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Energy dissipation in the dynamics of a bouncing ball
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A horizontally bouncing ball between a rigid wall and a sinusoidally vibrating plate is investigated analyti-
cally, numerically, and experimentally. Transient chaotic and chattering modes show substantially different
shock power dissipation from that of resonant movement. Gain of the dissipated shock power is observed when
the system enters into periodic modes. Period doubling routes to chaos have no substantial influence on the
shock power. Connections of the proposed model with dynamics of mechanical alloying processes are dis-
cussed[S1063-651X99)07403-9

PACS numbdss): 05.45-a, 45.05+x, 46.80:+j, 46.90+s

[. INTRODUCTION ing are shock power, impact time, and energy of a single
impact and were determined by studies of different models
Physics related to the dynamics of a bouncing ball hagpproaching real devicg$0—-12. We think that the dynam-
started to be relevant since Fermi proposed that cosmic rdcs of mechanical alloying can be supported by a model for
diation originates from charged particles accelerated by mowhich solutions can be obtained without simplified assump-
ing magnetic field structurefsl]. Then Ulam examined the tions.
problem of a ball moving between a rigid wall and a vibrat- We characterize the behavior of the model which depends
ing plate without dissipatiof2]. The dynamics of the bounc- 0On only two dimensionless parameters: relative size of the
ing ball was considered as an example showing stochastRystem and restitution coefficient. Our one-dimensional
behavior resulting from nonrandom forcgg). The physics model consists of a rigid wall, a vibrating plate, and an ob-
of ergodicity, i.e., filing of the available phase space byject moving horizontally between the wall and plate. The
stochastic motion, was also discussed for different mappingghoice of such a model was motivated by the possible con-
originating from the bouncing ball modé#]. In other re-  struction of an experimental device which allows us obser-
spects, Mehta and Luck reported on the influence of a gravivation and measurements of the dynamic quantities. The dy-
tational field on a completely inelastic bouncing ball on anamics of the model is explored both analytically and/or
vertically vibrating plate[5]. The same authors then dis- humerically. We will show that collisionor modes are of
cussed the dynamics of a bouncing ball with a finite coeffi-basically three types:(1) high-energy periodic modes
cient of restitution: exact mapping estimates, transient chawhich exhibit period doubling routes to chaotic solutions
otic motion, chattering, and lockin@]. The last phenomena With nearly unchanged energy characteristi¢®) short-
are processes in which a ball performs an infinite number opéeriod chattering and locking in which small amount of en-
impacts in a finite time with complete loss of both energyergy is dissipated, an) chaotic or long-periodic modes.
and memory of initial conditions. Phase portraits of theThe first type of collisions will be called resonant, the others
system had previously been measured experimentally bjonresonant. The energy dissipation for nonresonant modes
Kowalik et al.[7]. Recently, Drossel and Prellberg described!s given by simple expression. A remarkable gain of shock
the dynamics aspects of a single particle in a horizontalljpower is observed in the simulations as well as in the experi-
shaken boX8]. Less theoretical problems connected to themental approach when the system enters into resonant mode.
applications were presented by Valance and Bid¢@land
references therelnwhere the movement of the ball on a Il. MODEL
rough surface was considered. . ] ) ) .
During the last decade, great attention was devoted to L€t us consider a one-dimensional system in which a
mechanica| a”oying or high_energy ba” m”“ng_ Sma” ba” iS mOVing freely betWeen a I’Igld Wa” and a Vibrat'
technological processes for making ultrafine amorphous oihg Pplate. The position of the plate is given by(t)
nanostructured powders. The mechanisms involved in sucf A sin(wt), whereA and » represent the amplitude and fre-
processes are closely related to the dynamics of the bouncirfiency, respectively. The plate is separated from the wall by
ball. Indeed, during mechanical alloying, the solid-state rean average distance, L>A. The ball collides elastically
action is driven by the energy released during the collisiongvith the wall while collisions with the platéshocks are
between macroscopic objedissually balls inside a vialin partially elastic, characterized by restitution coefficikntn
the presence of a reacted medigusually micrometer size the system of platé&=|v ,/vy|, wherevy, andv; are veloci-
powders. Important parameters of the kinetics of ball mill- ties before and after the shock, respectively.
For convenience, let us transform our prime variables to
dimensionless onesww;=v{/Aw, tj=wt{ . Our system is
*Electronic address: kszym@alpha.uwb.edu.pl characterized by two dimensionless parameters: the restitu-
TElectronic address: yvan@univ-lemans.fr tion coefficient ofk and the relative size of the systema,
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«=394 {001} vi1(ti,v;). The difficulty arises because one cannot write
the map explicitly. The time of the next shodk, 1, is given

by the smallest root of the nonlinear equation, for which
t; 1>t;. The equation has a form depending jon

