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Reconstructing chaotic dynamics through spike filters
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We consider the problem of reconstructing chaotic attractors from spike trains produced by model neurons.
We find that the period-parameter plot, which displays the dependence of the oscillation frequency of the
spiking model on the input level, is a useful device for determining the success of reconstruction. A three-
dimensional version of Fitzhugh-Nagumo spiking dynamics is investigated along with other models.
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PACS numbd(s): 05.45—a, 05.40-a, 87.10+e€, 87.19.La

[. INTRODUCTION reconstruction for various input ranges. In particular, we can
explain the reason of the difficulty reported[ib2] with re-
In most experimental situations the differential equationsconstructing through the FHN2 filter and show that readjust-
for the system under investigation and, consequently, th#ng the input range to FHN2 can solve this problem.
state variables, are unknown. The experimenter may have This paper is organized as follows. The definition of the
access to consecutive measurements of only a single scalgriod-parameter plot and its relation with attractor recon-
observable. A considerable step forward was made when gtruction via neuron filters is the subject of Sec. Il. We in-
was shown that the attractor of the underlying system can b&oduce a version of the FitzHugh-Nagumo model that typi-
reconstructed from such a time series by a procedure Ca”&ﬁ.”y allows faithful reconstruction from Spike trains. In Sec.
time de|ay embeddinm_3]' This result is especia"y useful Il the prEdlctablllty of the Spike train is introduced as a
for nonlinear systems, where the potential exists for eximeasure of reconstruction success, using a nonlinear fore-
tremely complicated state space attractors. casting method and surrogate data as a statistical control.
Neurons communicate by sequences of short pulses, thEhe Hodgkin and Huxley neuron modgl0] is studied in
so-called action potentials or spikes. The times of these disSec. IV.
crete pulses can be collected by a recording electrode. This
type of data differs from a time series of an observable mea- Il. THE PERIOD/PARAMETER PLOT
sured at regular time intervals. Many hypotheses and neuron . .
models forgthe description of thesey pﬁiljses have been pro- In 1962, FitzHugh and Nagum] proposed a simple

osed, including integrate-and-fité") models and models model that gives a descriptive portrait of neural excitation
gf excitable megi 4 4_%0] without direct reference to known or conjectured physiologi-

In [11,17 the question of whether the attractor of a Cha_cal variables. It has played an important role in leading to an

otic input can be reconstructed from delay embeddings of th‘gtri]riirli?lr;drmegr fr:a;hgorrféli;erethgéccvzﬁ?leroily;égngl?gf I‘Zr e
interspike intervalgISls) generated by a neuron model was 9 P ylarg

considered. It was shown [i1] that it is possible by using responsgand in studying more complicated models of the

a simple integrate-and-fire neuron model.[?], Racicot action potentials. The FHN2 model equations are
and Longtin investigated the ISIs generated from three

integrate-and-fire models and an excitable m¢&#kzHugh- ev=-v(v—a)(v—-1)-w+(1),
Nagumo(FHN2) model[9]]. Attractors constructed from de- . 1)
lay embeddings of ISIs and of the chaotic input were com- w=v—w-—Dh,

pared from the point of view of geometry and nonlinear
forecastability. They found that for the IF models the simi-Whereuv is the fast or excitation variable which mimics the
larity between these attractors is high only when the meagction potentialsy is the slow or recovery variable which
firing rate (mean number of spikes per unit of tins high, ~ determines the refractory tim@luring which an action po-
and when firings occur over a large range of the input signaltential cannot be generatedndS(t) is the applied stimulus
For the more complicated excitable FHN2 model, good rethat leads to excitation. We used the parameter vahes
constructions were not reported, and the ISIs reconstructions 0.5, b=0.15, e=0.005. For these parameter values there
bear little resemblance to the input attractor. is a globally stable fixed point i5=0, i.e., without an input
The focus of this short paper is to isolate the factors necsignal. For a constant input sign&(t)=S, the system has
essary for successful ISI reconstructions in practice. Wen equilibrium at ¢,w)=(vq,vo—b), wherev, is a real-
show that the period-parameter plot, which displays the devalued root of vo(vo—a)(vo—1)=S+b—vy. For S(t)
pendence of the oscillation frequency of the spiking modek=S, a sufficiently large constant parameter, the equilibrium
on the input level, can be used to determine the success becomes unstable and a stable periodic orbit is generated.
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FIG. 1. The FHN2 model exhibits periodic spiking behavior of
the voltagev for S>S;; (S=0.2).

