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Energy dissipation in the dynamics of a bouncing ball
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A horizontally bouncing ball between a rigid wall and a sinusoidally vibrating plate is investigated analyti-
cally, numerically, and experimentally. Transient chaotic and chattering modes show substantially different
shock power dissipation from that of resonant movement. Gain of the dissipated shock power is observed when
the system enters into periodic modes. Period doubling routes to chaos have no substantial influence on the
shock power. Connections of the proposed model with dynamics of mechanical alloying processes are dis-
cussed.@S1063-651X~99!07403-6#

PACS number~s!: 05.45.2a, 45.05.1x, 46.80.1j, 46.90.1s
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I. INTRODUCTION

Physics related to the dynamics of a bouncing ball
started to be relevant since Fermi proposed that cosmic
diation originates from charged particles accelerated by m
ing magnetic field structures@1#. Then Ulam examined the
problem of a ball moving between a rigid wall and a vibra
ing plate without dissipation@2#. The dynamics of the bounc
ing ball was considered as an example showing stocha
behavior resulting from nonrandom forces@3#. The physics
of ergodicity, i.e., filling of the available phase space
stochastic motion, was also discussed for different mapp
originating from the bouncing ball model@4#. In other re-
spects, Mehta and Luck reported on the influence of a gr
tational field on a completely inelastic bouncing ball on
vertically vibrating plate@5#. The same authors then dis
cussed the dynamics of a bouncing ball with a finite coe
cient of restitution: exact mapping estimates, transient c
otic motion, chattering, and locking@6#. The last phenomena
are processes in which a ball performs an infinite numbe
impacts in a finite time with complete loss of both ener
and memory of initial conditions. Phase portraits of t
system had previously been measured experimentally
Kowalik et al. @7#. Recently, Drossel and Prellberg describ
the dynamics aspects of a single particle in a horizont
shaken box@8#. Less theoretical problems connected to t
applications were presented by Valance and Bideau†@9# and
references therein‡ where the movement of the ball on
rough surface was considered.

During the last decade, great attention was devoted
mechanical alloying or high-energy ball milling—
technological processes for making ultrafine amorphous
nanostructured powders. The mechanisms involved in s
processes are closely related to the dynamics of the boun
ball. Indeed, during mechanical alloying, the solid-state
action is driven by the energy released during the collisi
between macroscopic objects~usually balls inside a vial! in
the presence of a reacted medium~usually micrometer size
powders!. Important parameters of the kinetics of ball mi

*Electronic address: kszym@alpha.uwb.edu.pl
†Electronic address: yvan@univ-lemans.fr
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ing are shock power, impact time, and energy of a sin
impact and were determined by studies of different mod
approaching real devices@10–12#. We think that the dynam-
ics of mechanical alloying can be supported by a model
which solutions can be obtained without simplified assum
tions.

We characterize the behavior of the model which depe
on only two dimensionless parameters: relative size of
system and restitution coefficient. Our one-dimensio
model consists of a rigid wall, a vibrating plate, and an o
ject moving horizontally between the wall and plate. T
choice of such a model was motivated by the possible c
struction of an experimental device which allows us obs
vation and measurements of the dynamic quantities. The
namics of the model is explored both analytically and
numerically. We will show that collisions~or modes! are of
basically three types: ~1! high-energy periodic mode
which exhibit period doubling routes to chaotic solutio
with nearly unchanged energy characteristics,~2! short-
period chattering and locking in which small amount of e
ergy is dissipated, and~3! chaotic or long-periodic modes
The first type of collisions will be called resonant, the othe
nonresonant. The energy dissipation for nonresonant mo
is given by simple expression. A remarkable gain of sho
power is observed in the simulations as well as in the exp
mental approach when the system enters into resonant m

II. MODEL

Let us consider a one-dimensional system in which
small ball is moving freely between a rigid wall and a vibra
ing plate. The position of the plate is given byx(t)
5A sin(vt), whereA andv represent the amplitude and fre
quency, respectively. The plate is separated from the wal
an average distanceL, L.A. The ball collides elastically
with the wall while collisions with the plate~shocks! are
partially elastic, characterized by restitution coefficientk. In
the system of platek5uva8/vb8u, wherevb8 andva8 are veloci-
ties before and after the shock, respectively.