«=320 {0011111} 2a—sinti—Sinti+1=(ti+1—ti)vi for ji:O, (1a)

WWMA SintHl—Sinti=(ti+1—ti)vi for jizl. (lb)
Equation(1a) states that the path traveled by the ball be-
tween shock at time; , interaction with the wall, and next
shock at time; . ; is equal to the ball velocity multiplied by
the time between shocks. Equati¢tb) describes two con-
secutive shocksi.e., no interaction with the wall for time

comprised betweety andt;, ;). The velocityv;,, follows
«=220 {002} from usual definition of the restitution coefficiektand is

expressed by
WW\A,AA’ v 1=kvi+(1+k)cost;,; for j;=0, (10

1 0 1 2 3 4 5 6 7
time/2n vi+1=—kvi+(1+k)costi+l for jizl. (1d)

=260 {00102}

FIG. 1. Sequence of periodic modes for 0.46 and indicated The dimensionless energy dissipated during shock at time
values ofa. The{j;} series is shown for every mode. TNeaxis IS equal to
represents the increasing distance between the plate andiwall
increasing value ofv. gi=(1—k?(cost;+v;_,)? for j;=0, (2a)

—(1—-K2 b )2 i=
=L/A. In the dimensionless notation, the amplitude of plate gi=(1-k")(costi—v;_y)° for jj=1 (2b)

vibration is equal to 1 and the vibration period t@.2Ve use
the notation in whicly; is the velocity of the ball after shock
at timet;, before interaction with the wall or the plate.
After interaction with the wall, the ball interacts with the
plate. The next interaction can be with either the wall or
plate. For a description of a series of shocks, we introduce sN o
the following notation. Integer 0 describes the shock and - =
next interaction with the wall. Integer 1 describes the shock
and next interaction with the plate. Thus a series of shocks .
can be represented by a series of intedgns For the peri- Wherep=2P/uAw® andP is the shock power.
odic mode it is enough to write integers corresponding to one
period of the{j;}; so the simplest periodic mode has the lll. SIMPLE PERIODIC SOLUTIONS
abbreviation{O}. The sequence of infinite numbers of shocks
with the plate corresponding to chattering will be abbrew-out loss of generality, we can introduce the variahlet,

ated by integer 2. The simplest chattering mode is {O.&. _ ; . A
Figure 1 illustrates several modes of the periodic movement 2aMi, whereM is a positive integer. It follows Eqs1a)

and its{j;} abbreviations. Examples of chattering are op.2nd (10 that the mapping of this movemenE, r;,v;

served fore=2.6 and 2.2. We will uséj;} in the construc- —7i+1(7,0;),0;+1(7i,v;), is given implicitly by a pair of
! e i .

tion of the map, and so we need a more formal definition offauations

wheree;=2E; / uA’w?, E; corresponds to the energy dissi-
pated during the shock, andcorresponds to the mass of the
ball. In the same way we can define the dimensionless shock
power dissipated during shock serigs}, i=1,...N:

p_ tN_tl ’ (ZC)

We first consider the movement with=0 for all i. With-

j; for further consideration. Let us define a positive, continu- o —kui+(1+K)cosT: 3
ous, and periodic functiom " (t) with period 27 v *(t) vica=kit (1+k)cosTi iy, 33
=cosf) for 2mm=<t<27m+=#/2, m=0,=1,+2,..., and 2a—sinT—sinT ;= (2aM+7,,—1)v,.  (3b)

for othert values,v * (t) is equal to the positive slope of the

straight line which crosses poitbn the sinusoid and which  tha movement with periodicity M, which will be abbre-
is tangent to the sinusoid at poit§, t<to<t+2m. The \iaeq aq1,,  corresponds to the fixed point ,u* of the
function v *(t) has a clear physical interpretations * (t;) mapping(3);

represents a critical value of velocity for the ball after shock

at timet;. If v;=v " (t;), the ball interacts with the wall and (k] mM)2= T ("l M) (22— 1)

then with the plate; it;<v *(t;), the ball interacts only with sint* = — > , (48
the plate. Now serie$j;} can be defined formally: j;=1 1+(xlmM)