The periodic orbit is manifested in rhythmical spiking by the
variablev (Fig. 1. For the parameters chosen there is a
supercritical Hopf bifurcation point &,~0.11233 ...

An alteration in the FHN2 model yields a new model

(FHNDJ) [13] with the same propertjif S(t) is set to be a . >
constant input signas, therg is a Hopf bifurcation aS is ) 1 (1)
increasell The FHN3 equations are

FIG. 3. Plots of 3-tuples of the ISIs generated with the FHN2
model using a scaled version of tiecoordinate of the Resler
equations as the input. Parameters usee:0.5, A=0.36, B
€= —v(v—b)(v—1)+u—dw, ) =04, C=4.5. (& The input §ignal used i§(t)=0.907 29%(t)

+0.2483 which scales thevariable to the monotonic input range
[0.19, 0.33. (b) The input signal used iS(t)=0.026 04Z(t)
W=u2—w—b, +0.4083 which scales the variable to the nonmonotonic input
range[0.2,0.7.

u=—au—cw+ S(t),

where the parameters are set to e 0.1, b=0.15,c

=0.5, d=0.5, €e=0.005 (bifurcation point is Sy~

—0.053). . .
Figure 2 shows period-parameter plots for FHN2 angSignal S for th_ese models. The purpose .Of the period-

FHN3 models, a plot of the periods of the periodic orbit parameter plot is to find a range of the fixed input parameter

created by the Hopf bifurcation versus the constant inpuﬁoverwhic_;h the_spiking per_iod s a_monotonip functiorﬁ)_f
If the applied stimulusS(t) is restricted to this monotonic

6 . . . . range, the output spikes can distinguish between different
. FHN2 stimulus intensities, and relay information about the stimulus
5l —— FHN3 || signal. Figure 2 shows that the intervaD.05<S<0.05 is a
monotonic input rangéor FHN3. Note that the FHN2 curve
al ] is relatively flat, which is not the case for the FHN3 curve.

Therefore, the spike train output of FHN3 will be able to
distinguish different inputs better than FHN2.

If the range of the applied stimuluS(t) to the neuron
model is not contained in a domain of monotonicity of the
neuron model, then the information about the stimu(g
will not be efficiently carried in the spike train output. To
T ] illustrate this point, we generate chaotic inputs to the neuron
models using the Rssler[14] and the Lorenz equatiof&5].

0 02 0.4 0.6 The Lorenz attractor has a figure eight shape; thesko
8 attractor has a funnel shape and a banded structure. Figure 3
shows the delay embedding of the ISIs generated with the

FIG. 2. Period-parameter plots for the FHN2 and FHN3 modelsFHN2 model and a scaled version of tRevariable of the
subject to a constant inp@ The range oB over which the spiking Rossler system as the inp&(t) to the neuron model. The
period is monotonic provides a scaling range to the input of theRossler equations arex= -y—2z, y=x+Ay, i=B+(X
neuron models where good reconstructions are obtained. —C)z, with parameter valueA=0.36, B=0.4, C=4.5.
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Spiking times were determined by numerically integrating
the coupled Rssler and FHN2 equation,

x=7(-y=2),
y=r(x+Ay),
z=7(B+(x—C)2), )
ev=—v(v—a)(v—1)—w+S(1),

w=p—w-—Db,

and by finding the timegcalled firing time$ at which the
variablev makes positive-going crossings of a fixed thresh-
old (arbitrarily set to 0.Y. The ISIs are defined by,
=T,.1—T,, Where T, and T,,,; are consecutive firing
times. Figure 89 shows the ISI attractor generated when a
monotonic input range was used. We used the input signal
S(t)=0.007 29%(t)+0.2483 and plot the vectors
(t,,th—1,th—2). This input signal results in an input range
0.19<S(1)<0.33. Note that the attractor reconstructed by
ISIs resembles the Reler attractor. For Fig.(B) we used
the input signalS(t) =0.026 04Z(t) +0.4083 which pro-

duces an Inp_ut range of O'QS(t)SOj'_Th'S Input range Is FIG. 4. Plots of 3-tuples of the ISIs generated with the FHN3

not monotonic, as can be seen from F_'g'_ 2,andasa V?SU“ tr?‘ﬁodel using a scaled version of tixecoordinate of the Lorenz

attractor was poorly reconstructed. Similarly,[it2] the in- equations as the input. Parameters usee:0.05, a=10, p

put used for the FHN2 model did not fall in a monotonic =28, B=8/3. (8 The input signal used iS(t)=0.003 7%(t)

input range and successful reconstructions were not reported.g 975 which scales the variable to the monotonic input range
Figure 4 shows the delay embedding of the ISIs generategh, 0.15. (b) The input signal used iS(t)=0.007%(t) which

with the FHN3 model and a scaled version of theariable  scales the variable to the nonmonotonic input ranige0.15, 0.15.