For convenience, let us transform our prime variables
dimensionless ones:v i5v i8/Av, t i5vt i8 . Our system is
characterized by two dimensionless parameters: the res
tion coefficient ofk and the relative size of the system,a
2863 ©1999 The American Physical Society
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2864 PRE 59K. SZYMANSKI AND Y. LABAYE
5L/A. In the dimensionless notation, the amplitude of pl
vibration is equal to 1 and the vibration period to 2p. We use
the notation in whichv i is the velocity of the ball after shoc
at time t i , before interaction with the wall or the plate.

After interaction with the wall, the ball interacts with th
plate. The next interaction can be with either the wall
plate. For a description of a series of shocks, we introd
the following notation. Integer 0 describes the shock a
next interaction with the wall. Integer 1 describes the sho
and next interaction with the plate. Thus a series of sho
can be represented by a series of integers$ j i%. For the peri-
odic mode it is enough to write integers corresponding to
period of the$ j i%; so the simplest periodic mode has t
abbreviation$0%. The sequence of infinite numbers of shoc
with the plate corresponding to chattering will be abbre
ated by integer 2. The simplest chattering mode is thus$0,2%.
Figure 1 illustrates several modes of the periodic movem
and its $ j i% abbreviations. Examples of chattering are o
served fora52.6 and 2.2. We will use$ j i% in the construc-
tion of the map, and so we need a more formal definition
j i for further consideration. Let us define a positive, contin
ous, and periodic functionv1(t) with period 2p: v1(t)
5cos(t) for 2pm<t<2pm1p/2, m50,61,62, . . . , and
for other t values,v1(t) is equal to the positive slope of th
straight line which crosses pointt on the sinusoid and which
is tangent to the sinusoid at pointt0 , t,t0,t12p. The
function v1(t) has a clear physical interpretation:v1(t i)
represents a critical value of velocity for the ball after sho
at timet i . If v i>v1(t i), the ball interacts with the wall and
then with the plate; ifv i,v1(t i), the ball interacts only with
the plate. Now series$ j i% can be defined formally: j i51
2u1„v i2v1(t i)…, whereu1 is the Heaviside functions:
u1(x)50 for x,0, u1(x)51 for x>0.

Let us define the mappingF: t i ,v i→t i 11(t i ,v i),

FIG. 1. Sequence of periodic modes fork50.46 and indicated
values ofa. The $ j i% series is shown for every mode. TheY axis
represents the increasing distance between the plate and wall~i.e.,
increasing value ofa.
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v i 11(t i ,v i). The difficulty arises because one cannot wr
the map explicitly. The time of the next shock,t i 11 , is given
by the smallest root of the nonlinear equation, for whi
t i 11.t i . The equation has a form depending onj i :

2a2sint i2sint i 115~ t i 112t i !v i for j i50, ~1a!

sint i 112sint i5~ t i 112t i !v i for j i51. ~1b!

Equation ~1a! states that the path traveled by the ball b
tween shock at timet i , interaction with the wall, and nex
shock at timet i 11 is equal to the ball velocity multiplied by
the time between shocks. Equation~1b! describes two con-
secutive shocks~i.e., no interaction with the wall for time
comprised betweent i and t i 11!. The velocityv i 11 follows
from usual definition of the restitution coefficientk and is
expressed by

v i 115kv i1~11k!cost i 11 for j i50, ~1c!

v i 1152kv i1~11k!cost i 11 for j i51. ~1d!

The dimensionless energy dissipated during shock at timt i
is equal to

« i5~12k2!~cost i1v i 21!2 for j i50, ~2a!

« i5~12k2!~cost i2v i 21!2 for j i51 ~2b!

where« i52Ei /mA2v2, Ei corresponds to the energy diss
pated during the shock, andm corresponds to the mass of th
ball. In the same way we can define the dimensionless sh
power dissipated during shock series$ j i%, i 51, . . . ,N:

p5
( i 51

N « i

tN2t1
, ~2c!

wherep52P/mA2v3 andP is the shock power.

III. SIMPLE PERIODIC SOLUTIONS

We first consider the movement withj i50 for all i. With-
out loss of generality, we can introduce the variablet i5t i
22pMi , whereM is a positive integer. It follows Eqs.~1a!
and ~1c! that the mapping of this movement,F, t i ,v i
→t i 11(t i ,v i),v i 11(t i ,v i), is given implicitly by a pair of
equations

v i 115kv i1~11k!cost i 11 , ~3a!

