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Level spacings at the metal-insulator transition in the Anderson Hamiltonians
and multifractal random matrix ensembles
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We consider orthogonal, unitary, and symplectic ensembles of random matrices aittir(9)? potentials,
which obey spectral statistics different from the Wigner-Dyson and are argued to have multifractal eigenstates.
If the coefficienta is small, spectral correlations in the bulk are universally governed by a translationally
invariant, one-parameter generalization of the sine kernel. We provide analytic expressions for the level
spacing distribution functions of this kernel, which are hybrids of the Wigner-Dyson and Poisson distributions.
By tuning the single parameter, our results can be excellently fitted to the numerical data for three symmetry
classes of the three-dimensional Anderson Hamiltonians at the metal-insulator transition, previously measured
by several groups using exact diagonalization.
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I. INTRODUCTION site r on a three-dimensionaBD) toroidal lattice of size
L3, &,’s are site energies that are mutually independent sto-
Quantum mechanics described by stochastic ensembles ehastic variables derived from a uniform distribution on an
Hamiltonians[1], and by Hamiltonians with classically cha- interval[ — W/2W/2], and the sungr,r’) is over all pairs of
otic trajectoried 2], have been a subject of intense study fornearest-neighboring sites. The antiunitary symmetry of the
years. In contrast to Hamiltonians of classically integrableaAH [Eq. (1)] is orthogonal =1), as it respects the time-
systems whose energy levels are mutually uncorrelated, chgeversal symmetry and has no spin dependence. For small
otic Hamiltonians generally exhibit strong correlation amongvalues of disordekV, all eigenstates are extended. An over-
levels. To simulate this level repulsion in chaotic or disor-lap of such extended stat&s (r) and ¥, i(r) is expected to
dered Hamiltonians, Wigner introduced the random matrixinduce repulsion between associated elgenvalues of the form
ensembleSRME) [3]. In the RME defined as an integral |x;—x;|. Then the statistical fluctuation of these eigenvalues
over Nx N matrices, only the antiunitary symmetry of the is described well by the Gaussian orthogonal ensemble of
Hamiltonian is respected, and its spatial structure is comrandom matrices whose joint probability distribution consists
pletely discarded. Despite this extreme idealization, analytief the product of a Vandermonde determind@ht. ;| x;— x;|
predictions from RME’s beautifully explain the spectral sta- 1 51ssian factold e % The quadratic potential in the

t'St'CS. of chaot|tc dO][ dlzorfiher?d thT]mytt?]mi?gETh's ?uc IIatter is merely for the sake of technical simplicity, and the
cess IS accounted for by the fact that the IS Ot MErElY e formation of the potential by generic polynomials univer-
an idealization of disordered Hamiltonians but it is mdeedSaIIy leads to the same Wigner-Dyson statisfiés As we

equivalent to the latter under a situation where the Meafh crease the disordew, states associated with eigenvalues

energy IeV(_aI spacind 'S. much S”."'a”e.r than the Thouless close to the edges of the spectral band are believed to start
energyE, (inverse classical diffusion timehat the dimen- localizing. When the disorder is as large as to induce the

sionality does become unimportafsi]. This on the other .metal-insulator transitiofMIT) E./A=1, eigenstates are

hand implies that in a region where the mean level spacing '8bserved to be multifract4b], charactenzed by an anoma-

equal to or larger than the Thouless energy, and the assog lin havior of the moments of inver ricipation
ated states tends to localize due to diffusion, standard RME’gﬂi‘E’fg_l%be avior of the moments o erse participatio

cannot provide good quantitative descriptions.
As a concrete example of systems of disordered conduc-

tors, let us take the Anderson tight-binding Hamiltonian > (| Wi(r)|?PyocL PP D), 2
(AH) [6,7], '
This property implies a slowly decreasing overlap between
H= E eala,+ E ala,, (1)  stateg13] (for |x;—x;[>A),
(r,r’
V21 ()2 oc [y — x|~ (1= Do /d)
describing free electrons in a random potential. Herand Z (O3 F)eelxi = x| o @