—-60,(@;—v*(t)), whered. is the Heaviside functions: B a—

6. (x)=0 for x<0, 6, (x)=1 for x=0. cosrt = 1 aF V1= (k/mM)*(a®~1) ab)

Let us define the mapping®: t;,vi—ti,1(ti,vi), ™™ 1+ (k/7M)? ’
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. cost* The shock power of thé,, mode can be derived from

v P (40  Egs.(2) and(4):

where = (1—K)/(1+k). _2cos7* ©
Solutions(4) with upper signs are unstable. To find the P="Mx

stability of Ly,, we apply the procedure given [13] and

expand the operatdt in the vicinity of the fixed point™,v* For a givenk, the shock power attains its maximum value if

of Egs.(4). Perturbing a fixed point byr, and év;, respec- cos7 =1. It follows from Eq.(4b) that maximum power is

tively, one can find=’, the first derivative of: dissipated fora(k)=7M/«.
OTit1) _ F,( 5Ti) IV. INFLUENCE OF EXTERNAL NOISE
OVi+1 ov; ,
Let us consider a Poincasection[13] of the phase space
K (1K) ™ of the low period and stable mode. The section consists of a
= cost* few points for the mode without chattering and an infinite
—k(1+K)sin7*  k+wM(1—k2)tanr* number of points tending to a point where the velocity of the

ball begins to stick on the plate in the case of a chattering

mode. The area in the close neighborhood of each point be-
: ® longs to the domain of attraction of the mofe4]. Let us

expose control parameter of the system to external noise. If
If the modulus of one of the eigenvalues Bf is smaller the noise is small, the section is located within the domain of
than 1, the fixed point is stable. This condition can be writterattraction of the mode and consists of spots centered at un-
for two-dimensional maps in terms of invariants: determi-disturbed points. In the case of high noise, the domain of
nant DetF’ and trace TE'. If Tr F' —DetF’ =1, one of the  attraction of another mode can be visited. This second do-
eigenvalues crosses the unit circle at polit of the com- main of attraction behaves like the first one: it may trap the
plex plane and saddle node bifurcation occurs. IfFTr trajectory, or the system may visit other domains of attrac-
+ DetF’ =1, one of the eigenvalues crosses the unit circle ation. The detailed evolution will be considered in the follow-
point —1, giving rise to period-doubling bifurcation. Saddle ing examples.
node bifurcation takes place at the point where the square For k=0.593 and «=2.482, there exist three stable

% 5Ti
5Ui

root in Eqgs.(4a) and(4b) is zero, ata(k) = a4, Where modes: the chattering mode §9000100000001Q2type,
with period 187, {01} resonance with period72 and {00}
M\ 2 resonance with period:2 In Fig. 2a) the phase and velocity
a;=1\/1+ T) ) (6a) at reflection of the chattering mode are shown when exposed

to the external noise of restitution coefficidatThe noise is
introduced by adding to the mean value loh numberiR
after each iteration, wheids the amplitude of the noise and
R are the random numbers having the normal distribution.
202 The noise with amplitude % 10”7 causes the formation of a
T M—1 in the vicini f h DO h . | .
Q= ———. (6b sp_ot in the vicinity of eac pomt_. T e 3 times larger noise
V(TMk)+1 [Fig. 2b)] causes a temporary visit of the large area of the
phase space and the system enters into the domain of attrac-
The stability of movement in the region given by E¢8a  tion of one of the resonances. Starting from the initial con-
and (6b) is governed by the local properties of Edd).  ditions corresponding to th¢01} mode and applying the
However, the movement corresponding to Efb) for k  noise of the amplitude 210 3, after 5000 iterations we
close to 0 cannot be realized because the ball trajectorgbserve only two spot§Fig. 2(c)], while noise 3x 10 3
would cross that of the plane. To find the bordgk), for  causes visiting a large region of the phase sp&ap 2(d)].

while the condition for the period-doubling border is ex-
pressed as (k)= a,, where

which the modd.,, does not exist, we write The movement consists of chaotic and regular series which
. cause a concentration of the points in the vicinity of the
v*=v"(7%), (7)  stable points of thd01} and chattering modes seen in Fig.