of the Lorenz system as the input. The Lorenz equations are

x=a(y—X), y=pXx—y—xz, z=—[Bz+Xxy with parameter II. NONLINEAR PREDICTION

values =10, p=28, B=8/3. Spiking times were deter-

mined as above by numerically integrating the coupled Lo

renz and FHN3 equations

The preceding section showed visual comparison of at-
tractor reconstruction through interspike interval informa-
tion. A more objective measure of the success of a recon-
struction can be given by measuring the predictability of the

x=1(a(y—x)), spike train, using the geometry of the reconstructed attractor.
Nonlinear forecastability is an intrinsic property of a deter-
y=1(pX—y—X2), ministic dynamical systeril6]. We will use a simple ver-

sion of a nearest-neighbor prediction algorithti,17,1§ to
measure predictability. The prediction algorithm works as

z=1(—Bz+xy), follows. An m-dimensional delay embedding is constructed
. 4 froma sequence of ISIg{,t5,t5, ... ty) in the same way
u=-—au—cw+ S(t), as for a time serie$l6] yielding vectors of the formv,
=(t,, ... th—m+1). For eachV,, the k nearest neighbors
ev=—v(v—b)(v—1)+u—dw, Vi=(th, ...t 1), i=1...k, are collectedwe used

k=10% of N for the calculations in this paperTo avoid
biasing predictions by in-sample interpolation, the nearest

w=v?=w—b. neighbors close in time t¥, are not selected. The nearest
o ) ) neighbors chosen are translated by the horikpmand the
A monotonic input range was used in Fig(ag [ S(t) average
=0.003 7%(t)+0.075, 0<S(t)<0.15. Note that the at-
tractor has the figure eight shape of the Lorenz attractor. For k
Fig. 4b) we used a nonmonotonic input range 10.15 p :1 E ]
<S(t)<0.15 produced by the input signalS(t) "k th

=0.007%(t). The bifurcation point of the FHN3 model is
contained in that range. Note that the quality of reconstrucis used to approximate the future intertal ,,. The differ-
tion degrades. enceel=p,—t,, is the h-step prediction error at step
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We could instead use the series méarto predict at each 0.7
step; thish-step prediction error ier","z M —t,.n. The ratio
o 0.6¢
of the root-mean-square errors of the two possibilitie
nonlinear prediction algorithm and the constant prediction of 0.5t
the mean gives a normalized prediction error of
0.4}

((eM2V2((eM)?)12, where the averages are taken over the

L
entire series. An NPE value close to 1 means low predict- %03_
ability, with M being the best forecast. An NPE value close ‘
to zero means high predictabilitinear or nonlinearin the 0.0l

ISI sequence.
We generate sequences of 3000 ISIs and compute the 0.1

one-step-ahead prediction error using embedding dimension

m=23. A sequence of ISIs generated as in Fi¢g) 4for in- % 4 6 8 10

stance, yields a very low NPE of 0.076, reflecting again a Embedding Dimension

successful reconstruction. Since linear correlations can fool

the nonlinear prediction algorithifil9,2Q by giving small

NPE values, we used the surrogate data metatipto check 4(a)] and two different types of surrogate ddfzhase-randomized

theTrrl]ature of thte cc(j)r;elatlo?hs Ic? the LSI seqfuinces.A i surrogates, Gaussian-scaled surrogatébe lower curve is the

e S!erga (.a. :;a me 0” hwor E a.s _%OWS' H;e'gearNPE for the ISIs, the upper curves are for the mean NPE for 10
Process 1S Sp_ec'f'e as "’T nu )_/pot _eS'S' ata &t X surrogates of each type. The error bars denote two standard devia-
surrogateswhich are consistent with this null hypothesis are s

generated. The surrogate data have similar properties as the

Original ISIs but is a realization of a stochastic process. Aﬂc dynamics_ Figure 6 shows the p|0t of the NPEs as a func-
discriminating statisti¢cNPE in our caseis computed for the  tjon of the prediction horizo (lower curve for the 1SI data
original and for each of the surrogate data sets. The nulynd upper curves for its surrogatefor these calculations
hypothesis is rejecte@onlinearity is detectedf the statistic e fixed the embedding dimension=3. For each predic-
computed for the original data is significantly different thantjon horizon there is a statistically significant difference be-

the ensemble of values computed for the surrogate data. Thigieen the original series and its surrogates; again the null
method has been used to validate dimension measuremerigpotheses can be rejected.

