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Reconstructing chaotic dynamics through spike filters
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We consider the problem of reconstructing chaotic attractors from spike trains produced by model neurons.
We find that the period-parameter plot, which displays the dependence of the oscillation frequency of the
spiking model on the input level, is a useful device for determining the success of reconstruction. A three-
dimensional version of Fitzhugh-Nagumo spiking dynamics is investigated along with other models.
@S1063-651X~99!11103-6#
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I. INTRODUCTION

In most experimental situations the differential equatio
for the system under investigation and, consequently,
state variables, are unknown. The experimenter may h
access to consecutive measurements of only a single s
observable. A considerable step forward was made whe
was shown that the attractor of the underlying system can
reconstructed from such a time series by a procedure ca
time delay embedding@1–3#. This result is especially usefu
for nonlinear systems, where the potential exists for
tremely complicated state space attractors.

Neurons communicate by sequences of short pulses
so-called action potentials or spikes. The times of these
crete pulses can be collected by a recording electrode.
type of data differs from a time series of an observable m
sured at regular time intervals. Many hypotheses and neu
models for the description of these pulses have been
posed, including integrate-and-fire~IF! models and models
of excitable media@4–10#.

In @11,12# the question of whether the attractor of a ch
otic input can be reconstructed from delay embeddings of
interspike intervals~ISIs! generated by a neuron model w
considered. It was shown in@11# that it is possible by using
a simple integrate-and-fire neuron model. In@12#, Racicot
and Longtin investigated the ISIs generated from th
integrate-and-fire models and an excitable model@FitzHugh-
Nagumo~FHN2! model@9##. Attractors constructed from de
lay embeddings of ISIs and of the chaotic input were co
pared from the point of view of geometry and nonline
forecastability. They found that for the IF models the sim
larity between these attractors is high only when the m
firing rate ~mean number of spikes per unit of time! is high,
and when firings occur over a large range of the input sig
For the more complicated excitable FHN2 model, good
constructions were not reported, and the ISIs reconstruct
bear little resemblance to the input attractor.

The focus of this short paper is to isolate the factors n
essary for successful ISI reconstructions in practice.
show that the period-parameter plot, which displays the
pendence of the oscillation frequency of the spiking mo
on the input level, can be used to determine the succes
PRE 591063-651X/99/59~3!/2911~7!/$15.00
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reconstruction for various input ranges. In particular, we c
explain the reason of the difficulty reported in@12# with re-
constructing through the FHN2 filter and show that readju
ing the input range to FHN2 can solve this problem.

This paper is organized as follows. The definition of t
period-parameter plot and its relation with attractor reco
struction via neuron filters is the subject of Sec. II. We
troduce a version of the FitzHugh-Nagumo model that ty
cally allows faithful reconstruction from spike trains. In Se
III the predictability of the spike train is introduced as
measure of reconstruction success, using a nonlinear f
casting method and surrogate data as a statistical con
The Hodgkin and Huxley neuron model@10# is studied in
Sec. IV.

II. THE PERIOD/PARAMETER PLOT

In 1962, FitzHugh and Nagumo@9# proposed a simple
model that gives a descriptive portrait of neural excitati
without direct reference to known or conjectured physiolo
cal variables. It has played an important role in leading to
understanding of the nature of excitable systems~where a
stimulus larger than some threshold will provoke a very la
response! and in studying more complicated models of t
action potentials. The FHN2 model equations are

e v̇52v~v2a!~v21!2w1S~ t !,
~1!

ẇ5v2w2b,

wherev is the fast or excitation variable which mimics th
action potentials,w is the slow or recovery variable whic
determines the refractory time~during which an action po-
tential cannot be generated!, andS(t) is the applied stimulus
that leads to excitation. We used the parameter valuea
50.5, b50.15, e50.005. For these parameter values the
is a globally stable fixed point ifS[0, i.e., without an input
signal. For a constant input signal,S(t)[S, the system has
an equilibrium at (v,w)5(v0 ,v02b), wherev0 is a real-
valued root of v0(v02a)(v021)5S1b2v0 . For S(t)
[S, a sufficiently large constant parameter, the equilibriu
becomes unstable and a stable periodic orbit is genera
2911 ©1999 The American Physical Society
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2912 PRE 59ROLANDO CASTRO AND TIM SAUER
The periodic orbit is manifested in rhythmical spiking by t
variable v ~Fig. 1!. For the parameters chosen there is
supercritical Hopf bifurcation point atSH'0.112 331 . . . .
An alteration in the FHN2 model yields a new mod
~FHN3! @13# with the same property@if S(t) is set to be a
constant input signalS, there is a Hopf bifurcation asS is
increased#. The FHN3 equations are

u̇52au2cw1S~ t !,

e v̇52v~v2b!~v21!1u2dw, ~2!

