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Level spacings at the metal-insulator transition in the Anderson Hamiltonians
and multifractal random matrix ensembles

Shinsuke M. Nishigaki*
Institute for Theoretical Physics, University of California at Santa Barbara, Santa Barbara, California 93106

~Received 16 September 1998!

We consider orthogonal, unitary, and symplectic ensembles of random matrices with (1/a)(lnx)2 potentials,
which obey spectral statistics different from the Wigner-Dyson and are argued to have multifractal eigenstates.
If the coefficienta is small, spectral correlations in the bulk are universally governed by a translationally
invariant, one-parameter generalization of the sine kernel. We provide analytic expressions for the level
spacing distribution functions of this kernel, which are hybrids of the Wigner-Dyson and Poisson distributions.
By tuning the single parameter, our results can be excellently fitted to the numerical data for three symmetry
classes of the three-dimensional Anderson Hamiltonians at the metal-insulator transition, previously measured
by several groups using exact diagonalization.
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I. INTRODUCTION

Quantum mechanics described by stochastic ensembl
Hamiltonians@1#, and by Hamiltonians with classically cha
otic trajectories@2#, have been a subject of intense study
years. In contrast to Hamiltonians of classically integra
systems whose energy levels are mutually uncorrelated,
otic Hamiltonians generally exhibit strong correlation amo
levels. To simulate this level repulsion in chaotic or diso
dered Hamiltonians, Wigner introduced the random ma
ensembles~RME! @3#. In the RME defined as an integra
over N3N matrices, only the antiunitary symmetry of th
Hamiltonian is respected, and its spatial structure is co
pletely discarded. Despite this extreme idealization, anal
predictions from RME’s beautifully explain the spectral s
tistics of chaotic or disordered Hamiltonians@4#. This suc-
cess is accounted for by the fact that the RME is not me
an idealization of disordered Hamiltonians but it is inde
equivalent to the latter under a situation where the m
energy level spacingD is much smaller than the Thoules
energyEc ~inverse classical diffusion time! that the dimen-
sionality does become unimportant@5#. This on the other
hand implies that in a region where the mean level spacin
equal to or larger than the Thouless energy, and the ass
ated states tends to localize due to diffusion, standard RM
cannot provide good quantitative descriptions.

As a concrete example of systems of disordered cond
tors, let us take the Anderson tight-binding Hamiltoni
~AH! @6,7#,

H5(
r

« rar
†ar1 (

^r ,r8&

ar
†ar8 , ~1!

describing free electrons in a random potential. Herear
† and

ar are creation and annihilation operators of an electron

*On leave from Department of Physics, Tokyo Institute of Tec
nology, Oh-okayama, Meguro, Tokyo 152, Japan.
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site r on a three-dimensional~3D! toroidal lattice of size
L3, « r ’s are site energies that are mutually independent
chastic variables derived from a uniform distribution on
interval @2W/2,W/2#, and the sum̂r ,r 8& is over all pairs of
nearest-neighboring sites. The antiunitary symmetry of
AH @Eq. ~1!# is orthogonal (b51), as it respects the time
reversal symmetry and has no spin dependence. For s
values of disorderW, all eigenstates are extended. An ove
lap of such extended statesC i(r ) andC j (r ) is expected to
induce repulsion between associated eigenvalues, of the
uxi2xj u. Then the statistical fluctuation of these eigenvalu
is described well by the Gaussian orthogonal ensemble
random matrices whose joint probability distribution consi
of the product of a Vandermonde determinant) i , j uxi2xj u
and Gaussian factors) ie

2xi
2
. The quadratic potential in the

latter is merely for the sake of technical simplicity, and t
deformation of the potential by generic polynomials unive
sally leads to the same Wigner-Dyson statistics@8#. As we
increase the disorderW, states associated with eigenvalu
close to the edges of the spectral band are believed to
localizing. When the disorder is as large as to induce
metal-insulator transition~MIT ! Ec /D.1, eigenstates are
observed to be multifractal@9#, characterized by an anoma
lous scaling behavior of the moments of inverse participat
ratio @10–12#

(
r

^uC i~r !u2p&}L2Dp~p21!. ~2!

This property implies a slowly decreasing overlap betwe
states@13# ~for uxi2xj u@D),

(
r

^uC i~r !u2uC j~r !u2&}uxi2xj u2~12D2 /d!. ~3!