2a2sint i2sint i 115~2pM1t i 112t i !v i . ~3b!

The movement with periodicity 2pM , which will be abbre-
viated asLM , corresponds to the fixed pointt* ,v* of the
mapping~3!:

sint* 5
a~k/pM !26A12~k/pM !2~a221!

11~k/pM !2 , ~4a!

cost* 5
k

pM

a7A12~k/pM !2~a221!

11~k/pM !2 , ~4b!
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PRE 59 2865ENERGY DISSIPATION IN THE DYNAMICS OFA . . .
v* 5
cost*

k
, ~4c!

wherek5(12k)/(11k).
Solutions~4! with upper signs are unstable. To find th

stability of LM , we apply the procedure given in@13# and
expand the operatorF in the vicinity of the fixed pointt* ,v*
of Eqs.~4!. Perturbing a fixed point bydt i anddv i , respec-
tively, one can findF8, the first derivative ofF:

S dt i 11

dv i 11
D5F8S dt i

dv i
D

5S k 2~12k!
pM

cost*

2k~11k!sint* k1pM ~12k2!tant*
D

3S dt i

dv i
D . ~5!

If the modulus of one of the eigenvalues ofF8 is smaller
than 1, the fixed point is stable. This condition can be writ
for two-dimensional maps in terms of invariants: determ
nant DetF8 and trace TrF8. If Tr F82DetF851, one of the
eigenvalues crosses the unit circle at point11 of the com-
plex plane and saddle node bifurcation occurs. If TrF8
1DetF851, one of the eigenvalues crosses the unit circle
point 21, giving rise to period-doubling bifurcation. Sadd
node bifurcation takes place at the point where the squ
root in Eqs.~4a! and ~4b! is zero, ata(k)5a1 , where

a15A11S pM

k D 2

, ~6a!

while the condition for the period-doubling border is e
pressed asa(k)5a2 , where

a25
p2M221

A~pMk!211
. ~6b!

The stability of movement in the region given by Eqs.~6a!
and ~6b! is governed by the local properties of Eqs.~4!.
However, the movement corresponding to Eq.~6b! for k
close to 0 cannot be realized because the ball trajec
would cross that of the plane. To find the bordera(k), for
which the modeLM does not exist, we write

v* 5v1~t* !, ~7!

and substitutet* andv* from Eqs.~4!–~7!. Expanding Eq.
~7! in the vicinity of a5pM and k50 up to the first two
terms, we get an explicit forma(k)5a3 , where

a35pM2
4

3
A3k1O2~Ak!. ~8!

For a smaller thana3 , theLM mode is replaced by a mod
with periodicity 2pM and with shock sequence$ j i%5$01%.
Summarizing, theLM mode is stable in the region of thea-k
plane wherea(k),a1 , a(k).a2 , anda(k).a3 .
n
-

t

re

ry

The shock power of theLM mode can be derived from
Eqs.~2! and ~4!:

p5
2 cos2 t*

pMk
. ~9!

For a givenk, the shock power attains its maximum value
cost*51. It follows from Eq.~4b! that maximum power is
dissipated fora(k)5pM /k.

IV. INFLUENCE OF EXTERNAL NOISE

Let us consider a Poincare´ section@13# of the phase space
of the low period and stable mode. The section consists
few points for the mode without chattering and an infin
number of points tending to a point where the velocity of t
ball begins to stick on the plate in the case of a chatter
mode. The area in the close neighborhood of each point
longs to the domain of attraction of the mode@14#. Let us
expose control parameter of the system to external nois
the noise is small, the section is located within the domain
attraction of the mode and consists of spots centered at
disturbed points. In the case of high noise, the domain
attraction of another mode can be visited. This second
main of attraction behaves like the first one: it may trap
trajectory, or the system may visit other domains of attr
tion. The detailed evolution will be considered in the follow
ing examples.

