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Universality in three-frequency resonances
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We investigate the hierarchical structure of three-frequency resonances in nonlinear dynamical systems with
three interacting frequencies. We hypothesize an ordering of these resonances based on a generalization of the
Farey tree organization from two frequencies to three. In experiments and numerical simulations we demon-
strate that our hypothesis describes the hierarchies of three-frequency resonances in representative dynamical
systems. We conjecture that this organization may be universal across a large class of three-frequency systems.
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Nonlinear systems with two competing frequencies showordering we predict may be universal in a large class of
resonances or lockings, in which the system locks into alynamical systems with three interacting frequencies.
resonant periodic response which has a rational frequency Firstly, we revise continued fractions and the Farey tree
ratio [1]. The locking increases with nonlinearity, from none for the case of two frequencies. Consider a two-frequency
in the linear regime, to a critical situation where the systensystem with autonomous frequendy and external fre-
is everywhere resonant. The subcritical system has quasijuencyf,. Letf=f,/f,. The aim is to define a sequence of
periodic responses between different lockings, while at suzationals that converges . Strong convergencl?] is
percritical values of the nonlinearity, chaotic as well as peefined for rational fractionp; /q; ,(p; ,q;) € Z as
riodic and quasiperiodic responses may occur. Resonances
have been investigated theoretically and experimentally in - P
many nonlinear systems, and their distribution in parameter ‘f— —
space in the form of a devil’s staircase is now well under- qi
stood, from the number theoretical concept of Farey trees
[2—7]. However, all this applies to resonances generated bf?“
the interaction of two frequencies. Far less is known, by ‘

‘=|qi7—pi|- )

/q, is a best rational approximation if
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comparison, when there are three or more interacting fre-
guencies.

Adding another frequency allows new phenomena to take
place. Now as well agtwo-frequency resonance as before, for all (p;,q;) for anyq,<q,. Givenf, p, andq, are ob-
there is a further possibility: three-frequency resonance, alsgjjned by expandingT in continued fractions T
known as weak resonance or partial mode locking. Three= 3. a, a, ...), andtruncating the expansion as,/q,
frequency resonances are given by the nontrivial solutions of. (5. 5. a., .. .a,) [13]. The p,/q, are then the strong

the equatiorafo+bf, +cf,=0, wherea, b, andc are inte- convergents of. They give the sequence of fractions with

gers, f, and f, are the forcing freque_nmes, arg is the lowest monotonically increasing denominators that con-
resonant response. They form a web in the parameter space F
of .

of the frequencie§8—11]. In this paper, we hypothesize a Ver9€s _ _ o .
local ordering of three-frequency resonances based on gen- 1h€ physically motivated hypothesis invoked to explain
eralizing the Farey tree of two-frequency systems to thred® local ordering of the hierarchy ¢fwo-frequency reso-
frequencies. We perform experiments and numerical simula?@nCes is that the larger the denominator, the smaller the
tions to show that our hypothesis is justified in representativ®!atéau. The fraction with smallest denominator betwefen
dynamical systems with three interacting frequencies: a quaNdr/s. if they are sufficiently close thagr —ps|=1, when
siperiodically forced circle map, a pair of parametrically they are called adjacents, ip£r)/(q+s). This fraction,
coupled forced nonlinear oscillators, and an experimentafNown as the mediant, is then the most important resonance
system consisting of an electronic circuit of forced phaseln the interval. Repeatedly performing the mediant operation

locked loops. Our observations lead us to conjecture that the
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FIG. 1. (a) Schematic diagram of the frequency line, showing

the relative position of and?;‘ and their respective, ,q, har-
monics that approximaté; andf, at equal distancgb) General-

ized Farey tree starting from the adjacefit$p, andﬁ‘ . The first

mediant isf,/q,; at the second level we obtamS and (X,
—f1)/(29,—pn), and so on.

devil’s staircase in turn is the skeleton for the layout of the

resonances in parameter space as Arnold tongies|.

