- ,yreg1 (37) D~7", A~const, k~7",

wherer . is the correlation radiusy is the shear viscosity, kr~77" Ky~777% b~77" (3.10

ands(™ is the entropy of unit mass. Equatiof®.7) show o o
that the singular parts of transfer coefficients may be ex- 2King into account the fact that the critical indgx-1.2
pressed in terms of*". Thus, the transfer coefficients, in- andv=0.6, then the temperature dependences of these coef-
volved in the basic hydrodynamic equations, have the form/icients differ dramatically in these two regions.
Now let us estimate the temperature regions in which the
)\:(LqTLjM_LjZTT)/Lj,u kinetic coefficients must display the dependen(®9) and
(3.10 on the critical isochore in the solution with concentra-
a sin du™ tion N,. We perform estimations for the dependerige
T snay gred] ¢ Cp.c ac, = f(7) which is sure to hold for other critical coefficients. As
T follows from Egs.(3.4) and (3.8 there are two crossover
™\ 2 (™ temperaturesr,; and 7, at which D changes its behavior
+Ta' +2TpB"®
p.c

sing

T (critical indexX. Experimentally, these crossover tempera-
tures[ 7= (T—T.)/T.] differ by orders of magnitude.
(™ _The first temperature range up to temperatuyedeter-
mines by the inequality
T

(N dnp)SM9< (IN, /3 puy) ™. (3.11)

4 €04 (reg,red_ T reg2 sing ] ) ) . ]
Y (Y e B J Thus, 7, is determined by the equalit{8.11). Taking into

account Eqgs(3.6), we have

. :T(acz/am"”)p,T

T [ﬁreg+ afreQ((?,U,(m)/(?T)p‘c], ’Tl:{a[(l_Nz)Nz]E}lly. (312

asing+ a9
_ The crossover temperaturg may be obtained taking into
D=(a""%+ a’eg)(aﬂ(m)/f?cz)p;/p, account the fact that the second change in the behavibr of
occurs forb3"9%~=p"9 (or o*""9= 9. The value ofb™? may

) (é’(l/p) (a(l/p)) aT be estimated as
p= =- p ]

w™ | M Jou\ou™] b"e9=1/6m 71 (3.13
k=(LqtL,— LjZTT)/L,-MCp,sz)\/(aSinng a®9)pCp ¢, wherer is of the order of a molecule size. Thus, according

(3.8  to Egs.(3.6), we get

whereC, . is the heat capacity and is the coefficient of r ks

thermal diffusivity. As has been shown above, near the criti- r'N

cal point of a pure solvent within the region studied, we may ¢

neglect the ternb®™ and, hencee®™. As a result, the ex- ¢ js ysually assumefiL0] thatr ~r,= . Hence,

pressions for, e.g.kt and A will be the power lawsA

~77 % kr~71" Y. The dependences obtained fof and A mp={a[ (1—Ny)N, =), (3.195

may be compared with the available experimental data on the

thermodiffusion relation and thermal conductivity for the Equations(3.12 and (3.195 show thatr; and r, are deter-

3He“*He solutions[60,61]. A comparison of the results is mined using the coefficient of proportionalityamplitude™)

shown in Figs. 4 and 5. of the scaling dependence of compressibility on temperature.
As follows from the figures, there is fair agreement be-For instance, for theHe-*He solutions the crossover tem-

tween our results and the experimental datf66f and[61] peraturesr, andr,, calculated using the equation of state by

within experimental error and the above estimations. Thug,34], are

T 4
5 (8N2/6,U,2 ;I’r]rgml. (314)
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N,(®He)=0.01, 0.10, 0.50, 0.80,

7,=3.0x107%, 1.4x10°%4 8.5x10 % 3.9x10 4

_ 5F r_
7,=1.0x107%, 8.8<10°3, 2.5x10°2 1.6x102, ° .
I,_-‘H
which is in agreement with our measurements of the diffu- §=4

sion coefficienD. Note that as follows from Figs. 4 and 5, in

the region7<<10 %, i.e., wherea®"%> a9, there is a ten-

dency to the limiting asymptotic dependences at a critical : , ,

point (3.10. -3 Iog_z’t -1
Note that according to the known equations of state in our °

region we may determine not only the temperature depen- FIG. 6. The width of the Lorentzian components of the Rayleigh

dences of these kinetic coefficients but also their depentine depending on the reduced temperature for'the-*He solution

dences on volume and concentration. with 3He concentratio™N,=0.79. The solid line corresponds to the
result obtained by formulé.3). The circles correspond to experi-
IV. WIDTH OF THE RAYLEIGH LINE mental values by65].