For k50.593 and a52.482, there exist three stab
modes: the chattering mode of$000010000000102% type,
with period 18p, $01% resonance with period 2p, and $00%
resonance with period 2p. In Fig. 2~a! the phase and velocity
at reflection of the chattering mode are shown when expo
to the external noise of restitution coefficientk. The noise is
introduced by adding to the mean value ofk a numberIR
after each iteration, whereI is the amplitude of the noise an
R are the random numbers having the normal distributi
The noise with amplitude 131027 causes the formation of a
spot in the vicinity of each point. The 3 times larger noi
@Fig. 2~b!# causes a temporary visit of the large area of
phase space and the system enters into the domain of a
tion of one of the resonances. Starting from the initial co
ditions corresponding to the$01% mode and applying the
noise of the amplitude 231023, after 5000 iterations we
observe only two spots@Fig. 2~c!#, while noise 331023

causes visiting a large region of the phase space@Fig. 2~d!#.
The movement consists of chaotic and regular series wh
cause a concentration of the points in the vicinity of t
stable points of the$01% and chattering modes seen in Fi
2~d!. Starting from the initial conditions of$00% resonance,
we observe the effect of spot formation for noise with a
plitude 331023 @Fig. 2~e!# and explosion to the large vol
ume of the phase space for an amplitude of 431023 @Fig.
2~f!#.

The examples presented suggest a method for choo
initial conditions which correspond to the most stab
mode: ~i! take any initial conditions,~ii ! start iterations
with a large noise, and~iii ! then decrease the level of nois
The noise has the formd i5IR exp(2ib), whereb is decay
constant. The restitution coefficientk is modified by a noise
leading toki5k1d i . Applying a strong enough initial noise
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FIG. 2. Velocity and phase of the shocks starting from initial conditionst50.0, v50.0 ~a!, ~b!, t52.47, v50.54 ~c!, ~d!, and t
51.69,v51.16 ~e!, ~f!. The a andk parameters were equal to 2.482 and 0.593, respectively. Points corresponding to 5000 iterati
shown under applied Gaussian noise to thek parameter. The amplitude of the noise is shown in each figure.
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and reasonableb, we have found that, for a large part ofa-k
plane, the final state does not depend on the initial condi
~e.g., initial velocity and phase!. By means of such a metho
based on the ‘‘noise-decreasing initial condition’’~NDIC!,
we performed a scan of some parts of thea-k plane, which
is summarized in the next section.

V. CHARACTERIZATION OF THE a-k PLANE

A. Region for a/p of the order of magnitude of 1

The region of thea-k plane fora approximately equal to
a few p remains very complex. An illustration is given i
n
Fig. 3~a!, which displays a scan for arbitrarily chosenk
50.55. Below the points indicating shock power, we draw
step function, the higher value of which shows the prese
of chattering modes, while a lower value indicates that ch
tering does not occur during the iterations. In Fig. 3~b!, short
periods of the movement are shown in a similar way. Ch
acteristic features, a few listed below, can be observed.

~i! Silent modes. Sharp minima of the shock power oc
at a5(n11/2)p, n51,2,3 . . . . Detailed analysis shows tha
these modes correspond to the simplest chattering mode
$02% type with periodT52pn. It is reasonable to call thes
modes as silent because, in the experimental observa
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~see Fig. 7!, they produce a very weak sound; in our mod
dissipater shock power fora5(n11/2)p, n51,2,3 . . . , is
zero, whatever thek value is.

~ii ! Gain of the shock power. In the regions ofa where
the step function changes its value, a gain of the shock po
is observed: the shock power of modes without chatter
is larger than those with chattering.

~iii ! Noise resistance of the resonances. When thea value
decreases belowa252.09p, one observes a period-doublin
route to chaos for theL1 mode @see arrows in Fig. 3~b!#;
whena increases, theL1 mode becomes sensitive to extern
noise and is replaced by the chattering one, quite far from
stability border,a153.46p. All resonances observed show
similar behavior. It seems to be a rule that resonances
most resistant against external noise in the region close t
period-doubling border.

~iv! Shock power of the resonances. Whena decreases, a
series of period-doubling bifurcations of the resonance d
not change the character of the shock power@see Fig. 3~a!# in
the vicinity of a'2p. For all resonances observed in com
puter simulations, in the region of their large noise res
tance, the shock power increases witha. This is in agreemen

FIG. 3. Shock power~a! and period~b! versus thea parameter
for k50.55. Below the points, the step function shows the prese
of the chattering mode~higher value! or the lack of chattering
~lower value!. The points corresponding to a period larger than
are not shown in~b!. The arrows indicate the period-doubling rou
to chaos for theL1 mode. The starting conditions were prepared
the NDIC: I 50.01,b50.01, and 3000 iterations were performed
l

er
g

l
e

re
its

es

-

with Eq. ~9! for which the maximum of the shock power
located very close to the saddle node bifurcation bord
Thus, forLM modes, the shock power does not increase w
a only in the narrow region of their large noise sensitivity.
seems to be a rule that for resonant movement the sh
power increases witha up to being replaced by a more nois
resistant mode, resulting in a strong reduction of sho
power.