ẇ5v22w2b,

where the parameters are set to bea50.1, b50.15, c
50.5, d50.5, e50.005 ~bifurcation point is SH'
20.053).

Figure 2 shows period-parameter plots for FHN2 a
FHN3 models, a plot of the periods of the periodic or
created by the Hopf bifurcation versus the constant in

FIG. 2. Period-parameter plots for the FHN2 and FHN3 mod
subject to a constant inputS. The range ofSover which the spiking
period is monotonic provides a scaling range to the input of
neuron models where good reconstructions are obtained.

FIG. 1. The FHN2 model exhibits periodic spiking behavior
the voltagev for S.SH (S50.2).
a

d
t
t

signal S for these models. The purpose of the perio
parameter plot is to find a range of the fixed input parame
Sover which the spiking period is a monotonic function ofS.
If the applied stimulusS(t) is restricted to this monotonic
range, the output spikes can distinguish between differ
stimulus intensities, and relay information about the stimu
signal. Figure 2 shows that the interval20.05<S<0.05 is a
monotonic input rangefor FHN3. Note that the FHN2 curve
is relatively flat, which is not the case for the FHN3 curv
Therefore, the spike train output of FHN3 will be able
distinguish different inputs better than FHN2.

If the range of the applied stimulusS(t) to the neuron
model is not contained in a domain of monotonicity of t
neuron model, then the information about the stimulusS(t)
will not be efficiently carried in the spike train output. T
illustrate this point, we generate chaotic inputs to the neu
models using the Ro¨ssler@14# and the Lorenz equations@15#.
The Lorenz attractor has a figure eight shape; the Ro¨ssler
attractor has a funnel shape and a banded structure. Figu
shows the delay embedding of the ISIs generated with
FHN2 model and a scaled version of thex variable of the
Rössler system as the inputS(t) to the neuron model. The
Rössler equations areẋ52y2z, ẏ5x1Ay, ż5B1(x
2C)z, with parameter valuesA50.36, B50.4, C54.5.

s

e

FIG. 3. Plots of 3-tuples of the ISIs generated with the FH
model using a scaled version of thex coordinate of the Ro¨ssler
equations as the input. Parameters used:t50.5, A50.36, B
50.4, C54.5. ~a! The input signal used isS(t)50.007 292x(t)
10.2483 which scales thex variable to the monotonic input rang
@0.19, 0.33#. ~b! The input signal used isS(t)50.026 042x(t)
10.4083 which scales thex variable to the nonmonotonic inpu
range@0.2,0.7#.
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PRE 59 2913RECONSTRUCTING CHAOTIC DYNAMICS THROUGH . . .
Spiking times were determined by numerically integrati
the coupled Ro¨ssler and FHN2 equation,

ẋ5t~2y2z!,

ẏ5t~x1Ay!,

ż5t„B1~x2C!z…, ~3!

e v̇52v~v2a!~v21!2w1S~ t !,

ẇ5v2w2b,

and by finding the times~called firing times! at which the
variablev makes positive-going crossings of a fixed thres
old ~arbitrarily set to 0.7!. The ISIs are defined bytn
5Tn112Tn , where Tn and Tn11 are consecutive firing
times. Figure 3~a! shows the ISI attractor generated when
monotonic input range was used. We used the input sig
S(t)50.007 292x(t)10.2483 and plot the vector
(tn ,tn21 ,tn22). This input signal results in an input rang
0.19<S(t)<0.33. Note that the attractor reconstructed
ISIs resembles the Ro¨ssler attractor. For Fig. 3~b! we used
the input signalS(t)50.026 042x(t)10.4083 which pro-
duces an input range of 0.2<S(t)<0.7. This input range is
not monotonic, as can be seen from Fig. 2, and as a resul
attractor was poorly reconstructed. Similarly, in@12# the in-
put used for the FHN2 model did not fall in a monoton
input range and successful reconstructions were not repo