For large enough disorder, the off-diagonal~hopping! term
of the AH becomes negligible, leading to mutually uncorr
lated eigenvalues. Each eigenstate is almost localized
single site. Thus the spectrum of the AH shows a grad

-
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2854 PRE 59SHINSUKE M. NISHIGAKI
crossover from the Wigner-Dyson to the Poisson as one
creases the disorderW, while keeping the sizeL fixed finite.
A characteristic observable in these studies of spectral st
tics is the probabilityE(s) of having no eigenvalue in an
interval of width s, or equivalently the probability distribu
tion of spacings of two consecutive eigenvaluesP(s)
5E9(s). These observables capture the behavior of lo
correlations of a large number of energy eigenvalues, as
former consists of an infinite sum of integrals of regulat
spectral correlators~the subscript reg denotes its regular pa
i.e., with d-functional peaks at coincidentxi ’s subtracted!,

E~s!5 (
n50

`
~21!n

n! E
2s/2

s/2

dx1•••dxn^r~x1!•••r~xn!& reg,

~4!

and are more conveniently measured by the exact diago
ization of random Hamiltonians than the spectral cor
lators. The Poisson distribution is characterized byPP(s)
5exp(2s), and the Wigner-Dyson distribution is well ap
proximated by the Wigner surmisePW(s)5(ps/2)exp
(2ps2/4).

Recent technical developments@14–26# on the exact di-
agonalization of the AH on a large size of lattices promp
analytical studies on its spectrum@27–31#. It was noticed in
Ref. @14# that at the MIT point with disorderW;16.5, the
level spacing distribution function~LSDF! P(s) is indepen-
dent of the sizeL. From this finding these authors have a
gued that in the thermodynamic limit there exist only thr
universality classes: Wigner-Dyson, Poisson, and the th
critical statistics. The presence of critical LSDF’s was a
observed for the unitary (b52) and symplectic (b54)
cousins, i.e., AH’s under a magnetic field@18,20,24#,

H5(
r

« rar
†ar1 (

^r ,r8&

Vrr 8ar
†ar8 ,

Vr ,r6 x̂5e72p iary, Vr ,r6 ŷ5Vr ,r6 ẑ51, ~5!

and with spin-orbit coupling@16,25,21#,

H5 (
r ,s56

« rars
† ars1 (

^r ,r8&,s,s8
Vrs,r8s8ars

† ar8s8 ,

Vrs,r6 î s85~e7 iusi!ss8 ~ î5 x̂,ŷ,ẑ!. ~6!

The critical LSDF’s are found to be independent of t
strength of the magnetic fielda or the spin-orbit couplingu.
For all values of b, the Wigner-Dyson-like behavior
P(cr)(s)}sb for small s have been confirmed. There we
disputes over the larges asymptotic behavior of the LSDF’s
but accurate measurements on large lattices@23# strongly
support the Poisson-like behaviorP(cr)(s);exp(2const
3s) for large s, excluding a nontrivial exponentP(cr)(s)
;exp(2const3s11g) predicted in Ref.@29#. In the light of
the success of the random matrix~RM! description of ex-
tended states, a natural resort to describe this critical st
tics is to consider a deformed RME that violates the ab
mentioned universality of the Wigner-Dyson statistics for t
Gaussian ensembles. The validity of the RM description
such critical systems is of course far from clear, because
n-

is-

al
he

,

al-
-

d

d,
o

is-
e

r
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existence of the MIT crucially relies upon the dimension
ity, whereas the RME has no spatial structure. Neverthel
under an assumption that the spectra of the AH be descr
by RME’s, an attempt@32# was made to reconstruct a ran
dom matrix potential out of the macroscopic spectra of
AH. There, it was observed that a potential of the form

V~x!5
1

2a
@ ln~11buxu!#2 ~7!

explains well the numerical data. The above potential ind
violates the universality of the Wigner-Dyson statistics th
is guaranteed only for polynomial potentials@33#. This ob-
servation leads to a speculation that the critical level spac
distribution might be derived from a RME with a potenti
~7!. Later the LSDF of orthogonal RME’s of type~7! has
been measured by using the Monte Carlo simulation@34# in
order to compare it with that from exact diagonalization
the AH @22#. Excellent agreement between the two w
found by tuning the parametera to 2.5. Motivated by this
success, we shall derive analytic forms of the LSDF’s
RME’s with orthogonal, unitary, and symplectic symmetrie
~The unitary case has already been reported@35#.! In doing
so, we shall retain all perturbative~polynomial ina) parts of
the spectral kernel, and discard unphysical nontranslation
invariant parts of orderO(e2p2/a).

This paper is organized as follows. In Sec. II we revie
nonstandard features of RME’s with log-squared potenti
In Sec. III we follow the method of Tracy and Widom@47# to
derive the LSDF’s from an approximated translationally
variant kernel. In Sec. IV we shall compare our results w
the numerical data of the AH’s with orthogonal, unitary, a
symplectic symmetries. In Appendix A we collect standa
results on Fredholm determinants in random matrix theo
that are relevant for our purpose.

II. RME WITH LOG-SQUARED POTENTIAL

In this section we review properties of RME’s with log
squared potentials. For small enougha, we derive a transla-
tionally invariant kernel, whose level spacing distributio
will be our subject in this paper.