_ _ 2(d). Starting from the initial conditions of00} resonance,
and substitute™ andv* from Egs.(4)—(7). Expanding Eq. we observe the effect of spot formation for noise with am-
(7) in the vicinity of a=7M andk=0 up to the first two  plitude 3x 1073 [Fig. 2(e)] and explosion to the large vol-

terms, we get an explicit forrv(k) = a3, where ume of the phase space for an amplitude of 03 [Fig.
2(f)].
4 The exampl ted t thod for choosi
_ _= 2 ples presented suggest a method for choosing
ag=mM 3\/@+O (k. ® initial conditions which correspond to the most stable

mode: (i) take any initial conditions(ii) start iterations
For @ smaller thanus, theL,, mode is replaced by a mode with a large noise, andii) then decrease the level of noise.
with periodicity 27M and with shock sequendg;}={01}. The noise has the form; = IR exp(—ib), whereb is decay
Summarizing, the.,, mode is stable in the region of tkek  constant. The restitution coefficiektiis modified by a noise
plane wherex(K)<ai, a(k)>a,, anda(k)>as. leading tok; =k+ &; . Applying a strong enough initial noise
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FIG. 2. Velocity and phase of the shocks starting from initial conditior®.0, v=0.0 (a), (b), t=2.47,v=0.54 (c), (d), andt
=1.69,v=1.16(e), (f). The « andk parameters were equal to 2.482 and 0.593, respectively. Points corresponding to 5000 iterations are
shown under applied Gaussian noise to kigarameter. The amplitude of the noise is shown in each figure.

and reasonable, we have found that, for a large part @fk Fig. 3(@), which displays a scan for arbitrarily chosén
plane, the final state does not depend on the initial conditior=0.55. Below the points indicating shock power, we draw a
(e.g., initial velocity and phageBy means of such a method step function, the higher value of which shows the presence
based on the “noise-decreasing initial conditio(NDIC), of chattering modes, while a lower value indicates that chat-
we performed a scan of some parts of thek plane, which  tering does not occur during the iterations. In Figh)3short

is summarized in the next section. periods of the movement are shown in a similar way. Char-
acteristic features, a few listed below, can be observed.
V. CHARACTERIZATION OF THE a-k PLANE (i) Silent modes. Sharp minima of the shock power occur

ata=(n+1/2)wm, n=1,23.... Detailed analysis shows that

these modes correspond to the simplest chattering modes of
The region of thex-k plane fora approximately equal to {02} type with periodT=27n. It is reasonable to call these

a few 7 remains very complex. An illustration is given in modes as silent because, in the experimental observations

A. Region for a/7 of the order of magnitude of 1
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C B o ] shows the area where the short period chattering mode occurs. The
5L L S | numbers indicate the period of the mode in units ef RBlere 2000
- e cem e b iterations were performed with initial conditions-0 andv =1.
0L LU0 T e with Eq. (9) for which the maximum of the shock power is
§ . - . located very close to the saddle node bifurcation border.
e 5 - -+ T Thus, forL,, modes, the shock power does not increase with
Tl Lo - o a only in the narrow region of their large noise sensitivity. It
G S seems to be a rule that for resonant movement the shock
ok - ! ' i power increases with up to being replaced by a more noise-
—_— - - - resistant mode, resulting in a strong reduction of shock
T e e B
(v) Shock power in the nearly conservative region. When
ol x approaches zero, the system becomes nearly conservative.

The behavior of such systems has been discussed in the lit-

FIG. 3. Shock poweta) and period(b) versus thex parameter grature[lS]. In this region, persistent chaotic motion disap-

for k=0.55. Below the points, the step function shows the presenc - . . -
of the chattering modehigher valug or the lack of chattering pears and irregular movement is attracted by sinks which are

(lower valug. The points corresponding to a period larger than lOStak,)Ie orbity15,7). The shock ppwer oLy mpdes in that
are not shown irfb). The arrows indicate the period-doubling route region follows from an expansion of E¢9) in the small
to chaos for the., mode. The starting conditions were prepared by Parameterc/ wM:

the NDIC:1=0.01,b=0.01, and 3000 iterations were performed.

