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The success of deterministic modeling of a physical system relies on whether the solution of the model
would approximate the dynamics of the actual system. When the system is chaotic, situations can arise where
periodic orbits embedded in the chaotic set have distinct number of unstable directions and, as a consequence,
no model of the system produces reasonably long trajectories that are realized by nature. We argue and present
physical examples indicating that, in such a case, though the model is deterministic and low dimensional,
statistical quantities can still be reliably computg81063-651X99)10302-7

PACS numbd(s): 05.45-a

Scientists and engineers rely heavily on models to underewability. If no trajectory ofA is close to any trajectory of
stand natural phenomena. Usually, for a particular proces®, it is unlikely that the solution of either modal or B stays
data from laboratory experiments or from observations arelose to any trajectory of the natural system. In other words,
analyzed and, together with physical laws, a model of thehere is no model which would produce trajectories that are
process is formulated. In fact, this is done for a large varietyealized by nature. In studying chaotic systems, previous
of processes in fields such as physics, chemistry, biologwork [1] has suggested that there is a hierarchy of difficulty
ecology, and engineering. The models are then used to utevels obstructing model shadowability. Specifically, the lev-
derstand the particular process, to make predictions, and tls of difficulty are(i) minor modeling difficulties hyper-
control its dynamics. There are two important classes obolic chaotic systems exhibiting sensitive dependence on ini-
models. The first class is the deterministic dynamical systial conditions. For these systems, trajectories of malel
tems and they evolve the relevant physical variables in timean always be shadowed by trajectories of mdgidbr an
according to a set of prescribed rules. The second one isfinite time [2]; (ii) moderate modeling difficulties cha-
statistical models, which are models that involve some kindtic systems with nonhyperbolic tangencies. For these sys-
of stochastic process and, consequently, for these modelgms, trajectories of modél are shadowed by trajectories of
statistical averages regarding properties of the system armaodel B for a long but finite amount of tim&3]; and (iii )
often obtained from the model. The conventional wisdomsevere modeling difficulties nonhyperbolic chaotic systems
about statistical models is that they deal with situationswith unstable-dimension variabilitf4—6]. For these sys-
where random noise is influential or systems that involve aems, the shadowing times are surprisingly shatt
large number of degrees of freedom such as those arising in In this paper, we argue that chaotic systems having severe
statistical physics. modeling difficulties could still be modeled deterministically