We considerN3N random real symmetric (b51), com-
plex Hermitian (b52), and quaternion self-dual (b54)
matrix ensembles, whose joint probability densities of eig
values are given by

Pb~l1 , . . . ,lN!})
i 51

N

e2V~l i ! )
1< i , j <N

ul i2l j ub, ~8!

with a potential growing as

V~l!;
1

2a
~ lnl!2 ~l@1!. ~9!

The potential is assumed to be regularized at the origin, a
Eq. ~7!. For a particular form of the potential

V~l!5 (
n51

`

ln@112qn cosh~2 arcsinhl!1q2n#, ~10!
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(0,q,1), which behaves as Eq.~9! with a5 ln(1/q)/2, cor-
responding orthogonal polynomials are known as
q-Hermite polynomials@36#. Using their asymptotic form
Muttalib et al. @37# have obtained the exact kernel for th
unitary ensemble with the potential~10! in the largeN limit,

K ~exact!~x,y!5const3
Acosh 2ax cosh 2ay

cosha~x1y!

3
q4~x1y,e2p2/a!

Aq4~2x,e2p2/a!q4~2y,e2p2/a!

3
q1~x2y,e2p2/a!

sinha~x2y!
. ~11!

Here qn are the elliptic theta functions, and the variablex
[l/(2a) is so rescaled that the average level spacing
unity. In order to eliminate nonuniversal effects involved
the regularization of the potential in the vicinity of the orig
from the bulk correlation, we need to take

x,y@1, with ux2yu5 bounded. ~12!

Then we obtain an asymptotic form of the kernel

K ~asympt!~x,y!5const
q4~x1y,e2p2/a!

Aq4~2x,e2p2/a!q4~2y,e2p2/a!

3
q1~x2y,e2p2/a!

sinha~x2y!
. ~13!

The above kernel is still not translationally invariant due
the reason explained below. Now we make a further sim
fication of the kernel by using an approximation. F
e2p2/a!1, we can discard subleading orders from theq ex-
pansion of the theta functions in terms of trigonometric fun
tions. Then we obtain a translationally invariant kernel, up
O(e2p2/a),

K~x,y!5
a

p

sinp~x2y!

sinha~x2y!
. ~14!

The universality of this deformed kernel within RME’s
observed for theq-Laguerre unitary ensemble@38#, the
finite-temperature Fermi gas model@39#, and subsequently
for unitary ensembles whose potentials have the asympto
~9! @34#. This universality can be considered as an extens
of the universality of the sine kernel@8#,

K~x,y!5
sinp~x2y!

p~x2y!
, ~15!

for polynomially increasing potentials, proven via th
asymptotic WKB form of the wave functions

cN~l!;cosS pEl

r~l!dl1
Np

2 D , ~16!
e

is

i-

-
o

cs
n

K~l,l8!;

sinFpS El

r2El8
r D G

l2l8
. ~17!

Here r(l) stands for the exact unnormalized spectral d
sity, K(l,l). In the spectral bulk of the RME with polyno
mially increasing potentials, the spectral density divided
N is bounded, and is locally approximated by a const
when measuringl in unit of the mean level spacing. Thi
slowly-varying function is called the mean-field spectral de
sity r̄(l), given by@40#

r̄~l![
N

pAR22l2
1

1

p2
2
«

2R

R dm

l2m
AR22l2

R22m2

V8~m!

2
.

~18!

Here6R are the end points of the spectrum, determined
*2R

R r̄(l)dl5N. After replacing the exactr(l) by the

mean-fieldr̄(l), the unfolding map

l°x5El

r̄~l!dl ~19!

becomes merely a linear transformation, leading univers
to the sine kernel. On the other hand, in our case of
potential~9!, the mean-field spectral density~18! behaves as

r̄~l!;
1

2aulu
, ~20!

implying an unusual unfolding map

l°x5
1

2a
sgn~l!lnulu, ~21!

while the formula~17! stays valid@41#. Then the kernel~17!
universally reduces to Eq.~14! after this unfolding.

It is clear from the form of the kernel~14! that a set of
eigenvalues withuxi2xj u@1/a obeys the Poisson statistic
i.e., is uncorrelated. On the other hand, a set of eigenva
with uxi2xj u!1/a obeys the Wigner-Dyson statistics, b
cause Eq.~14! is then approximated by the sine kernel, up
O(a2). To be precise, the kernel~14! signifies the multifrac-
tality of the eigenstates@42#. To see this, we first note tha
the property~3! of the fractal states leads to a compressi
gas of eigenvalues, i.e., a linear asymptotics of the num
variance S2 within an energy window of widthS @43#
@Y2(x)[12^r(x)r(0)& reg#,

S2~S![S22E
0

S

dx~S2x!Y2~x! ~22!

;
1

2S 12
D2

d DS[xS ~S@1!.

~23!