a, are creation and annihilation operators of an electron at a
For large enough disorder, the off-diagorihbpping term
of the AH becomes negligible, leading to mutually uncorre-
*On leave from Department of Physics, Tokyo Institute of Tech-lated eigenvalues. Each eigenstate is almost localized to a
nology, Oh-okayama, Meguro, Tokyo 152, Japan. single site. Thus the spectrum of the AH shows a gradual
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crossover from the Wigner-Dyson to the Poisson as one inexistence of the MIT crucially relies upon the dimensional-
creases the disord®V, while keeping the sizé fixed finite.  ity, whereas the RME has no spatial structure. Nevertheless,
A characteristic observable in these studies of spectral statisnder an assumption that the spectra of the AH be described
tics is the probabilityE(s) of having no eigenvalue in an by RME’s, an attemp{32] was made to reconstruct a ran-
interval of width's, or equivalently the probability distribu- dom matrix potential out of the macroscopic spectra of the
tion of spacings of two consecutive eigenvaluBgs) AH. There, it was observed that a potential of the form
=E"(s). These observables capture the behavior of local
correlations of a large number of energy eigenvalues, as the
former consists of an infinite sum of integrals of regulated
spectral correlator&he subscript reg denotes its regular part,
i.e., with 5-functional peaks at coincident’s subtracted explains well the numerical data. The above potential indeed
Y violates the universality of the Wigner-Dyson statistics that
- S is guaranteed only for polynomial potentid33]. This ob-
E(9)= 2, f,s,zdxl' 2 dXa(p(X1) - p(Xn) reg: servation leads to a speculation that the critical level spacing
(4) distribution might be derived from a RME with a potential
(7). Later the LSDF of orthogonal RME’s of typg) has
and are more conveniently measured by the exact diagonabeen measured by using the Monte Carlo simulafi#] in
ization of random Hamiltonians than the spectral corre-order to compare it with that from exact diagonalization of
lators. The Poisson distribution is characterized By(s) the AH [22]. Excellent agreement between the two was
=exp(-s), and the Wigner-Dyson distribution is well ap- found by tuning the parameter to 2.5. Motivated by this
proximated by the Wigner surmisé,(s)=(ws/2)exp success, we shall derive analytic forms of the LSDF's of
(—ws4). RME'’s with orthogonal, unitary, and symplectic symmetries.
Recent technical developmerts4—26 on the exact di- (The unitary case has already been repof&%].) In doing
agonalization of the AH on a large size of lattices promptedso, we shall retain all perturbatipolynomial ina) parts of
analytical studies on its spectrurd7—-31]. It was noticed in  the spectral kernel, and discard unphysical nontranslationally
Ref. [14] that at the MIT pOint with disordew~ 165, the invariant parts of Ordeo(efﬂ'zla)_
level spacing distribution functioLSDF) P(s) is indepen- This paper is organized as follows. In Sec. Il we review
dent of the size.. From this finding these authors have ar- nonstandard features of RME’s with log-squared potentials.
gued that in the thermOdynamiC limit there exist Only three|n Sec. Il we follow the method of Tracy and W|ddm7] to
universality classes: Wigner-Dyson, Poisson, and the thirdgerive the LSDF's from an approximated translationally in-
critical statistics. The presence of critical LSDF's was alsoyariant kernel. In Sec. IV we shall compare our results with
observed for the unitary {=2) and symplectic §=4)  the numerical data of the AH’s with orthogonal, unitary, and

1
V(0= o In(1+b|x|) 12 @

=0 n!

cousins, i.e., AH’s under a magnetic figlti8,20,24, symplectic symmetries. In Appendix A we collect standard
results on Fredholm determinants in random matrix theories
H=> ea'a+ > Vy,aa., that are relevant for our purpose.
r (r.r)
~omiar Il. RME WITH LOG-SQUARED POTENTIAL
Virex=€ M, Vi ay=V, 25=1, ) . ) ) . .
_ _ _ _ In this section we review properties of RME’s with log-
and with spin-orbit coupling16,25,21, squared potentials. For small enoughwe derive a transla-
tionally invariant kernel, whose level spacing distribution
H= saa + V. . ala. . will be our subject in this paper.
r,oz——:i et (r,r%:(r,(r' rore e We consideiN X N random real symmetricd=1), com-
plex Hermitian (3=2), and quaternion self-dualB&4)
Vig s =799 (i=x,y,2). (6) matrix ensembles, whose joint probability densities of eigen-

values are given by
The critical LSDF’s are found to be independent of the N
strength of the magnetic field or the spin-orbit coupling.
For all values of B, the Wigner-Dyson-like behaviors Pp(hy, - '7\N)°<iHl e‘V“‘i)1<i1;[_<N INi—=N1P, (8)
P(ery(s)xs? for small s have been confirmed. There were - ==
disputes over the largeasymptotic behavior of the LSDF's
but accurate measurements on large latti@d strongly
support the Poisson-like behavioP ., (s)~exp(—const 1
Xs) for large s, excluding a nontrivial exponer® ,(s) V()\)~2—(Im\)2 (A>1). 9
~exp(—constk s'*”) predicted in Ref[29]. In the light of a
the success of the random mat(RM) description of ex-
tended states, a natural resort to describe this critical stati
tics is to consider a deformed RME that violates the abov
mentioned universality of the Wigner-Dyson statistics for the o
Gaussian ensembles. The validity of the RM description for _ n ; 2n
such critical systems is of course far from clear, because the Vr) nZl Inf1+29" coslz arcsinth) +g77, (10