~v! Shock power in the nearly conservative region. Wh
k approaches zero, the system becomes nearly conserva
The behavior of such systems has been discussed in th
erature@15#. In this region, persistent chaotic motion disa
pears and irregular movement is attracted by sinks which
stable orbits@15,7#. The shock power ofLM modes in that
region follows from an expansion of Eq.~9! in the small
parameterk/pM :

p5
2~11a!2k

~pM !3 F11O2S k

pM D G . ~10!

It seems to be a rule that, for any resonance, the shock po
is proportional tok in the nearly conservative region. Th
conclusion is based on a full analysis forLM resonances and
only on computer simulations for other modes studied.
example will be given in Sec. VI.

B. One quasiperiod ofa

When a increases andk is not close to 1, resonance
become sensitive to the noise and only chattering mode
long-period movements are observed. The areas where s
period chattering modes exist from characteristic regio
which are nearly periodic ina with period p. An example
corresponding to such a quasiperiod ina, p(n21/2),a
,p(n11/2), n515, is shown in Fig. 4 and will be briefly
discussed below.

The regions with the simplest chattering modes of$02%
type are displayed by cones: the large one correspond
T52pn and is located over the horizontal linea5(n
21/2)p, while the small one corresponding toT52p(n

e

FIG. 4. Scan of thea-k plane. The region with black points
shows the area where the short period chattering mode occurs
numbers indicate the period of the mode in units of 2p. Here 2000
iterations were performed with initial conditionst50 andv51.
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11) is located below the horizontal linea5(n11/2)p; see
Fig. 4.

Between the two cone-shaped areas discussed there e
a series of regions, each one having a characteristic cres
shape. The mode corresponding to the smallest valuek
and a5pn has a period equal to 4pn. The next crescen
shapes located at a larger value ofk correspond to periods
2p(n21),2p(n22),2p(n23), . . . , respectively. All the
modes discussed correspond to the movement of$002% type.
In Fig. 1, an example of such a mode forn51 is shown
(a52.20). Below, we give an approximate location of t
knm value corresponding to the center of the crescent
shape fora5pn, where 2pm is the period of the move
ment. The ball after chattering at timet i50 leaves the plate
with velocity equal to 1, and interacts with the wall and pla
at timet i 1152pn. After this shock the ball leaves the pla
with velocity v52knm11, interacts with the wall, and ar
rives at the plate at timet i 12 :

2pm2
3

2
p,t i 122t i 11,2pm, m52n,2n21,2n22,...

~11!

Because

t i 122t i 115
2a

2knm11
, ~12!

we have

2n2m

2m22n
,knm,

8n24m13

8m28n26
. ~13!

From inequality~13! and condition 0<k<1, we get that the
number of crescentlike shapes is approximately equa
2n/3.

Up to now we have considered only modes with one
flection from the wall between shocks. For every such mo
we emphasize the existence of a new family of more co
plicated modes and the resulting picture in thea-k plane
becomes very complex. So we will not go into more deta

VI. SHOCK POWER IN THE NONRESONANT REGION

Computer simulations with the NDIC show that the r
gion of a between (n21/2)p and (n11/2)p can be divided
into three parts: a region where short- and long-per
chattering modes are present, extending fromk50 to mod-
erate values ofk, a region with transient chaotic movemen
and a region fork very close to 1~small dissipation!. To
illustrate it we perform a scan of the shock power fora
5np, n515; see Fig. 5. In the first part, dissipated pow
shows strong oscillations when the parameterk leaves one
short-period shape and enters into another. Whenk increases,
oscillations have a larger period, equal toknm112knm ac-
cording to Eq.~13!. For k approaching 1, the system be
comes nearly conservative: see Sec. V A. The straight lin
Fig. 5 for k.0.9 does not correspond to a simple modeLM ,
but in agreement with Eq.~10!, the shock power is propor
tional to k.