The RME’s with the scalar kernel~14! indeed enjoy this
asymptotic behavior with the level compressibilityx given
by
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x5
a

p2
1O~e22p2/a! ~24!

for unitary @38,42# and orthogonal ensembles, and for t
symplectic ensemble the exponential correction is repla
by O(e2p2/a). Moreover, themultifractality of the RME’s
with the deformed kernel~14! has been concluded@42#
through the equivalence between the finite-tempera
Fermi gas model~having the universal deformed kernel! and
a Gaussian banded RME that is proven to have multifra
eigenstates@44#. This brings forth the possibility of describ
ing the spectral statistics of the AH’s at the MIT by RME
with the deformed kernel.

We should emphasize an important fact that the RM
with log-squared potentials cannot describe disordered
tems with large disorder. While the AH in theW→` limit
leads to the Poisson statistics, the RME with Eq.~9! does not
obey the Poisson statistics in the limita→` @34,45#. It is
because the joint probability distribution of RME’s after th
unfolding ~21! leads to

Pb~x1 , . . . ,xN!5const )
1< i , j <N

u6e2auxi u7e2auxj uub

3)
i 51

N

e22axi
2
e2auxi u. ~25!

In the limit a→`, each factor ofue2auxi u7e2auxj uub is domi-
nated by an exponential with a larger modulus. Thus
Vandermonde determinant is approximated by

)
i 51

N

e2ab~ i 21!uxi u ~ for ux1u,•••,uxNu!. ~26!

ConsequentlyPb(x1 , . . . ,xN) tends to a product of very nar
row @of variances251/(4ab)!1] Gaussian distributions
obeyed byxi whose center is at@b( i 21)11#/2. This ‘‘crys-
tallization’’ of eigenvalues invalidates naively expected m
tual independence of distributions of eigenvalues, and dr
the spectrum toward an exotic statistics different from Po
sonian@45#. This phenomenon can be rephrased in the c
text of using the WKB formula~17! to derive the kernel~14!.
Although Eq.~17! remains valid even in the casea→`, use
of the mean-field spectral densityr̄(l)51/(2al) in place of
the exactr(l) is not justifiable, because the crystallizatio
of eigenvalues leads to a rapidly oscillatingr(l). In the case
of the q-Hermite ensemble~10!, the potential itself has a
oscillation of the same type, leading again to crystallizat
@45#. Therefore, the RME with log-squared potentials, d
spite the fact that it is constructed from the macrosco
spectra of the AH, should be considered as a good mode
the latter only for small values ofa where the level repulsion
property of the Gaussian ensembles is deformed slightly
not to the extent that the crystallization of eigenvalues
comes prominent. In the case of theq-Hermite ensembles
we can estimate this scale to be characterized by the valu
a where nontranslational invariance of the exact kernel
comes manifest, i.e.,e2p2/a.1. We assume this estimate
be valid generically for RME’s with log-squared potentia
d

re

al

s
s-

e

-
s
-
-

n
-
c
of
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-
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-

~9!. In view of this, for our purpose of reproducing the LSD
of the AH, we shall concentrate on the approximated univ
sal kernel~14!. This will be justified aposteriori, after con-
firming that the best-fit value of the parametera for the MIT
point of the AH’s are such thate2p2/a!1.

III. LEVEL SPACING DISTRIBUTIONS
OF THE DEFORMED KERNEL

In this section we analytically compute the LSDFPb(s)
from the deformed kernel~14! for all values of the Dyson
index b. Our result completes earlier attempts to comp
P2(s) numerically@37# or asymptotically@46#, and is consis-
tent with those.

We notice that the kernel~14! is equivalent to that of
Dyson’s circular unitary ensemble at finiteN @3#,

K~x,y!5
sin~N/2!~x2y!

N sin~1/2!~x2y!
, ~27!

by the following analytic continuation

N→
p i

a
, x→

2a

i
x. ~28!

Tracy and Widom@47# have proven that the diagonal reso
vent kernel of Eq.~27! is determined by a second-order di
ferential equation that is reduced to a Painleve´ VI equation
@48#. We shall follow their method below.

The kernel~14! is written as

K~x,y!5
f~x!c~y!2c~x!f~y!

e2ax2e2ay
,

~29!

f~x!5A2a

p
eax sinpx, c~x!5A2a

p
eax cospx.

These component functions satisfy

f85af1pc, c852pf1ac. ~30!

We use the bra-ket notationf(x)5^xuf& and so forth@50#.
Due to our choice of the component functions to be r
valued ~unlike @47#, Sec. V D!, we have ^xuOuf&
5^fuOux& and a similar situation forc with any self-adjoint
operatorO and realx. Then Eq.~29! is equivalent to

@e2aX,K#5uf&^cu2uc&^fu, ~31!

whereX and K are the multiplication operator of the inde
pendent variable and the integral operator with the ker
K(x,y)u(y2t1)u(t22y), respectively. Below we will not
explicitly write the dependence on the end points of the
derlying interval@ t1 ,t2#. It follows from Eq. ~31! that

Fe2aX,
K

12K G5
1

12K
~ uf&^cu2uc&^fu!