Figure 4 shows the delay embedding of the ISIs genera
with the FHN3 model and a scaled version of thex variable
of the Lorenz system as the input. The Lorenz equations
ẋ5a(y2x), ẏ5rx2y2xz, ż52bz1xy with parameter
values a510, r528, b58/3. Spiking times were deter
mined as above by numerically integrating the coupled
renz and FHN3 equations

ẋ5t„a~y2x!…,

ẏ5t~rx2y2xz!,

ż5t~2bz1xy!,
~4!

u̇52au2cw1S~ t !,

e v̇52v~v2b!~v21!1u2dw,

ẇ5v22w2b.

A monotonic input range was used in Fig. 4~a! @S(t)
50.003 75x(t)10.075, 0<S(t)<0.15#. Note that the at-
tractor has the figure eight shape of the Lorenz attractor.
Fig. 4~b! we used a nonmonotonic input range of20.15
<S(t)<0.15 produced by the input signalS(t)
50.0075x(t). The bifurcation point of the FHN3 model i
contained in that range. Note that the quality of reconstr
tion degrades.
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III. NONLINEAR PREDICTION

The preceding section showed visual comparison of
tractor reconstruction through interspike interval inform
tion. A more objective measure of the success of a rec
struction can be given by measuring the predictability of
spike train, using the geometry of the reconstructed attrac
Nonlinear forecastability is an intrinsic property of a dete
ministic dynamical system@16#. We will use a simple ver-
sion of a nearest-neighbor prediction algorithm@11,17,18# to
measure predictability. The prediction algorithm works
follows. An m-dimensional delay embedding is construct
from a sequence of ISIs (t1 ,t2 ,t3 , . . . ,tN) in the same way
as for a time series@16# yielding vectors of the formVn
5(tn , . . . ,tn2m11). For eachVn , the k nearest neighbors
Vn

j 5(tn
j , . . . ,tn2m11

j ), j 51 . . .k, are collected~we used
k510% of N for the calculations in this paper!. To avoid
biasing predictions by in-sample interpolation, the near
neighbors close in time toVn are not selected. The neare
neighbors chosen are translated by the horizonh, and the
average

pn5
1

k (
j 51

k

t j 1h
j

is used to approximate the future intervaltn1h . The differ-
enceen

p5pn2tn1h is the h-step prediction error at stepn.

FIG. 4. Plots of 3-tuples of the ISIs generated with the FH
model using a scaled version of thex coordinate of the Lorenz
equations as the input. Parameters used:t50.05, a510, r
528, b58/3. ~a! The input signal used isS(t)50.003 75x(t)
10.075 which scales thex variable to the monotonic input rang
@0, 0.15#. ~b! The input signal used isS(t)50.0075x(t) which
scales thex variable to the nonmonotonic input range@20.15, 0.15#.
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2914 PRE 59ROLANDO CASTRO AND TIM SAUER
We could instead use the series meanM to predict at each
step; thish-step prediction error isen

M5M2tn1h . The ratio
of the root-mean-square errors of the two possibilities~the
nonlinear prediction algorithm and the constant prediction
the mean! gives a normalized prediction error o
^(en

p)2&1/2/^(en
M)2&1/2, where the averages are taken over

entire series. An NPE value close to 1 means low pred
ability, with M being the best forecast. An NPE value clo
to zero means high predictability~linear or nonlinear! in the
ISI sequence.

We generate sequences of 3000 ISIs and compute
one-step-ahead prediction error using embedding dimen
m53. A sequence of ISIs generated as in Fig. 4~a!, for in-
stance, yields a very low NPE of 0.076, reflecting again
successful reconstruction. Since linear correlations can
the nonlinear prediction algorithm@19,20# by giving small
NPE values, we used the surrogate data method@21# to check
the nature of the correlations in the ISI sequences.