Now consider the case of three frequencies, one internal

fy, and two externaf; andf,. We may divide through by
the autonomous frequendy,, to give fi=f,/f,, and f}

=f,/fy. We aim to come up with two convergent sequences

of rational numbers with the same denominatmy/k,, and
dn’k,, which are strong convergents té andf}, respec-
tively. As before, strong convergence is defined as

Pi i
’(fT,f;)—(E',E')‘=|ki<f*,f£>—<pi,qi>|. (4)
Thus (,/k,,q,/k,) are best rational approximants if
Pn dn Pi di
toety_(Fn Hn toety | HiHi
‘(f 1f2) (knikn) <H(f 1f2) (ki!ki)‘ (5)

for all triplets of integers |6; ,q; ,k;) for anyk;<k,. So we
may write

p
e1= i~ 1| = lkaf1=pal, (6)
n
q
82—\k—”—f; [Knf2 =l (7
n

where we wish to obtain the integeps, q,, andk,. This
general problem has not been soljdd,15; however, we
may sete;=¢e,, SO that both approximations should be
equally good or bad. If we do this, we can equ#ﬂtﬁfir
—pnl=|knf3—qnl, and ask what i%,. There are two solu-
tionsk,=(qn* pn)/(f5+f1). At this point we must remem-
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FIG. 2. (a) The electronic circuit in block-diagram form. Two
coupled voltage-controlled oscillatofgCO’s) are forced with two
independent external force&) Three-frequency devil's staircase
for the circuit. The straight lines correspond to intervals of the dc
offset within which the fundamental frequency of the output re-
mains constant. We varied the dc offset of input 1 in steps of 1 mV
in the interval 0.90 V to 1.05 V, which corresponds to frequency
responses of the circuit between 514.28 Hz and 525.00 Hz. Only
intervals with a stability width greater than 2 mV are plotted. The
external frequencies are fixed at 2100 Hz and 3600 (dz.The
generalized Farey tree predicts the organization of all the frequency
values observed itb).

similarly for the other solutionf=fl/(f}—fl), T3
=(f})/(f1—t)). The two solutions give rise to differents,

)
9

€= |(pn+qn)?l_ pn|: |(pn+qn)’f2_qn|v

g% = |(Qn_ pn)’f;.c - pn| = |(Qn_ pnﬁgzc _qn|1

ber thatk, is an integer, so these solutions require that thérom which one can obtair/e* =|(f,—f,)/(f,+f,)|<1.

frequencies be rescaled b+ f1. For which we define for
the first solutionf,=fl/(fI+f)), T,=fl/(fI+f)), and

So in this sense thef(,f,) solution is better than the
(f% 1) solution.
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FIG. 3. The three-frequency devil's staircase for the system of

ordinary differential equations of Eq15). The system parameters
are equivalent to those of Fig(l®.

Now sticking with the f,,f,) solution, p,, (Pn+0n),

andq,, are obtained from the continued fraction expansions

of ¥, and¥,. Since

= f (10
e fbf 1

fi

f,
- f} f, 1
f= = = : (11
2 fleg] fitfy L h

f2

if we have the continued fraction expansion f/f,
=(a;,ay,a3, ... ), that of f;=(a;+1a,,as, ...), andf,
=(la;,a,,as, ...). Hence ifp,/q, is thenth strong con-
vergent off,/f,, or equivalently off,/f,, given by this
continued fraction expansionp,/(p,+4d,) and q,/(p,
+q,) are the strong convergents bf andf,, respectively.
If p,/d, is such a convergent df,/f,, we may define as
generalized adjacents any pair df {r;,f;/r;), with feR
andr e Z, that satisfy
|firj_fjri|=|f1qn_f2pn|- (12
From this definition, the subharmoniés/p, andf,/q, are
generalized adjacents, and the mediant between them is

- fi+f,
f.= , 13
® Pptdn a3
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FIG. 4. Quasiperiodically forced circle map@ Three-
frequency devil's staircase for forcing frequencigs-1,f,=12/7.
(b) Devil's ramps: the rotation number as a function of the external
frequency ratio and the intrinsic frequency shows the global orga-
nization of three-frequency resonances.

then provides us with a generalized Farey tree for three fre-
guencies; in Fig. ) we show the first three levels of the
tree obtained by recursive application of Ef4) to the ad-
jacentsf,/p, andfZ .

Let us take as an example a three-frequency system with
the two external frequencies set fg=2100 Hz andf,

which by extension from the two-frequency case we hypoth=3600 Hz. The frequency rati6,/f, is then 7/12. The

esize to be the largest plateau betwderp,, and f,/q,.
Starting with f¥ ,T3) instead of €,,f,), we obtain the gen-
eralized mediant? = (f,— f,)/(q,— pn); bothf andf? are
shown in Fig. 1a). The generalized mediant operation

fi f fi+f,
Mo

(14

continued fraction expansion fdg /5, is (1,1,2,1,3, and the
different truncations of this produce the convergents of 7/12,
which are 1/1, 1/2, 3/5, and 4/7. So we take 4/7 as an ap-
proximation to the higher-order rational 7/12, or equivalently
in terms of the original frequencies,f,/f,=2000
Hz/3500 Hz approximate$, /f,=2100 Hz/3600 Hz with
a detuning of 100 Hz. Between the adjacentg/4