1

12K
, ~32!

that is,

~e2ax2e2ay!R~x,y!5Q~x!P~y!2P~x!Q~y!,
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Q~x![^xu~12K !21uf&,
~33!

P~x![^xu~12K !21uc&.

At a coincident pointx5y we have

2a e2axR~x,x!5Q8~x!P~x!2P8~x!Q~x!. ~34!

Now, by using the identity

]K

]t i
5~21! iKut i&^t i u ~ i 51,2!, ~35!

we obtain

]Q~x!

]t i
5~21! iR~x,t i !Q~ t i !, ~36a!

]P~x!

]t i
5~21! iR~x,t i !P~ t i !. ~36b!

On the other hand, by using the identity (D is the derivation
operator!

@D,K#5K~ ut1&^t1u2ut2&^t2u!, ~37!

which follows from the translational invariance of the kern
(]x1]y)K(x2y)50, we also have

]Q~x!

]x
5^xuD~12K !21uf&5^xu~12K !21uf8&

1^xu~12K !21@D,K#~ I 2K !21uf&

5aQ~x!1pP~x!1R~x,t1!Q~ t1!2R~x,t2!Q~ t2!,

~38a!

]P~x!

]x
52pQ~x!1aP~x!1R~x,t1!P~ t1!2R~x,t2!P~ t2!.

~38b!

Now we sett152t,t25t,x,y52t or t, and introduce nota-

tions q̃5Q(2t),q5Q(t),p̃5P(2t),p5P(t), and R̃5R
(2t,t)5R(t,2t),R5R(t,t)5R(2t,2t). The last two
equalities follow from the evenness of the kernel. Then E
~33! and ~34! read, after using Eqs.~38!,

p̃q2q̃p52R̃ sinh 2at, ~39a!

p̃21q̃25
2

p
~R̃2 sinh 2at1Ra e22at!, ~39b!

p21q25
2

p
~R̃2 sinh 2at1Ra e2at!. ~39c!

The totalt derivatives of Eqs.~39! lead to (•5d/dt)

p̃p1q̃q5
1

p
~R̃ sinh 2at!•, ~40!
l

s.

Ṙ52R̃2, R̈54R̃R̃
˙ . ~41!

The left-hand sides of Eqs.~39! and~40! satisfy an additional
constraint,

~ p̃p1q̃q!21~ p̃q2q̃p!25~ p̃21q̃2!~p21q2!. ~42!

By eliminating p̃, p, q̃, q, R̃, and R̃ from Eqs.~39!–~42!,
we obtain forR(s) (s[2t,85d/ds)

Fa coshasR8~s!1
sinhas

2
R9~s!G2

1@psinhasR8~s!#2

5R8~s!~@aR~s!#21a sinh 2asR~s!R8~s!

1@sinhasR8~s!#2!. ~43!

It is equivalent to Eq.~5.70! of Ref. @47# after the analytic
continuation ~28!, accompanied by a redefinitionR(s)
→( i /2a)R(s). This is slightly nontrivial because Ref.@47#

has usedp̃5p* and q̃5q* , which follow from the analytic
properties of its component functions,f(2x)5f(x)* and
c(2x)5c(x)* . In the limit a→0, it clearly reduces to the
s form of a Painleve´ V equation,

FR8~s!1
s

2
R9~s!G2

1@psR8~s!#25R8~s!@R~s!1sR8~s!#2,

~44!

derived for the sine kernel~15! of the Gaussian ensemble
@49#. Note that forb51, a replacementa→a/2 is necessary
because of our convention~A1!.

Finally, the LSDF’sPb(s) are expressed in terms of th
diagonal resolventR(s) via Eqs.~A12!, ~A14!, and the first
of Eq. ~41!:

P1~s!5@e2~1/2!*0
sds[R~s!1AR8~s!] #9, ~45a!

P2~s!5@e2*0
sdsR~s!#9, ~45b!

P4~s!5Fe2~1/2!*0
2sdsR~s! coshS 1

2E0

2s

dsAR8~s! D G 9.
~45c!

The boundary condition follows from the expansion~4! of
E2(s) in terms of the correlation functions:

E2~s!512E
2s/2

s/2

dx K~x,x!

1
1

2E2s/2

s/2

dx1 dx2deti , j 51,2K~xi ,xj !2•••

512s1O~s4!, ~46!

R~s!52@ ln E2~s!#8511s1•••. ~47!