It is interesting to use our concepts obtained to interprett is seen thal”,>TI"_ with 7<10 2. The calculations per-
experiments on the determination of the width of the Rayformed forS; andS, show that within the same temperature
leigh line in the *He-*He solution. The normalized autocor- range they are almost the same. Thus, the second term in
relation function of the scattered light intensity near the gassquare brackets of expressi¢h2) is more important than
liquid critical point of the binary solution, measured the first. Experimentally, this is manifested in the existence

experimentally, is written ak62] of the only time of the relaxation of critical fluctuations. This
2 I conclusion coincides with the results obtained[B6%]. The
g ot =1+[g"" (V)] (4. experimental data on thE_ values used from Table | of

[65] (open circles, Fig. b Figure 6 shows that the curve

calculated forl'_ by taking into account our measurements
of the coefficient of mutual diffusion and the experimental
data given by[65] are in fair agreement and their behavior

According to[63], the first-order autocorrelation function for
binary solutions has the form

S
Fl—wexp(—l“+t)+ ?exp(—l’,t) do not correspond to the limiting critical behavior. Neverthe-
g V()= - (4.2) less, the conclusion about the practical independence of the
Symll  +SymlT - ’ diffusion coefficients of helium isotope solutions on compo-

) o sition, drawn by[65], contradicts our measurements shown
whereS,; andsS, are the functions of equilibrium thermody- Fig. 1. The fact is that according {65], the width of the

namic properties and of kinetic coefficients;. is the in-  Rayleigh line does not coincide with the diffusion coeffi-
verse time of the relaxation of critical fluctuations and isgjent. The width of this line depends not only Bnbut also
related to the width of the Rayleigh line: on x andAg. Thus, in a given case, the competition between
1 these quantities in expressidqa.3) leads to this indepen-
I.=-k3(k+D(1+Ag) ={[k+D(1—Ag) 12— 4xD}?), dence of the Rayleigh line on concentration although the
2 diffusion coefficient depends on concentration. This assump-
(4.3 tion has been verified numericall25]. Figure 7 shows the
demperature dependences Dfobtained with allowance for

wherek is the change in the wave vector upon scattering, an ; S
g P g our measurements using E.3 and for the estimations

Ar=(KITC, ) (du'™/acy), 1. Knowing the values of
x, D, andAr, we may calculate the values bf, andT" _
and compare them with the experimental data in Table | of
[65] on the He-*He solution. The quantities dé; and A
were taken froni61] and the quantities of the heat capacity

Cp.c—C, c Were obtained using the caloric equation of state :o

which was derived by using the same hypothesis as for Egs. g D; *He

(2.18. The experimental values dof, . were taken from o

[64]. The diffusion coefficient was estimated using the for- o

mula taking into account only the regular component mobil- =

ity: o i ,
2

09, T

RT
D/Do=1/ 1+ —(acalap ™)y 7| (4.4 . o
Cy ' FIG. 7. The dependence of the coefficient of mutual diffusion
for *He-*He solution with®He concentratioN,=0.79 on the re-
The (t?Cglﬁ,u(m))p,T quantity was determined using the equa-duced temperature. The straight line corresponds to the coefficient
tion of state by{34]. Figure 6 shows the calculated tempera- of thermal diffusivity of ®He. The circles are the experimental data
ture dependences of the, andI'_ values(the solid line$. by [65].
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obtained by{65]. The open circles were taken from Table | ity, in this case, may be calculated assuming the gaseous

of [65]. The solid line is the result of our calculations per- solution to be ideal. Thus, the Mayer formula is a good ap-

formed by Eq.(4.4) for N,=0.79, taking into accoundy®  proximation[68],

obtained from our measuremefgs]. For comparison Fig. 7

shows the dependence of the coefficient of thermal diffusiv- —

ity « for pure He[66] (the straight line in the figujeFigure D=(N2/keT)(N2D 1+ NiD2)(9p2 /0N )p 7

7 shows agreement between the solid line and the circles )

which indicates again the consistency between our data ofhere we assum®,~kgT/ry7, Dy~kgT/ro7; 1; is the

the determination oD and the experimental data tjg5].  effective radii of the molecules, andl is the solution shear

Note that the quantity for the solution withN,=0.79 and  Viscosity. Note that this formula holds for the entire experi-

the quantityx for pure 3He [66] are close to each other in mental region up to thg gas-hqwd critical line qf the solution.

the region of comparison, but exhibit different temperaturéNear the gas-liquid critical point of the solution, the other

dependences. k!netlc coefficients may _b_e expressed in terms _of both the
The interpretation of dynamic light scattering experimentsSingular part of the mobility and the corresponding regular

is not simple near the critical points of mixtures. It was Parts which weakly depend on the reduced temperature so

shown recently in the theoretical work 7] that the physi- that this dependence may be neglected. To calculate the

cal meaning of the prevalent coefficients in expressiaB)  (9n2/9N2), r derivative for the general case, one should

changes as one considers states in the vicinity of differernOW the equation of the solution state. Some types of equa-

points on the critical locus. tions are given in Sec. Il. The crossover temperatures are
determined at which the form of the power law dependences
V. CONCLUSION of the kinetic coefficients vary in the critical region. Using

the concepts developed in this paper, we explain the tem-
Our investigation indicates that the isothermal processperature dependences of the kinetic coefficients observed ex-
occurring in nonideal gaseous solutions, is mainly deterperimentally. Thus, the present paper develops concepts of
mined by the peculiarities of the thermodynamic force rathethe behavior of the kinetic coefficients in nonideal binary
than by those of the Onzager coefficiémobility). Even in  gaseous solutions, including the region located near the gas-
the vicinity of the gas-liquid critical point of the solution, at liquid critical point. These concepts are based on the funda-
least for the low concentrations of one of the componentsmental principles of the theory of second-order phase transi-
the behavior oD"N depends ondu,/dN3), 1. The mobil-  tions.
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