=525 Hz andf,/7=514.3 Hz lies the medianf,=(f;
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+f,)/11=518.2 Hz, which we have hypothesized to be thethe oscillator velocity at time®i7gj=n/(27w;). We have

widest resonance in this interval, and recursively applying?erformed a power spectrum analysis of the output of both

the mediant operation gives us the Farey tree that predic@scillators while varying the intrinsic frequency of oscillator

the entire hierachy of resonances in the interval. We nowt. We display in Fig. 3 the most prominent peak in each

proceed to test this hypothesis in three-frequency dynamicalpectrum againsi; for a parameter region equivalent to

systems. that of Fig. Zb), and in which the two oscillators are also
We have constructed the three-frequency electronic oscilsynchronized 1/1. All detectable resonances are again well

lator shown in Fig. 2a) [16]. Two phase-locked loofPLL) described by the Farey tree structure of Fig)2

circuits made up of voltage-controlled oscillatgid¢CQ’s) Our final example of a three-frequency system is the qua-

are coupled through a lowpass and integrator network andiperiodically forced circle map,

forced with two independent periodic forces. Typically, the

outputs of the two oscillators are synchronized 1/1. We filter k

the outputs of the two oscillators in order to attenuate the ¢'=¢+Qy+ 5_sin2m¢ mod 1. (16)

components at the external frequencies and we measure the

output frequencies of both oscillators. If the two values co- T . L
incide we plot them against the dc offset of oscillator 1,The quasiperiodic sequenck, is the time interval between

o - successive pulses of a sequence composed of the superposi-
which is used as the control parametéor the circuit a . T .

L i . tion of two periodic subsequences, one of period equal to one
variation in the mean value of thigh external force is

equivalent to a linear change in the natural frequency of thé:ltnd the other of period, /To=1 (with no loss of general-
ith oscillatoy. The results are presented in FigbRfor the fy), multiplied by the value of the intrinsic frequency of the

) ) oscillator. In Fig. 4a8) we demonstrate that, for the same
interval (f2/7.’f1/4) fof f1 andf, fixed at 2109 Hz anq ,3600. input frequencies as in the previous two cases, the output in
Hz, respectively. This appears to be a typical devil's stair-

case familiar from periodically driven oscillators. It is, how- the form of a devil's staircase is qualitatively unchanged;
P y ’ ' once again its organization is given by the generalized Farey
ever, a three-frequency devil

Iree. Moreover, Fig. @) shows how three-frequency reso-

spond t(.) solutions with three linearly dependept bas'%ances are arranged globally in the form of devil's ramps in
frequencieqthe frequency plotted plus the two forcing fre- the parameter space

qguencieg instead of to periodic solutions. As predicted, the By generalizing the known Farey tree structure of two-

generalized mediarft,=518.2 Hz is the largest resonance in frequency resonances for three frequencies we have pre-
the interval; moreover, the generalized Farey tree shown igjcted the organization of three-frequency resonances in dy-
Fig. 2(c) gives the entire hierarchy of resonances of Fig.namical systems with three interacting frequencies. Our
2(b). ) _results for three different three-frequency dynamical systems

_We have integrated an exactly soluble system of ordinaryo the same ratio of forcing frequenciés/f, show that in
differential equations with three interacting frequen¢®g]  each example the predicted generalized Farey tree hierarchy
is observed. We have repeated these experiments and simu-
lations for different frequency ratios, both rational, as the
example presented here, and irrational, for exampjéf,
=(1++/5)/2, the golden ratio. In every case we have exam-
ined, the local ordering of resonances around the convergents
for i=1,2. The external forces and the coupling term ardn the devil's staircase—slices through the devil's ramps of
chosen in such a way as to preserve the piecewise integriig. 4b)—is well described by the generalized Farey tree
bility of the overall system. The oscillators are coupled parahierarchy. We conclude that the organization we have de-
metrically, their intrinsic frequency changing every time theScribed here is widespread, and conjecture that it may be
coordinate of one of them changes signg(t) = ayg; universal in a large class of three-frequency systems.
+sgnu;(t) sgnu;(t)A;. Theith oscillator is driven by an JHEC and OP acknowledge the financial support of the
impulsive external forcef;(t)=Vg=,58(t—n7g) of fre-  Spanish Direccio General de InvestigaaicCientfica y Tec-
guencyw; whose effect is to produce a discontinuity; in nica, Contracts Nos. PB94-1167 and PB94-1172.

X; + (4bxZ — 2a)x;+ b2 — 2ab X3+ (wg; (1) 2+ a)x; = (1)
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