Our main result consists of Eqs.~43!, ~45!, and~47!.
For s!1/a, we can Taylor-expand hyperbolic function

to obtain a perturbative solution to Eq.~43!,
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R~s!511s1s21S 12
p21a2

9 D s31S 12
5~p21a2!

36 D s41S 12
~p21a2!~7524p226a2!

450 D s51•••, ~48!

P1~s!5
4p21a2

24
s2

~4p21a2! ~12p217a2!

2880
s31

~p21a2! ~4p21a2!

1080
s4

1
~4p21a2! ~48p4172p2 a2131a4! s5

322 560
2

~p21a2! ~4p21a2! ~12p2113a2! s6

226 800
1•••, ~49a!

P2~s!5
p21a2

3
s22

~p21a2!~2p213a2!

45
s41

~p21a2!~p212a2!~3p215a2!

945
s61•••, ~49b!

P4~s!5
16~p21a2!~p214a2!s4

135
2

128~p21a2!~p214a2!~3p2113a2!s6

14 175
1•••. ~49c!
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The above perturbative expansions are correct for the
nel ~13! of theq-Hermite ensemble in any polynomial orde
of a, while they lack nonperturbative terms of ordere2p2/a,
which depend on the reference point. On the other hand
s@1/a, it can be proven from Eq.~43! thatR(s) approaches
a constant. Then Eqs.~45! imply

ln P1~s!;2 1
2 Ra/2~`!s, ~50a!

ln P2,4~s!;2Ra~`!s, ~50b!

for s→`. In Fig. 1 we exhibit the decay ratek(a)[Ra(s
5`) for 0,a,4 computed numerically from Eq.~43!. At
present we could not find an analytic form ofk(a). For
small a(,0.5), it is well approximated by 1/k(a)
'0.202a, which agrees extremely well with the value 2/p2

50.2028 expected from Eq.~24! and the analytic formula
@27# that holds in generality,

x5
1

2k
. ~51!

Eqs. ~49! and ~50! tells that our LSDF’s are indeed hybrid
of the Wigner-Dyson-like@Pb(s);sb for s small# and the
Poisson-like distributions@Pb(s);e2ks for s large#. In Figs.
2–4 we exhibit plots of the LSDF’sPb(s) for b51,2,4 and
for variousa such thate2p2/a!1, obtained by numerically
solving Eq.~43!.

FIG. 1. The decay ratek(a)5Ra(`) of the LSDF.
r-

or

IV. ANDERSON HAMILTONIANS AT MIT

In this section we make comparison between the LSD
and the level number variance in the exact diagonalization
the AH’s and our analytic results from multifractal RME’s

As numerical data to compare with, we adopt Ref.@23#
for the AH @Eq. ~1!# (b51), Ref. @24# for the AH under a
magnetic field~5! with a51/5 (b52), and Ref.@25# for the
AH with spin-orbit coupling ~6! with u5p/6 (b54), at
their MIT points. We choose the best fit values ofa from the
exponential decay ratesk of the numerical data using Fig. 1
Based on the numerical resultsk51.9,1.8,1.7 forb51,2,4,
respectively, we estimate the parametera in the potentials of
RME’s to bea52.95,3.55,3.90. Preference could alternat
be put on best matchings in the smaller values ofs (&2),
which would lead toa53.2 for b51 @although the differ-
ence inP1(s) betweena52.95 anda53.2 is tiny#. In Figs.
5–7 we exhibit linear and logarithmic plots of LSDF’s of th
RME’s and the AH’s. The numerical data fit excellently wi
our analytic result from the kernel~14!, for a large energy
range 0<s&6 where the LSDF’s vary by four to five order
of magnitude. The use of this approximated kernel is just
able becausee2p2/a!1 holds for these values ofa. Small
systematic deviations can be attributed to the errors invol
in determining the values ofa from the decay rates of nu
merical LSDF’s, and possibly to an essential difference
orderO(e2p2/a) between the RME’s and the AH’s.

FIG. 2. The LSDFP1(s) of the orthogonal ensemble with th
kernel ~14!.
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Furthermore, we exhibit in Fig. 8 the number varian
S2(S) of the orthogonal AH obtained in Ref.@16#, together
with the RME result~22! with (b51)

Y2~x!5K~x!21K8~x!E
x

`

K~y!dy ~52!

at a53.2. We can confirm that not only the asympto
slopesx of S2(S) ~first pointed out by Canali@34#, who
computedx by the Monte Carlo simulation of RME’s!, but
their full functional forms are in a good agreement forL
&10. To recapitulate, we have the following three distin
functional observables~consisting of the correlation func
tions in the second column! that agree well between the crit
cal AH’s and the deformed RME’s:

Quantity Correlation function

Potential V(l) 1-level
Number variance S2(S) unfolded 2-level
Level spacing P(s) unfoldedn-level (n>2)

In addition, both the critical AH’s@9# and the deformed
RME’s @42# are shown to have multifractal eigenstates,
though the sequences of the multifractal dimensions are
to be compared. Agreements in the unfolded quanti
should not be considered a tautological consequence o
first line; one should recall that an identical semicircle sp
trum could as well be obtained either from invariant RME

FIG. 3. The LSDFP2(s) of the unitary ensemble with the ker
nel ~14!.