' with a potential growing as

The potential is assumed to be regularized at the origin, as in
?q. (7). For a particular form of the potential
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responding orthogonal polynomials are known as the

g-Hermite polynomials[36]. Using their asymptotic form, KN~ - : 17
Muttalib et al. [37] have obtained the exact kernel for the A=A

unitary ensemble with the potentigl0) in the largeN limit,

(0<qg<1), which behaves as E¢p) with a=In(1/q)/2, cor- r{ ( J% jw ”
sin p— p

Here p(\) stands for the exact unnormalized spectral den-
sity, K(\,\). In the spectral bulk of the RME with polyno-

K (exach (¥ vy = constx Jcosh 21x cosh 21y mially increasing potentials, the spectral density divided by
cosha(x+y) N is bounded, and is locally approximated by a constant

) when measuring\. in unit of the mean level spacing. This
Fy(x+y,e” ™73 slowly-varying function is called the mean-field spectral den-

X

\/84(2x,e_ 772/a) ,34( 2y, e 772/a) Sity P()\) » given bY[40]

2 _ N 1 (R du  [RE=N2V'(w)
9 (x—y,e”"3) _ N1 M )z
N S (11) p(N)= —R2 - - VR— 2 2

sinha(x—y) ( - 18

Here 3, are the elliptic theta functions, and the variakle _ )
=\/(2a) is so rescaled that the average level spacing i$1€re =R are the end points of the spectrum, determined by
unity. In order to eliminate nonuniversal effects involved by JXrp(\)dA=N. After replacing the exacp(\) by the

the regularization of the potential in the vicinity of the origin mean-fieldp(\), the unfolding map

from the bulk correlation, we need to take

A__
x,y>1, with |x—y|= bounded. (12) )‘HXZJ p(N)dA (19)

Then we obtain an asymptotic form of the kernel becomes merely a linear transformation, leading universally
to the sine kernel. On the other hand, in our case of the

ﬁ4(x+y,e*”2’a) potential(9), the mean-field spectral densit}8) behaves as

K(@YmP(x y)=const
—mla —7?la
Voa(2x.e )94(2y,€ )

— 1

] p(N)~ 2a]’ (20)
ﬂl(x_y!eiﬂ- /a)
“sinhax—y) (13)  implying an unusual unfolding map

The above kernel is still not translationally invariant due to N> X = %SQYU\)MP\L (21)

the reason explained below. Now we make a further simpli-
fication of the kernel by using an approximation. For

—m?la : ;
e <1, we can discard subleading orders from thex- . . ;
pansion of the theta functions in terms of trigonometric func_unlversally reduces to Eq14) after this unfolding.

tions. Then we obtain a translationally invariant kernel, up to . It is clear frpm the form of the kerne(l14)_ that a se_t Qf
eigenvalues withx; —x;|>1/a obeys the Poisson statistics,

2

O(e ™), i.e., is uncorrelated. On the other hand, a set of eigenvalues

_ with [x;—x;|<1/a obeys the Wigner-Dyson statistics, be-
a sinm(x—y) (14  cause Eq(14) is then approximated by the sine kernel, up to
7 sinha(x—y) " 0O(a?). To be precise, the kernél4) signifies the multifrac-

tality of the eigenstatep42]. To see this, we first note that

The universality of this deformed kernel within RME’s is the property(3) of the fractal states leads to a compressible
observed for theg-Laguerre unitary ensemblg38], the gas of eigenvalues, i.e., a linear asymptotics of the number
finite-temperature Fermi gas modd9], and subsequently variance 32 within an energy window of widthS [43]
for unitary ensembles whose potentials have the asymptotigsy ,(x)=1—(p(x)p(0)}egl,
(9) [34]. This universality can be considered as an extension

while the formula(17) stays valid41]. Then the kerne{17)

K(x,y)=

of the universality of the sine kernf], s2()=5 ZJde(S Y o) 22
=o— - 2
sinm(x—y) °
K(x,y)= 77(x——y)’ (19 1 D
~§(1—f)sEXs (S>1).

for polynomially increasing potentials, proven via the 23

asymptotic WKB form of the wave functions

The RME’s with the scalar kerngll4) indeed enjoy this
asymptotic behavior with the level compressibiligygiven