and to discriminate deterministic versus stochastic dynamics ap important issue to be considered in the reconstruction
from neuronal datd18]. Two types of surrogate data are gnalysis is the relative time scales of the input stimulus os-
used in our analysis, phase-randomizB®) and Gaussian- cillations and the spiking model, which is determined by a
scaled(GS) surrogate. The PR surrogate has the same meaRarameterr in our analysis. Reducing has the effect of
standard deviation, and autocorrelation as the original IS§jowing the dynamics of the stimulus. The theoretical limit
series, but is the realization of a Gaussian stochastic process.., o corresponds to a fixed input activity level, at which
The nonlinear deterministic structure is eliminated. The GSyint the spiking filter acts as an amplitude-to-frequency
surrogate (also known as amplitude-adjusted phase-conyerter, a faithful conversion which will invert though pre-
randomized surrogateorresponds to the hypothesis that theseryve dynamical information. Because of this we should ex-
ISI series is a monotonically scaled version of amplitudesyect more successful reconstruction for smallFor this

produi:e(_j by a Gaussian random process with similar autoynalysis we used the FHN2 model with a scaled version of
corrrelation.

From each ISI sequence of interest we generate ten sur-

FIG. 5. Normalized one-step-ahead prediction error for ISIs cre-
ated with the FHN3 model and the Lorenz equatifas in Fig.

rogate sets of each of the two types of surrogate. The NPEs 1.2f
for each type are averaged together and are compared with
the NPE of the original ISI sequence. If the NPE of the T B

original sequence is significantly different from the NPEs of

the surrogates, the null hypothesis of the surrogates can be
rejected, which is evidence that the nonlinear structure of the o
underlying dynamical system is present in the interspike in- z
tervals.

Figure 5 shows the plot of the NREne-step-ahead/al- |
ues of a sequence of 3000 ISlswer curve and the mean of 0.2
the NPEs of the surrogatéspper curvesversus the embed- '
ding dimensiorm. The error bar denotes two standard devia- 0 . . . . .
tions. The ISIs were generated using the FHN3 model and 0 2 4 6 8 10
the Lorenz equationksee Fig. 4a)]. Note that for eachm, prediction horizon
the NPEs of the ISIglower curve are significantly different FIG. 6. NPE m=3) as a function of prediction horizon. The

from the NPEs of the surrogates, therefore there is prediCtower curve is the NPE for the ISls created as in Figg):Aupper
ability not explained by any of the null hypotheses controlledcurves are the mean NPEs of ten surrogates(patse-randomized
by the surrogate data. We can conclude that there is predicturrogates, Gaussian-scaled surrogafBise error bars denote two
ability in the ISI series caused by the underlying determinisstandard deviations.
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FIG. 8. Normalized one-step ahead prediction error of the ISls
generated with the FHN2 model and the Lorenz equations as a
function of the time constant. Embedding dimensiom= 3. Input
signal usedS(t) =0.003%(t) +0.26.

t(n-2)

M= ay(v)(1—m)— Bp(v)m,
N=ay(v)(1—n)—Ba(v)n,

h=an(v)(1—h)—Bu(v)h,

whereS(t) is an external input to a neuron and

FIG. 7. Plots of 3-tuples of the interspike intervals generated
with the FHN2 model using a scaled version of theoordinate of an(v)= 0.01(10-v)
the Lorenz equations as the monotonic input rangét) exp(10-v/10) -1’
=0.003%(t) +0.26: (a) 7=0.05,(b) 7=1.