FIG. 4. The LSDFP4(s) of the symplectic ensemble with th
kernel ~14!.
t

-
et
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-

with Gaussian potentials~obeying the Wigner-Dyson statis
tics!, or from diagonal random matrices whose entries
independently derived from the semicircle distributio
~obeying the Poisson statistics!, or from any intermediate
ensembles. From these grounds, we conclude that the i
action betweenunfolded energy levels of the 3D AH on
equilateral (Lx5Ly5Lz) toroidal lattices at the MIT is very
well described by the formue2ax2e2ax8ub, which is common
to the RME’s with log-squared potentials~9!, in contrast to
the standard formux2x8ub of the Gaussian RME’s and th
AH’s in the metallic regime. We surmise that the dimensio
ality and the fractal dimensionality enter the critical spect
statistics primarily through a single parametera, as long as
the multifractality of the critical wave functions is not to
strong. Further work is needed to explain this form of t
level repulsion from the multifractality~3! of the wave func-
tions, and its origin from microscopic models.

Finally, remarks related to novel numerical results
critical AH’s are in order. Recently it was observed that t
critical LSDF of the 3D AH is sensitive to the geometry
the lattice, i.e., the topology~boundary condition! @51,52#
and the aspect ratio@53#, due to the coherence of the critica
wave functions maintained over the whole lattice. Sin
RME’s treat randomness on all cites and bonds on eq
footing, it is likely that our RME’s describe best the critic

FIG. 5. The LSDF’sP1(s) of the multifractal orthogonal en-
semble~MOE! at a52.95 and of the Anderson Hamiltonian~1! at
the MIT point W516.4, on a lattice of sizeL35123. Numerical
data are reprinted from Fig. 1 in Ref.@23# courtesy of Zharekeshev

FIG. 6. The LSDF’sP2(s) of the multifractal unitary ensemble
~MUE! at a53.55 and of the AH~5! under a magnetic fielda
51/5 at the MIT pointW518.1, on a lattice of sizeL3553. Nu-
merical data are reprinted from Fig. 1 in Ref.@24# courtesy of L.
Schweitzer.
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2860 PRE 59SHINSUKE M. NISHIGAKI
AH’s on maximally symmetric lattices, i.e., equilateral to
but not those on less symmetric lattices, such as unequ
eral toroidal lattices or lattices with boundaries. Besid
since the validity of our expressions for the LSDF’s is lim
ited to the case of weak multifractality~relatively smalla), it
will not properly describe the critical orthogonal AH in fou
dimensions@54#, where the level compressibility was ob
served to be larger than the value in three dimensionsx
'0.27 @22#! and close to its upper boundx50.5.
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APPENDIX A: FREDHOLM DETERMINANT
IN RANDOM MATRIX THEORY

In the Appendix we collect known results on random m
trix theories that are relevant to our purpose of evaluating
LSDF of three symmetry classes of RME’s. We follo
Mehta’s classical book@3# and the works by Tracy and
Widom @47,55,56#. Readers are referred to them for detail
proofs. Subsequently we shall concentrate on the case w
the spectral correlation is translationally invariant after u
folding.

The joint probability densities of eigenvalues ofN3N
random real symmetric (b51), complex Hermitian (b
52), and quaternion self-dual (b54) matrices are given by

Pb~x1 , . . . ,xN!5const

3)
i 51

N

wb~xi ! )
1< i , j <N

uxi2xj ub,

w1~x!5e2V~x!/2, w2,4~x!5e2V~x!. ~A1!

FIG. 7. The LSDF’sP4(s) of the multifractal symplectic en-
semble~MSE! at a53.90 and of the AH~6! with spin-orbit cou-
pling u5p/6 at the MIT point W519, on a lattice of sizeL3

5123. Numerical data are reprinted from Figs. 2 and 3 in Ref.@25#
courtesy of Kawarabayashi.
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We use the above convention between the weight functi
and the potentials so as to simplify the relations betwe
kernels @Eq. ~A5! below#. We introduce the ‘‘wave func-
tions’’ $c i(x)% i 50,1, . . . by orthonormalizing the sequenc
$xie2V(x)/2%, and the projection operatorK to the subspace
spanned by the firstN wave functions. As an integration
operator acting on the Hilbert space spanned by the w
functions,K is associated with the kernel~we shall use the
same letter for an operator and the kernel associated with!,

K~x,y!5 (
i 50

N21

c i~x!c i~y!. ~A2!

Then the joint probability densities are expressed in term
determinants of the kernels@3#:

Pb~x1 , . . . ,xN!5det1< i , j <NKb~xi ,xj !, ~A3!