A N7
le()\)NCO{WJ’ p(N)dN+ 7), (16) by
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a , (9). In view of this, for our purpose of reproducing the LSDF
X:—2+O(e*2” fay (24)  of the AH, we shall concentrate on the approximated univer-
™ sal kernel(14). This will be justified aposteriori after con-

firming that the best-fit value of the paramegefior the MIT

for unitary [38,42 and orthogonal ensembles, and for theBoint of the AH's are such that- ™/2<1.

symplectic ensemble the exponential correction is replace

by O(e*”z""). Moreover, themultifractality of the RME’s
with the deformed kernel14) has been concludef#2]
through the equivalence between the finite-temperature
Fermi gas modefhaving the universal deformed kerpehd In this section we analytically compute the LSPF(s)
a Gaussian banded RME that is proven to have multifractalrom the deformed kernel14) for all values of the Dyson
eigenstate$44]. This brings forth the possibility of describ- index 8. Our result completes earlier attempts to compute
ing the spectral statistics of the AH'’s at the MIT by RME’s P,(s) numerically[37] or asymptotically46], and is consis-
with the deformed kernel. tent with those.

We should emphasize an important fact that the RME’'s We notice that the kerngll4) is equivalent to that of
with log-squared potentials cannot describe disordered sy$yson’s circular unitary ensemble at finite[3],
tems with large disorder. While the AH in th&— oo limit

Ill. LEVEL SPACING DISTRIBUTIONS
OF THE DEFORMED KERNEL

leads to the Poisson statistics, the RME with &j.does not B sin(N/2)(x—vy)
obey the Poisson statistics in the linait-o [34,45. It is K(x.y)= Nsin(1/2)(x—y) "’ (27
because the joint probability distribution of RME’s after the
unfolding (21) leads to by the following analytic continuation
i 2a
Pa(Xq, ... xy)=const [] |=e?ailze2alx|p N—o—, X——X. (28)
1<i<j<N a |

N Tracy and Widom47] have proven that the diagonal resol-

_oa? .
Xiljl e~ 2 g2alil, (25 vent kernel of Eq(27) is determined by a second-order dif-
ferential equation that is reduced to a Painl&tesquation
[48]. We shall follow their method below.

In the limit a—oe, each factor ofe?@*lxe2a/il|8 is domi- oW ih
- { N | The kernel(14) is written as

nated by an exponential with a larger modulus. Thus the
Vandermonde determinant is approximated by

_ ) ely) — p(X) (y)

N - K(va) e2ax_ eZay
[T e?2pi-DIl - (for [xy|<---<|xu]). (26)
L (29)

[2a 2a
— X g — __ pax
ConsequentlyPs(X4, . . . Xy) tends to a product of very nar- ¢(x) T ersinmx, () T € cosmx.

row [of variance o?=1/(4aB)<1] Gaussian distributions

obeyed byx; whose center is &8(i —1)+1]/2. This “crys-  These component functions satisfy

tallization” of eigenvalues invalidates naively expected mu-

tual independence of distributions of eigenvalues, and drives ¢'=ap+tmy, Y =—-mdtay. (30)

the spectrum toward an exotic statistics different from Pois- i

sonian[45]. This phenomenon can be rephrased in the conY/e€ Use the bra-ket notatiafi(x) = (x| ¢) and so forth{50].
text of using the WKB formuld17) to derive the kerne(14). Due to our_ch0|ce of the component functions to be real
Although Eq.(17) remains valid even in the case-, use  valued (unlike [47], Sec. VD, we have (x/O|¢)

, — . =(¢|0|x) and a similar situation fog with any self-adjoint
of the mean-field spectral densjpy\)=1/(2a\) in place of X .
the exactp(\) is not justifiable, because the crystallization operatorO and realx. Then Eq.(29) is equivalent to
of eigenvalues leads to a rapidly oscillatip@\). In the case [€22% K] =| )] — | ) &, (31)
of the g-Hermite ensembld10), the potential itself has a
oscillation of the same type, leading again to crystallizationyhere X andK are the multiplication operator of the inde-
[45]. Therefore, the RME with log-squared potentials, de-pendent variable and the integral operator with the kernel
spite the fact that it is constructed from the macroscopig (x,y)g(y—t,)6(t,—Yy), respectively. Below we will not
spectra of the AH, should be considered as a good model fxpjicitly write the dependence on the end points of the un-
the latter only for small values @f where the level repulsion  gerlying interval[t,,t,]. It follows from Eq.(31) that
property of the Gaussian ensembles is deformed slightly but
not to the extent that the crystallization of eigenvalues be-
comes prominent. In the case of theHermite ensembles,
we can estimate this scale to be characterized by the value of
a where nontranslational invariance of the exact kernel begyat js,

comes manifest, i.ee™ 72— 1 We assume this estimate to
be valid generically for RME’s with log-squared potentials (e?@—2)R(x,y)=Q(X)P(y)—P(x)Q(y),