When the shock power is averaged overa betweenp(n
21/2) andp(n11/2) in a nonresonant region, it exhibits
ists
ent

e

to

-
e
-

.

d

r

in

regular dependence; see Fig. 6. The data from Fig. 6 w
fitted by a straight line, and the resulting expression for
shock power is given by

p5Ca21kg, ~14!

whereC50.91(1) andg50.55(1)
This shock power may be compared with a shock pow

of theLM resonance. We see that when the resonance ha
a maximum shock power dissipated is destroyed and the
tem enters into irregular movement, the shock power
creases by a factor off, where

f 5
2

C S a

pM D 21g

. ~15!

FIG. 5. Shock power versusk for a515p. The initial condi-
tions were prepared by the NDIC:I 50.05, b50.01, and 10 000
iterations were performed.

FIG. 6. Dependence of the shock power on the restitution co
ficient. Each point corresponds to the averaging overa of 100
points lying betweena2p/2 and a1p/2. The initial conditions
were prepared by the NDIC:I 50.02,b50.01, and 6000 iterations
were performed and the first 1000 were omitted.
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For k close to zero and for theLM mode, thef factor is equal
to

f 5
2a~11a!2kg21

~pM !3C F11O2S k

pM D G . ~16!

Equation~16! follows from Eqs.~10! and ~14!.

VII. EXPERIMENTAL DETAILS

The experimental setup consists of an air track and a h
zontally moving object with a mass of 61.15 g. The air flo
of the air track allowed nearly free horizontal movement
the object. On one end of the object a steel spring is attac
which interacts with a rigid steel wall. The other end of t
object has a rounded shape made of steel of the approxi
radius of 1 mm. This end interacts with the moving pla
covering by tin alloy. The microhardness of the alloy me
sured at different points ranges from 7Hv to 11Hv . The
distance between the mean position of the vibrating plate
the wall was measured by a micrometer screw with a re
lution of 1mm.

The Mössbauer transducer of MA250 FAST Comtec ty
was used as a vibrating plate, serving high-quality mo
ment. An additional 357 g of mass was attached to the tra
ducer, which reduces influence of the shock on the mo
ment of the transducer. The transducer was moving i
sinusoidal mode with a frequency of 5.152~2! Hz. The ve-
locity amplitude measured by the laser interferometer w
equal to 1.218~1! mm/s. The so-called error signal, which
the difference between input signal of the transducer
reading of the pickup coil, was recorded. The error sig
allows the determination of two relevant quantities: time
shock and its intensity.

A black fingerprint drawing on transparent sheet was
tached to the body, allowing optical measurement of the
locity of the moving object. The precision of the veloci
measurement was better than 2%.

Three signals were recorded simultaneously with a s
pling frequency 5 kHz: the error signal, the velocity of th
object, and the input signal of the transducer, which is p
portional to the velocity of the plate. From these signals
shock phase and velocity before and after shock were de
mined. The measured values of the coefficient of restitut
were 0.83~3! for the wall-spring and 0.54~8! for the plate-tin
alloys.

The measured velocities and phases of the shocks allo
principle the determination of the dissipated shock pow
However, two experimental problems arise:~i! when
shocks occur close to each other, it is difficult to measure
velocity, and ~ii ! when shock energy is small, it remain
difficult to separate shock signal from the noise; see the
ample in Fig. 7. To overcome these difficulties, we apply
measurement procedure of shock intensity which does
depend on the details of the recorded signal, and then we
calibration for estimating absolute shock power. Details
the procedure are given below.

The measured quantity«a , directly dependent on the en
ergy dissipated during the recording timetN2t1 , is defined
arbitrarily as
ri-
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~ usi u2b!, ~17!

wheresi is the error signal after removing sinusoidal bac
ground component andb is the mean value of theusi u in the
regions where shocks are not present. Then, for a few p
odic modes with well-separated shocks~see the examples in
Fig. 8 for a514.10, 7.53, and 3.76!, «a have been measure
for each shock. Independently, velocities of the object
fore, vb , and after shock,va , were measured by optica
method. The velocity of the plate,v, was determined from
the recorded time of the shock. Next, the dissipated ene
of each shock was estimated:

«5~vb2v !22~va2v !2. ~18!

Its dependence on«a is plotted in Fig. 9, together with the
calibration curve. Both curves Eqs.~3c! and ~17!, were to-
gether used for the determination of the shock power of
type of movement.