K2~x,y!5K~x,y!, ~A4a!

K1~x,y!5S S1~x,y! S1D~x,y!

eS1~x,y!2e~x,y! S1~y,x!
D , ~A4b!

K4~x,y!5S S4~2x,2y! S4D~2x,2y!

eS4~2x,2y! S4~2y,2x!
D . ~A4c!

Here det is to be interpreted as a quaternion determinan
the case ofb51 and 4@3#. D stands for the differentiation
operator, ande, S1, and S4 stand for integration operator
with kernels@56#:

e~x,y!5 1
2 sgn~x2y!,

S1~x,y!5@12~12K !eKD#21K~y,x!, ~A5a!

S4~x,y!5@12~12K !DKe#21K~x,y!. ~A5b!

A composite operator such aseS1 is defined to have a con
voluted kernel, eS1(x,y)5*2`

` dze(x,z)S1(z,y) and so
forth, and@•••#21 stands for an inverse operator.

The probabilityEb@J# of finding no eigenvalues in a se
of intervalsJ is defined as

FIG. 8. The level number varianceS2(S) ~divided byS) of the
multifractal orthogonal ensemble ata53.2 and of the AH~1! at the
MIT point W516.5, on a lattice of sizeL35103. The Poisson dis-
tribution corresponds toS2(S)/S51. Numerical data are reprinte
from Fig. 2~b! in Ref. @16# courtesy of Evangelou.
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Eb@J#5E
xi¹J

dx1•••dxNPb~x1 , . . . ,xN!. ~A6!

By virtue of Eq. ~A3! and the identity($ni %
deti , jMninj

}detn,m Mnm , it is expressed in terms of the Fredholm d
terminant of the scalar or matrix kernel@55#:

E2@J#5det~12K2uJ!, ~A7a!

E1,4@J#5Adet~12K1,4uJ!, ~A7b!

whereuJ represents restriction of the kernel to the intervaJ.
In the following we assume that the scalar~unitary! kernel

K is translationally invariant and symmetric~the latter prop-
erty is respected for invariant RME’s by construction~A2!,
but it is violated for RME’s with partly deterministic matri
elements@50#!,

K~x,y!5K~y,x!5K~x2y!. ~A8!

If K has these two properties, Eqs.~A5! immediately reduce
to

S1~x,y!5S4~x,y!5K~x2y!, ~A9!

because ofDK5KD, eD51 and the orthogonality of the
two projection operators, (12K)K50. We assume tha
limN→` and the algebraic manipulation that lead to the re
tion ~A5! can be interchanged. In the following we let th
notationK represent its restriction toJ, formerly denoted as
KuJ . If J consists of a single interval@2t,t#, we can sim-
plify Eb@J# significantly @47#. To do so, we introduce the
resolvent operatorR5K(12K)21, and denote the assoc
ated kernel in the form of a matrix element,

R~x,y![ K xU K

12K UyL . ~A10!

Due to the property~A8! assumed on the kernel, it satisfie

R~x,y!5R~y,x!5R~2x,2y!. ~A11!

Using this resolvent kernel, the Fredholm determinants~A7!
are expressed as
s

et
-

-

E2@2t,t#5expH 22E
0

t

dt R~ t,t !J , ~A12a!

E1@2t,t#5expH 2E
0

t

dt@R~ t,t !1R~2t,t !#J ,

~A12b!

E4@2t,t#5 1
2 S expH 2E

0

2t

dt@R~ t,t !1R~2t,t !#J
1expH 2E

0

2t

dt@R~ t,t !2R~2t,t !#J D .

~A12c!

Equation ~A12a! can be proven by taking the logarithm
derivative of Eq.~A7a!:

d

dt
ln E2@2t,t#5trS 1

12K

dK

dt D
52trS 1

12K
K~ u2t&^2tu1ut&^tu! D

522K tU K

12K Ut L . ~A13!

Eqs. ~A12b,c! can be proven analogously from Eqs.~A4b!,
~A4c!, and ~A7b!. These relations are equivalent to Eq
~6.5.19! and ~10.7.5! of Ref. @3# because exp$2*0

t dt@R(t,t)
6R(2t,t)#% is a Fredholm determinant of the kernelK(x,y)
6K(2x,y) ~although Ref.@3# concerns primarily the sine
kernel, the proofs of these equations are equally valid for
translationally invariant and symmetric kernel!.

Now we set 2t5s and denoteEb(s)5Eb@2s/2,s/2#. The
probability Pb(s) for a pair of consecutive eigenvalues
have a spacings is clearly equal to the probability of finding
an eigenvalue in an infinitesimal interval@2s/22e,s/2#, an-
other in @s/2,s/21e8# and none in between@2s/2,s/2#, di-
vided byee8. Thus we have

Pb~s!5Eb9 ~s!. ~A14!
s,
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