The surrogate data method works as follows. A line
process is specified as a null hypothesis; data sets~called
surrogates! which are consistent with this null hypothesis a
generated. The surrogate data have similar properties a
original ISIs but is a realization of a stochastic process
discriminating statistic~NPE in our case! is computed for the
original and for each of the surrogate data sets. The
hypothesis is rejected~nonlinearity is detected! if the statistic
computed for the original data is significantly different th
the ensemble of values computed for the surrogate data.
method has been used to validate dimension measurem
and to discriminate deterministic versus stochastic dynam
from neuronal data@18#. Two types of surrogate data ar
used in our analysis, phase-randomized~PR! and Gaussian-
scaled~GS! surrogate. The PR surrogate has the same m
standard deviation, and autocorrelation as the original
series, but is the realization of a Gaussian stochastic proc
The nonlinear deterministic structure is eliminated. The
surrogate ~also known as amplitude-adjusted phas
randomized surrogate! corresponds to the hypothesis that t
ISI series is a monotonically scaled version of amplitud
produced by a Gaussian random process with similar a
corrrelation.

From each ISI sequence of interest we generate ten
rogate sets of each of the two types of surrogate. The N
for each type are averaged together and are compared
the NPE of the original ISI sequence. If the NPE of t
original sequence is significantly different from the NPEs
the surrogates, the null hypothesis of the surrogates ca
rejected, which is evidence that the nonlinear structure of
underlying dynamical system is present in the interspike
tervals.

Figure 5 shows the plot of the NPE~one-step-ahead! val-
ues of a sequence of 3000 ISIs~lower curve! and the mean of
the NPEs of the surrogates~upper curves! versus the embed
ding dimensionm. The error bar denotes two standard dev
tions. The ISIs were generated using the FHN3 model
the Lorenz equations@see Fig. 4~a!#. Note that for eachm,
the NPEs of the ISIs~lower curve! are significantly different
from the NPEs of the surrogates, therefore there is pred
ability not explained by any of the null hypotheses control
by the surrogate data. We can conclude that there is pre
ability in the ISI series caused by the underlying determin
f
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tic dynamics. Figure 6 shows the plot of the NPEs as a fu
tion of the prediction horizonh ~lower curve for the ISI data
and upper curves for its surrogates!. For these calculations
we fixed the embedding dimensionm53. For each predic-
tion horizon there is a statistically significant difference b
tween the original series and its surrogates; again the
hypotheses can be rejected.

An important issue to be considered in the reconstruct
analysis is the relative time scales of the input stimulus
cillations and the spiking model, which is determined by
parametert in our analysis. Reducingt has the effect of
slowing the dynamics of the stimulus. The theoretical lim
t→0 corresponds to a fixed input activity level, at whic
point the spiking filter acts as an amplitude-to-frequen
converter, a faithful conversion which will invert though pr
serve dynamical information. Because of this we should
pect more successful reconstruction for smallt. For this
analysis we used the FHN2 model with a scaled version

FIG. 5. Normalized one-step-ahead prediction error for ISIs c
ated with the FHN3 model and the Lorenz equations@as in Fig.
4~a!# and two different types of surrogate data~phase-randomized
surrogates, Gaussian-scaled surrogates!. The lower curve is the
NPE for the ISIs, the upper curves are for the mean NPE for
surrogates of each type. The error bars denote two standard d
tions.

FIG. 6. NPE (m53) as a function of prediction horizon. Th
lower curve is the NPE for the ISIs created as in Fig. 4~a!; upper
curves are the mean NPEs of ten surrogates sets~phase-randomized
surrogates, Gaussian-scaled surrogates!. The error bars denote two
standard deviations.



th
tw

th
P

f
ti

bl
nd
-
ea
he

-
va-

e
o-

n-
e

is

tial

ac-

te

SIs
s a

PRE 59 2915RECONSTRUCTING CHAOTIC DYNAMICS THROUGH . . .
the x coordinate of the Lorenz equations as the input to
model. Figure 7 shows the ISI attractor generated using
different values of t and the same input signalS(t)
50.0035x(t)10.26. We get a good reconstruction fort
50.05, the ISI attractor has the figure eight shape of
Lorenz attractor, and a sequence of 3000 ISIs yields an N
of 0.092 (h51, m53). For t51, the attractor is poorly
reconstructed. To study the effect oft in the reconstruction,
we generate ISI sequences using differentt values and com-
pute the NPEs~one step ahead,m53) for each of them. To
compare differentt in a fair way, we keep the amount o
dynamics that produces the intervals equal in the genera
of the ISIs. Figure 8 plots the NPE as a function oft. Note
that the NPE degrades ast increases.