2(1+a)?k K
e 02(_|v|> } (10
(see Fig. 7, they produce a very weak sound; in our model (M) &
dissipater shock power fot=(n+1/2)w, n=1,23..., is
zero, whatever th& value is. It seems to be a rule that, for any resonance, the shock power

(ii) Gain of the shock power. In the regions @fwhere is proportional tox in the nearly conservative region. This
the step function changes its value, a gain of the shock poweronclusion is based on a full analysis foy; resonances and
is observed: the shock power of modes without chatteringgnly on computer simulations for other modes studied. An
is larger than those with chattering. example will be given in Sec. VI.

(iii) Noise resistance of the resonances. Whemthalue
decreases below,=2.097, one observes a period-doubling
route to chaos for th&; mode[see arrows in Fig. ®)];
whene increases, thk; mode becomes sensitive to external When « increases and is not close to 1, resonances
noise and is replaced by the chattering one, quite far from thbecome sensitive to the noise and only chattering modes or
stability border,a,=3.46m. All resonances observed show a long-period movements are observed. The areas where short-
similar behavior. It seems to be a rule that resonances afgeriod chattering modes exist from characteristic regions
most resistant against external noise in the region close to itghich are nearly periodic i with period 7. An example
period-doubling border. corresponding to such a quasiperiod dn 7(n—1/2)<«

(iv) Shock power of the resonances. Whedecreases, a <w(n+1/2), n=15, is shown in Fig. 4 and will be briefly
series of period-doubling bifurcations of the resonance doediscussed below.
not change the character of the shock pojgee Fig. 83)] in The regions with the simplest chattering modes{@d}
the vicinity of a~2. For all resonances observed in com-type are displayed by cones: the large one corresponds to
puter simulations, in the region of their large noise resis-T=27n and is located over the horizontal line=(n
tance, the shock power increases withThis is in agreement —1/2)7, while the small one corresponding =2=(n

B. One quasiperiod of &
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+1) is located below the horizontal line=(n+ 1/2); see 1.2 .
Fig. 4.

Between the two cone-shaped areas discussed there exis
a series of regions, each one having a characteristic crescer
shape. The mode corresponding to the smallest value of
and e=mn has a period equal to#n. The next crescent
shapes located at a larger valuekotorrespond to periods
27w(n—1),2m(n—2),27(n—3), ..., respectively. All the
modes discussed correspond to the movemefd@i# type.
In Fig. 1, an example of such a mode for1 is shown
(a=2.20). Below, we give an approximate location of the
k,m value corresponding to the center of the crescentlike
shape fora=mn, where 2rm is the period of the move-

0.6 \_

shock power

ment. The ball after chattering at time=0 leaves the plate 1.0
with velocity equal to 1, and interacts with the wall and plate k

at timet; , ;= 2an. After this shock the ball leaves the plate

with velocity v =2k, ,+ 1, interacts with the wall, and ar- FIG. 5. Shock power versus for a=15s. The initial condi-
rives at the plate at timg . ,: tions were prepared by the NDIC=0.05, b=0.01, and 10000

iterations were performed.

3
2mm— = 7<t; ,—tj,1<27m, m=2n,2n—-12n-2,...

2 regular dependence; see Fig. 6. The data from Fig. 6 were
(11) fitted by a straight line, and the resulting expression for the
shock power is given by
Because
p=Ca 1«7, (14)
2a
o=t =57 (12 hereC=0.91(1) andy=0.55(1)
This shock power may be compared with a shock power
we have of theL,, resonance. We see that when the resonance having
> a maximum shock power dissipated is destroyed and the sys-
n—m 8n—4m+3 ; X
A< ) (13 tem enters into irregular movement, the shock power de-
2m—2n 8m—8n—6 creases by a factor éf where
From inequality(13) and condition Gsk<1, we get that the 2 o \27
number of crescentlike shapes is approximately equal to f=—(—) (15
2n/3. ClaM
Up to now we have considered only modes with one re- : :
flection from the wall between shocks. For every such mode
we emphasize the existence of a new family of more com-
plicated modes and the resulting picture in thek plane
becomes very complex. So we will not go into more details.
VI. SHOCK POWER IN THE NONRESONANT REGION
Computer simulations with the NDIC show that the re- =
gion of @ between (— 1/2)7 and (h+ 1/2)7 can be divided ‘;
into three parts: a region where short- and long-period =z
chattering modes are present, extending flom0 to mod- -
erate values ok, a region with transient chaotic movement,
and a region fork very close to 1(small dissipation To
illustrate it we perform a scan of the shock power for
=n, n=15; see Fig. 5. In the first part, dissipated power
shows strong oscillations when the paramédtdeaves one
short-period shape and enters into another. Wkieoreases,
oscillations have a larger period, equalKgy,.1—Knm ac- 0 > 4 6
cording to Eq.(13). For k approaching 1, the system be-
comes nearly conservative: see Sec. V A. The straight line in In [(1+k)/(1-k)]
Fig. 5 fork>0.9 does not correspond to a simple magg, FIG. 6. Dependence of the shock power on the restitution coef-
but in agreement with E10), the shock power is propor- ficient. Each point corresponds to the averaging oweof 100
tional to «. points lying betweenn— 7/2 and a+ w/2. The initial conditions