0.1(25-v)
the x coordinate of the Lorenz equations as the input to thetm(v) = exp(25—v/10)— 1 Bn(v)= exp(30—v/10)+ 1’
model. Figure 7 shows the ISI attractor generated using two
different values of r and the same input signab(t) - -
=0.003%(t)+0.26. We get a good reconstruction fer Bm(v)=4 exp(E), Bn(v)=0.125 exé%),
=0.05, the ISI attractor has the figure eight shape of the
Lorenz attractor, and a sequence of 3000 ISls yields an NPE
of 0.092 h=1, m=3). For 7=1, the attractor is poorly ay(v)=0.07 ex;{__)
reconstructed. To study the effect ofn the reconstruction, 20/’
we generate I1S| sequences using differentlues and com- ) ) ) )
pute the NPEgone step aheadn=3) for each of them. To C s the capacitance; is the membrane potential; tiges are
compare differentr in a fair way, we keep the amount of constant conductanceSy,,Ex,E, are constant equilibrium
dynamics that produces the intervals equal in the generatiopotentials; andm, h, andn are variables representing so-
of the ISIs. Figure 8 plots the NPE as a functionrofNote ~ dium activation, sodium inactivation, and potassium activa-
that the NPE degrades asincreases. tion channels, respectivelyfThe parameterdy,=50, Ex
=—77, E,.=-54.4, C=1, gn—=120, gk=36, and g,
=0.3 were used in our calculatiois.
IV. HODGKIN AND HUXLEY MODEL NEURON Figure 9a) shows the period-parameter plot for the
_ . Hodgkin and Huxley model. Note that the period is a mono-
. We us_ed the approach of Sec.' . fo'r finding a fe.as'bletoni(quunction ofogr 7<S<150. Any subspet of this range
input region for a good reconstrucnon.wnh the degkm andwill be an input scaling range that will produce good recon-
Hu>_<|ey (HH) [10] nheuron moo_lel. Th!S model_ s a four- structions. Figure @) shows the delay embeddings of the
variable system of nonlinear differential equations that rea

sonably accurately describes action potentials and thellrSIS generated with the HH model aig{t) =2.5(t) + 70,

ropagation. The Hodakin and Huxlev equations are wherex(t) is thex coordinate of the Lorenz equations. This
propag ' 9 yeq input signal results in an input range |G(t)<120. The
ISIs were defined by upcrossing of the membrane potential
Co=—dn.m3h(v = Ex) — 0un(v —E variablev, and we set the threshold t640. Note that the
v IneM™N(v = Ea) = g0 = Ex) ISI attractor has the figure eight shape of the Lorenz attrac-
—gu(v—Ep)+S(1), tor.
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FIG. 10. NPE b=1m=3) as a function of embedding dimen-
sion. The lower curve is the NPE for the ISIs created with the
Hodgkin and Huxley model and the Lorenz equati¢as in Fig.
9(b)]; upper curve is the mean NPE of ten surrogate fghsise-
randomized surrogates, Gaussian-scaled surrggdtes error bars
denote two standard deviations.

V. SUMMARY

We have considered ISI attractors generated by excitable
7 neuron models subject to chaotic input signals. We have
t(n) t(n-1) found that the period-parameter plot, which displays the de-
pendence of the oscillation frequency of the spiking model
FIG. 9. (a) Period-parameter plot for the Hodgkin and Huxley gn the input level, can be used to explain the success of

model._(b) Plot of 3-tuples of interspike intt_arvals generated with the raconstruction. The range of constant input signal where the
Hodgkin and Huxley model and input sign&(t) =2.5(t)+70,  pariods are monotonic provides a scaling range for the cha-
where x(t) is the x coordinate of the Lorenz equations and  ytic inpyt to the neuron model in which good reconstruction
=0.01. are obtainedfrom the point of view of geometry and non-
linear forecastability, By finding the monotonic input range

A sequence of 1024 ISIs generated as in Fi{p) 9ields a  and scaling the chaotic input to that range, we have success-
very low NPE of 0.07, again reflecting a successful reconfully reconstructed attractors from neuron models. We have
struction. Prediction results for the original ISI serigmver  used the surrogate data method to verify that the nonlinear
curve and the mean of ten sets of GS and RP surrogatedeterministic structure of the dynamics that produced the in-
(two upper curvesare shown in Fig. 10. The normalized tervals is preserved in the ISls.
one-step-ahead prediction error is plotted as a function of the
embedding dimensiom. For every value ofn, the null hy-
potheses controlled by the surrogate data can be rejected, andThe research of T.S. was supported in part by the National
we can conclude that there is nonlinear predictability in theScience FoundatiofComputational Mathematics and Phys-
ISI series. ics Programps
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