IV. HODGKIN AND HUXLEY MODEL NEURON

We used the approach of Sec. II for finding a feasi
input region for a good reconstruction with the Hodgkin a
Huxley ~HH! @10# neuron model. This model is a four
variable system of nonlinear differential equations that r
sonably accurately describes action potentials and t
propagation. The Hodgkin and Huxley equations are

Cv̇52gNam
3h~v2ENa!2gKn4~v2EK!

2gL~v2EL!1S~ t !,

FIG. 7. Plots of 3-tuples of the interspike intervals genera
with the FHN2 model using a scaled version of thex coordinate of
the Lorenz equations as the monotonic input range,S(t)
50.0035x(t)10.26: ~a! t50.05, ~b! t51.
e
o

e
E

on

e

-
ir

ṁ5am~v !~12m!2bm~v !m,

ṅ5an~v !~12n!2bn~v !n,

ḣ5ah~v !~12h!2bh~v !h,

whereS(t) is an external input to a neuron and

an~v !5
0.01~102v !

exp~102v/10!21
,

am~v !5
0.1~252v !

exp~252v/10!21
, bh~v !5

1

exp~302v/10!11
,

bm~v !54 expS 2v
18 D , bn~v !50.125 expS 2v

80 D ,

ah~v !50.07 expS 2v
20 D ,

C is the capacitance;v is the membrane potential; theg’s are
constant conductances;ENa,EK ,EL are constant equilibrium
potentials; andm, h, and n are variables representing so
dium activation, sodium inactivation, and potassium acti
tion channels, respectively.~The parametersENa550, EK
5277, EL5254.4, C51, gNa5120, gK536, and gL
50.3 were used in our calculations.!

Figure 9~a! shows the period-parameter plot for th
Hodgkin and Huxley model. Note that the period is a mon
tonic function ofS for 7<S<150. Any subset of this range
will be an input scaling range that will produce good reco
structions. Figure 9~b! shows the delay embeddings of th
ISIs generated with the HH model andS(t)52.5x(t)170,
wherex(t) is thex coordinate of the Lorenz equations. Th
input signal results in an input range 20<S(t)<120. The
ISIs were defined by upcrossing of the membrane poten
variablev, and we set the threshold to240. Note that the
ISI attractor has the figure eight shape of the Lorenz attr
tor.

d

FIG. 8. Normalized one-step ahead prediction error of the I
generated with the FHN2 model and the Lorenz equations a
function of the time constantt. Embedding dimensionm53. Input
signal used:S(t)50.0035x(t)10.26.
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A sequence of 1024 ISIs generated as in Fig. 9~b! yields a
very low NPE of 0.07, again reflecting a successful rec
struction. Prediction results for the original ISI series~lower
curve! and the mean of ten sets of GS and RP surrog
~two upper curves! are shown in Fig. 10. The normalize
one-step-ahead prediction error is plotted as a function of
embedding dimensionm. For every value ofm, the null hy-
potheses controlled by the surrogate data can be rejected
we can conclude that there is nonlinear predictability in
ISI series.

FIG. 9. ~a! Period-parameter plot for the Hodgkin and Huxle
model.~b! Plot of 3-tuples of interspike intervals generated with t
Hodgkin and Huxley model and input signalS(t)52.5x(t)170,
where x(t) is the x coordinate of the Lorenz equations andt
50.01.
hy

le
-

es

e

nd
e

V. SUMMARY

We have considered ISI attractors generated by excita
neuron models subject to chaotic input signals. We h
found that the period-parameter plot, which displays the
pendence of the oscillation frequency of the spiking mo
on the input level, can be used to explain the success
reconstruction. The range of constant input signal where
periods are monotonic provides a scaling range for the c
otic input to the neuron model in which good reconstructi
are obtained~from the point of view of geometry and non
linear forecastability!. By finding the monotonic input range
and scaling the chaotic input to that range, we have succ
fully reconstructed attractors from neuron models. We ha
used the surrogate data method to verify that the nonlin
deterministic structure of the dynamics that produced the
tervals is preserved in the ISIs.
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FIG. 10. NPE (h51,m53) as a function of embedding dimen
sion. The lower curve is the NPE for the ISIs created with t
Hodgkin and Huxley model and the Lorenz equations@as in Fig.
9~b!#; upper curve is the mean NPE of ten surrogate sets~phase-
randomized surrogates, Gaussian-scaled surrogates!. The error bars
denote two standard deviations.
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