When the shock power is averaged ovebetweenw(n  were prepared by the NDIG:=0.02,b=0.01, and 6000 iterations
—1/2) and#(n+1/2) in a nonresonant region, it exhibits a were performed and the first 1000 were omitted.
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For k close to zero and for thiey, mode, thef factor is equal T T T T '

10.77

2a(1+ a)?k7 1
— (wM)3C

1107 = (16)
aM /|
Equation(16) follows from Eqs.(10) and (14).

VII. EXPERIMENTAL DETAILS

The experimental setup consists of an air track and a hori-
zontally moving object with a mass of 61.15 g. The air flow
of the air track allowed nearly free horizontal movement of
the object. On one end of the object a steel spring is attached
which interacts with a rigid steel wall. The other end of the 167
object has a rounded shape made of steel of the approximate
radius of 1 mm. This end interacts with the moving plate
covering by tin alloy. The microhardness of the alloy mea-
sured at different points ranges fronH/ to 11H,. The
distance between the mean position of the vibrating plate and
the wall was measured by a micrometer screw with a reso-
lution of 1um.

The Mdssbauer transducer of MA250 FAST Comtec type time/2n
was used as a vibrating plate, serving high-quality move-
ment. An additional 357 g of mass was attached to the trans- FIG. 7. Error signal for the sequence of simplest chattering
ducer, which reduces influence of the shock on the movemodes of{02 type. In the model, these modes are locatedr at
ment of the transducer. The transducer was moving in & (2n—1)/2m, n=1,2,3,4. Below, the sinusoid indicates the posi-
sinusoidal mode with a frequency of 5.132 Hz. The ve- tion of the plate.
locity amplitude measured by the laser interferometer was
equal to 1.218) mm/s. The so-called error signal, which is N
the difference between input signal of the transducer and ea:_Z (Isi|—h), a7
reading of the pickup coil, was recorded. The error signal =1
allows the determination of two relevant quantities: time of
shock and its intensity. wheres; is the error signal after removing sinusoidal back-

A black fingerprint drawing on transparent sheet was atground component anilis the mean value of this;| in the
tached to the body, allowing optical measurement of the veregions where shocks are not present. Then, for a few peri-
locity of the moving object. The precision of the velocity odic modes with well-separated shodkge the examples in
measurement was better than 2%. Fig. 8 for @=14.10, 7.53, and 3.76e, have been measured

Three signals were recorded simultaneously with a samfor each shock. Independently, velocities of the object be-
pling frequency 5 kHz: the error signal, the velocity of the fore, vy, and after shocky,, were measured by optical
object, and the input signal of the transducer, which is promethod. The velocity of the plate, was determined from
portional to the velocity of the plate. From these signals thehe recorded time of the shock. Next, the dissipated energy
shock phase and velocity before and after shock were detegf each shock was estimated:
mined. The measured values of the coefficient of restitution
were 0.883) for the wall-spring and 0.58) for the plate-tin
alloys.