Our apparatus was only an approximation of the o
dimensional, two-parameter model considered. The m
sources of disagreement are listed below.

~i! As previously mentioned, the interaction with the wa
was not elastic in our experimental setup. It is possible
renormalize variables and to introduce an effective rest
tion coefficient which takes this effect into account f
modes ofLM type, but it is not possible for general move
ment.

FIG. 7. Error signal for the sequence of simplest chatter
modes of$02% type. In the model, these modes are located aa
5(2n21)/2p, n51,2,3,4. Below, the sinusoid indicates the po
tion of the plate.
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~ii ! In the case of small velocities, the movement w
disturbed by the inhomogeneous airflow of the used airtra
So it was not possible to perform experiments with nonre
nant movement at largea.

~iii ! The shocks induce on the moving body small perp
dicular vibrations which disturb the longitudinal moveme
In some cases we were able to record only short series o
resonant movement.

FIG. 8. Error signal for sequence of periodic modes for differ
values ofa ~indicated by numbers!. Below, the sinusoid indicate
the position of the plate.

FIG. 9. Calibration curve for the shock energy; see the te
Directly measured dissipated energy is shown on the horizo
axis. Squares and diamonds correspond toLM , M51,2, modes,
respectively, while triangles to the mode of$001% type shown in
Fig. 1 for a53.94.
s
k.
-

-
.
he

We detected experimentally the gain of the shock pow
when the system enters into the resonant mode. The re
are shown in Fig. 10. The solid lines represent the sh
power forLM modes for the model in which the restitutio
coefficient of the wall is different than 1~partially elastic
collisions with the wall!.

The evolution of the periodic modes whena is varied is
presented in Fig. 8. Doubling of the period was detected
the L2 mode~seea514.10 and 12.17 in Fig. 8! as well as
for the L1 mode~seea57.53 and 6.55 in Fig. 8!. The four
last examples from Fig. 8 correspond to the sequence
exact solutions shown in Fig. 1. Figure 7 shows the seque
of the simplest chattering~silent! modes. The values ofa
found experimentally~see the numbers in Fig. 7! are close to
those predicted in our model: they occur in the region
cones located ata5p/2, 3p/2, 5p/2, and 7p/2. The mea-
sured shock power of the silent modes, which is mu
smaller than the others, is shown in Fig. 9. All the mod
detected experimentally have their analogs in the mo
studied numerically.

VIII. CONCLUSIONS

The a-k plane may be divided into two characteristic r
gions: a part in which strong resonances are present a
part with nonresonant movement. Computer simulations w
the NDIC serve as a tool for finding the most noise resist
modes.

The resonances which are more noise resistant t
nonresonant modes occur in the region with a small rest
tion coefficient where the system is nearly conservative
in the region wherea/p has an order of magnitude equal
1. For the regions of thea-k plane with resonances resista
against external noise, the behavior of the shock po
seems to follow the following rules:~i! in the nearly conser-
vative region, the shock power is proportional to (12k)/(1
1k), ~ii ! for a given resonance, the shock power increa

t

t.
al

FIG. 10. Measured shock power versusa. Squares and dia-
monds correspond toLM , M51,2, modes, respectively, triangles
the nonresonant mode, and circles to the silent modes. The
lines correspond to the resonant movement for the restitution c
ficients of the wall and of the plate equal to 0.815 and 0.53, resp
tively. The dashed line corresponds to Eq.~14! for k50.35.
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with a, ~iii ! the decrease ofa leads to a period-doubling
route to chaos which does not change the character of
dependence of the shock power ona, ~iv! the transition from
the resonant to nonresonant region is associated with a
duction of the dissipated power. Behavior consistent with
above statements has been observed in computer simula
while ~ii !, ~iii !, and~iv! only in the present experiments.

In the nonresonant region, two main types of movem
are present: short period chattering and long period or c
otic. Chattering modes for a given short period occur in
regions of thea-k plane forming quasiperiodic patterns. Th
shock power after averaging over one quasiperiod ofa is
described by the equation covering the whole nonreson
region. In contrast with the resonant region, the shock po
in the nonresonant region is inversely proportional toa and
increases withk.
o
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An open question is the behavior of the model with mo
than one moving object. Indeed, it was reported that s
macroscopic systems with dissipation can reach stra
states which violate equipartition of energy@16#. It thus
would be interesting to extend the estimation of the ene
dissipation in many-particle models.
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