This paper deals with neither class; it deals with a speciabut such models are able to make relevant predictions that
class of deterministic models, models that, in spite of beingre only statistical in nature. The necessity for statistical pre-
deterministic, yield only statistically relevant information in dictions stems from the fact that any individual trajectory
the form of averages about some quantities depending oyields no reliable information about the state of the system.
their dynamical variables. A related question but one thatnstead, statistical quantities should be considered when ana-
captures the essential problem is to what extent predictionlyzing and evaluating solutions of the model. Thus, although
from deterministic models are expected to be valid. Problemghe system is intrinsically deterministic, no long-term deter-
with prediction arise when the deterministic system is chaministic information regarding the system’s state can be ob-
otic; that is, when the system has sensitive dependence aained about its behavior through deterministic modeling.
initial conditions, or on small parameter variations, or on We begin by describing the notion of hyperbolicitgr
environmental noise, etc. To address the validity of deternonhyperbolicity, a fundamental property of chaotic sys-
ministic modeling of chaotic systems, imagine that we contems which plays the key role in determining the validity of
struct two models of the natural systddl: A andB, very  a model. The dynamics is hyperbolic on a chaotic set if, at
close to each other: mode\, dx/dt=f(x,t); model B, each point of the trajectory, the phase space can be split into
dx/dt=1(x,t) + €(t), wheree(t) is an arbitrarily small time expanding and contracting subspaces and the angle between
dependent perturbation that is bounded, i.e., we exclude urthem is bounded away from zero. Furthermore, the expand-
bounded random perturbations such as Gaussian white noiggy subspace evolves into the expanding one along the tra-
in our consideration. Since no model is exact, they are at begtctory and the same is true for the contracting subspace.
a perturbed version of the natural system. For either model t@therwise the set is nonhyperbolic. For hyperbolic chaotic
reproduce and predict correctly the behavior of the naturasystems, one gets modeling shadowing for an infinitely long
system, trajectories of modél must stay close to some tra- time [2], and one has only minor modeling difficulties. The
jectories ofB. If this is so, we say that there is model shad- situation with nonhyperbolic chaotic systems, on the other
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hand, is more complicated. To discuss model shadowability, It is known that the double-rotor map, E({), exhibits
it is insightful to classify nonhyperbolic systems into two unstable dimension variability in certain parameter regimes
types. For thdirst type the splitting of the phase space into [4,11]. In particular, at the parameter setting described in
expanding and contracting subspaces is invariant along a tr&ef.[11], there is unstable dimension variability and conse-
jectory except at the tangencies of the stable and unstablpuently obstruction to modeling shadowing neir 8.0,
manifolds, where the angles between subspaces are zero. Wwhile moderate modeling shadowing difficulties seem to oc-
this case, one gets modeling shadowing up to a tintleat  cur in other parameter regimes, say, néar9.0 [4]. The
scales withe=max e(t)] as7~ e~ ¢, wherea=<3 is the scal- reason, as given in Ref4], is that one of the Lyapunov
ing exponen{3]. Thus, for this type of nonhyperbolic sys- exponents of Eq(1) fluctuates about zero when it is com-
tems, modeling trajectories are expected to be reliable for auted in finite time. The fluctuations of finite-time Lyapunov
reasonably long time if the modeling erreris small, and exponents are a direct manifestation of unstable dimension
one has moderate modeling difficulties. Teéecond typef  variability [4,7]. We observe that unstable dimension vari-
nonhyperbolicity concerns a more drastic violation of theability typically occurs in a parameter region where there is a
continuous splitting of the phase space into the expandingansition in the chaotic behavior of the system. In particular,
and contracting subspaces. For this case, the unstable pefor Eq. (1), nearf =8.0 there is a transition from one positive
odic orbits embedded in the chaotic set have different numkyapunov exponent to two positive ones in the attractor.
ber of unstable directions. Both sets of periodic orbits areThat is, the system is low-dimensionally chaotic fer 8.0,
expected to be densely mixed. Therefore, as the dynamiashile it is hyperchaotic forf =8.0. This transition is shown
evolves, the trajectory of the system experiences differenin Fig. 1, where the four Lyapunov exponents of Eb. are
number of unstabl¢and, hence, stablalirections, and the plotted as a function of In the computation, 1000 values of
neighborhood of each set can be visited for arbitrarily longf are chosen uniformly from the intervgs,10] and for each
times. This is called unstable-dimension variabili], a f, 10’ iterations(with 1CP initial iterations disregardédare
phenomenon that is reflected and quantified by a finite-timeised. It can be seen that the system goes through a cascade
Lyapunov exponent fluctuating about zge8]. Modeling  of period-doubling bifurcations fof <f. ~6.746 and be-
shadowability for this type of nonhyperbolic systzems can b&omes chaotic with one positive Lyapunov exponentc?.t
very short, for a time that scales W|t’rasT~_e .2”‘"’ , where  a¢ f=f.~8.0, the second Lyapunov exponent becomes
m and o are the mean and standard deviation of the fluctu- .. ™ . .
ating time-one Lyapunov exponent closest to Z&foln this positive so that forf>f62, the syst_e_m is hyperchaotic. For
case, one has severe modeling difficulties. The fundament®@rameter much above the transition, say niea®.0, the
mechanism for modeling to fail so severely when the numbef€cond Lyapunov exponent becomes so positive that the
of unstable directions changes along a trajectory was firdfuctuations in the finite-time Lyapunov exponent have only
described by Abraham and Sma. a neghglble tayl m_thg negative side. In this case, unstable
We now give a physical example to address the issue dglimension varlab_|I|ty is less severe and t_he system be_comes
modeling. The system exhibits unstable dimension variabilShadowable again. We note that in previous papéf8, it
ity and hence, it has severe modeling difficulties. The systerhi@s been conjectured that unstable dimension variability is
is the following four-dimensional map which physically de- common in high-dimensional dynamical systems. Figure 1

scribes the dynamics of a double rotor subject to periodi®uggests, however, that one should expect unstable dimen-
kicks [10,11]: sion variability especially near the transition regions where

the system becomes mofer lesg chaotic.