The measured velocities and phases of the shocks allow in
principle the determination of the dissipated shock powerlts dependence oa, is plotted in Fig. 9, together with the
However, two experimental problems arisdi) when calibration curve. Both curves Eq&3c) and (17), were to-
shocks occur close to each other, it is difficult to measure thgether used for the determination of the shock power of any
velocity, and(ii) when shock energy is small, it remains type of movement.
difficult to separate shock signal from the noise; see the ex- Our apparatus was only an approximation of the one-
ample in Fig. 7. To overcome these difficulties, we apply adimensional, two-parameter model considered. The main
measurement procedure of shock intensity which does natources of disagreement are listed below.
depend on the details of the recorded signal, and then we use (i) As previously mentioned, the interaction with the wall
calibration for estimating absolute shock power. Details ofwas not elastic in our experimental setup. It is possible to
the procedure are given below. renormalize variables and to introduce an effective restitu-

The measured quantity, , directly dependent on the en- tion coefficient which takes this effect into account for
ergy dissipated during the recording timg—t,, is defined modes ofL, type, but it is not possible for general move-
arbitrarily as ment.

amplitude [arb. units]
e

e=(vp—v)?—(vy—v)2 (18
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We detected experimentally the gain of the shock power
when the system enters into the resonant mode. The results
are shown in Fig. 10. The solid lines represent the shock
power forL,, modes for the model in which the restitution

(i) In the case of small velocities, the movement wascoefficient of the wall is different than fpartially elastic
disturbed by the inhomogeneous airflow of the used airtrackeollisions with the wall. _ o
So it was not possible to perform experiments with nonreso- The evolution of the periodic modes whenis varied is
nant movement at large. presented in Fig. 8. Doubling of the period was detected for
(iii) The shocks induce on the moving body small perpenin€ L, mode(seea=14.10 and 12.17 in Fig.)&s well as
dicular vibrations which disturb the longitudinal movement. for the L, mode(see«=7.53 and 6.55 in Fig. )8 The four
In some cases we were able to record only short series of tHast examples from Fig. 8 correspond to the sequence of

FIG. 8. Error signal for sequence of periodic modes for different
values ofa (indicated by numbejs Below, the sinusoid indicates
the position of the plate.

resonant movement. exact solutions shown in Fig. 1. Figure 7 shows the sequence
of the simplest chatteringsilen) modes. The values ak
20000 . found experimentallysee the numbers in Fig) @re close to

those predicted in our model: they occur in the region of
cones located atv= /2, 37/2, 57/2, and 7/2. The mea-

sured shock power of the silent modes, which is much
smaller than the others, is shown in Fig. 9. All the modes
detected experimentally have their analogs in the model

-‘% studied numerically.
£ 10000
VIIl. CONCLUSIONS
o’ The a-k plane may be divided into two characteristic re-

gions: a part in which strong resonances are present and a
part with nonresonant movement. Computer simulations with
the NDIC serve as a tool for finding the most noise resistant
modes.

The resonances which are more noise resistant than
nonresonant modes occur in the region with a small restitu-
tion coefficient where the system is nearly conservative and
in the region wherey/7 has an order of magnitude equal to

FIG. 9. Calibration curve for the shock energy; see the textl. For the regions of the-k plane with resonances resistant
Directly measured dissipated energy is shown on the horizontakgainst external noise, the behavior of the shock power
axis. Squares and diamonds correspond_{p, M=1,2, modes, Seems to follow the following rulegi) in the nearly conser-
respectively, while triangles to the mode {801} type shown in  vative region, the shock power is proportional to{k)/(1
Fig. 1 for @=3.94. +k), (ii) for a given resonance, the shock power increases

€
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with «, (iii) the decrease o& leads to a period-doubling An open question is the behavior of the model with more

route to chaos which does not change the character of thtaan one moving object. Indeed, it was reported that such
dependence of the shock power @n(iv) the transition from  macroscopic systems with dissipation can reach strange
the resonant to nonresonant region is associated with a retates which violate equipartition of energ6]. It thus

duction of the dissipated power. Behavior consistent with thevould be interesting to extend the estimation of the energy
above statements has been observed in computer simulatioggsipation in many-particle models.

while (i), (iii), and(iv) only in the present experiments.

In the nonresonant region, two main types of movement
are present. short period chattering and long period or cha-
otic. Chattering modes for a given short period occur in the
regions of thex-k plane forming quasiperiodic patterns. The o
shock power after averaging over one quasiperiocd Gé One of authors K.S. acknowlgdges the hospltgllty of
described by the equation covering the whole nonresonarifi® LPEC and a grant for the Region Pays de la Loire. The

region. In contrast with the resonant region, the shock powegUthors thank B. Gazengel and E. Mari¢aM Le Mans)
in the nonresonant region is inversely proportionaktand ~ for & calibration of the measurements of the transducer, and

increases withk. Dr. J. M. Greneche for a critical reading of the manuscript.
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