— We now demonstrate that when modeling difficulties are
Xn+1 Myn+xna . .
(1) severe so that no model trajectory corresponds to any trajec-

tory of the natural system which the model is supposed to
describe, statistical prediction can still be dorsiably

Ynr1=LYntG(Xh11),

where through the use of the model. To argue this, we consider a
family of models which is a slighly perturbed version of Eq.
x= X(l))eslxsl yz(y(l))eRxR @),
x(2) ' y(2) ’
and Xpr1=Myp+X,,

3
Cq Sinx(1)

G(x)=(czsmx(2) . 2 Yn+1=LYn+tG(Xns1) + €H(Xq41),

In Egs.(1) and(2), x,(1,2) are the angular positions of the where e<f is the magnitude of the model uncertainty,
rotors at the instant of thath kick, while y,(1,2) are the H(x)=[o}sinx(1),02sinx(2)]", ando. and o2 are two ran-
angular velocities of the rotors immediately after thth ~ dom variables uniformly distributed if0, 1]. Following our
kick, L andM are 2<2 constant matrices whose elementsprevious notion, Eq(l) is modelA and Eq.(3) is modelB.
depend on the physical parameters of the rotoysand c, Now, suppose we want to compute a statistical quantity, say,
are two parameters that are proportional to the kickinghe average energ§e) of the system, by using both models
strengthf. In the following we choose the parameter settingA and B. For the kicked double-rotor systefi) with the

in Ref.[11] so thatc,=c,=f [12]. parameter setting chose{k) is given by
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FIG. 1. (Colon Lyapunov spectrum of the kicked double-rotor map EL).as a function of the kicking strength Severe unstable
dimension variability has been documented &t8.0 near which there is a transition from low-dimensional chaos to hyperchaos.
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FIG. 2. The average enerd) of the double rotor vs the kick- FIG. 3. (a) Computation of the average energy of the double

ing strengthf in a noiseless situation. The energy changes smoothlyotor system from Eq(1) (dashed line{E)) and from the perturbed
nearf=28.0 where there is a severe modeling difficulty. The abruptEq. (3) [closed circles{E)(e)], wheree is the magnitude of the
changes in(E) nearf=7.1 andf=7.5 are due to a periodic win- model uncertainty. Apparently, we hay&)(e)~(E) over 14 or-
dow, and the fluctuations ¢E) inside the window are due to tran- ders of magnitude ine. (b) The second energy moment
sient chaos. ((AE)?)(e) vs e
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(E). This time is much longer than the modeling-shadowingtainty e. For example, Fig. @) shows the average second
time. We see that nedr= 8.0, (E) changes smoothly, imply- moment of the energy(AE)?) versuse, where behavior
ing robustness of statistical averages in parameter regimedmilar to that in Fig. 8a) is observed.

where there is a severe modeling difficulty. Fer 8.0, we ~ In conclusion, we demonstrate that for physical systems
obtain(E)~28.3565. Next, we comput&)(e) from Eq.(3) ~ With severe modeling difficulties, although it is not possible
for 16 values ofe in ee[10 161071], also by using trajec- t0 make deterministic prediction reliably from the model, it
tories of 16 points. The result is shown in Fig(8, where 1S still posslble to make.stz_itllstlcal predictions. We expect
the dashed line indicates the value @) and the filled U!"Stab'? dlmensm_)n variability to b? common in high-
cces dencle(E)(o). Apparenty, we have(E)()=(E)  drmensionalchaolc sytems Aemativel,physica systens
over many orders of magnitude éindicating .that statistical uring some observ%bles of the system and t?]en usi)rqg non-
prediction about the energy of the system Is r_obust t.hro.u.gﬁnear time series analysis for the understanding, prediction,
the use of the model, despite unstable dimension varlabllltyand control of their dynamics.

The fluctuations of E)(e) around(E) are due to finite nu-
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