2aX K 1 1
eIk :ﬁ(|¢><¢|—|¢><¢|)ﬁ, (32
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Q) =(x|(1-K) ' 4),

(33
POO=(x[(1=K) ).
At a coincident poink=y we have
2a #PR(x,X)=Q'(X)P(X)—P'(x)Q(x). (34
Now, by using the identity
oK . _
st (SOl (=12, (35
we obtain
J .
2 —DROQ), (369
IP(x) .
- =(=DRXL)P(L). (36h)

On the other hand, by using the identity (s the derivation
operatoy

[D,K]=K([ty)(ta =[t2){ta]), (37)

which follows from the translational invariance of the kernel

(95t dy)K(x—y)=0, we also have

JdQ(X
O (XID(L-K) ) =(xI(1K) )
+(X|(1-K)"ID,K](1=K) | ¢)
=aQ(x)+wP(x) +R(X,t1)Q(t1) = R(X,t5) Q(ty),
(383
JP(X)
X =—7Q(x)+aP(x)+R(x,t1)P(t1) —R(x,t5) P(t,).

(38b

Now we sett;=—t,t,=t,x,y=—1 ort, and introduce nota-

tions g=Q(—1),q=Q(t),p=P(—t),p=P(t), and R=R
(—t,t)=R(t,—t),R=R(t,t)=R(—t,—t). The last two

equalities follow from the evenness of the kernel. Then Eq

(33) and (34) read, after using Eq$398),

pg—gp=2Rsinh 2at, (393
~ o~y 2~
p2+q2=;(stmh2at+Rae‘2"’“), (39b)

2 . .
p2+q2:;(R25mh 2at+Ra &), (399
The totalt derivatives of Eqs(39) lead to (- =d/dt)
~ ~ 1
pp+qq=;(RSlnh2at)', (40)
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R=2R2, R=4RR. (42)
The left-hand sides of Eq§39) and(40) satisfy an additional
constraint,

(Pp+aa)*+(pg—ap)?=(p?+9*)(p*+q?). (42
By eliminatingp, p, 4, g, R, andR from Egs.(39)—(42),
we obtain forR(s) (s=2t,’=d/ds)

nhas 2 _
acoshasR (s)+ > R’(s)| +[msinhasR (s)]?
=R’(s)([aR(s)]?+asinh2asRs)R’(s)
+[sinhasR (s)]?). (43

It is equivalent to Eq(5.70 of Ref.[47] after the analytic
continuation (28), accompanied by a redefinitiofR(s)
—(i/2a)R(s). This is slightly nontrivial because Rdi47]
has usecp=p* andq=gq*, which follow from the analytic
properties of its component functiong(—x)= ¢(x)* and
Y(—x)=(x)*. In the limit a— 0, it clearly reduces to the
o form of a PainleveV equation,

2
+[7sR (s)]*=R'(9)[R(s) +sR(s)]%,

(44)

’ S "
R'(s)+ ER (s)

derived for the sine kerndfl5) of the Gaussian ensembles
[49]. Note that for3=1, a replacemerd— a/2 is necessary
because of our conventidil).

Finally, the LSDF’'sP4(s) are expressed in terms of the
diagonal resolvenR(s) via Egs.(A12), (A14), and the first
of Eq. (42):

Pl(s):[e—u/z)jgds[R(s)JrVR’(s)]]n, (453
Py(s)=[e Jd#RoY", (45b)
1 (2s ”
P4(s)=| e (12IGUsRS) cos}‘(zj dS\/R'—(S)”
0
(450

The boundary condition follows from the expansi@h of
E,(s) in terms of the correlation functions:

s/2
E,(s)=1— f_s/zdx K(X,X)

1 (s/2
+—J XmdXZde‘j:]_ZK(Xi 1Xj)_"'
2)-sp T

=1-s+0(sY, (46)

R(s)=—[InEx(s)]'=1+s+---. (47
Our main result consists of Eq&t3), (45), and(47).

For s<1/a, we can Taylor-expand hyperbolic functions,
to obtain a perturbative solution to E@L3),
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m’+a? 5(m%+a?) (7% +a?) (75— 4% —6a?)
_ 2 _ 3 _ 4 _ Sy ..
R(s)=1+s+s +(l s+(1 36 s+(1 250 S+, (48)
4m’+a®  (Am’+ad) (127°+7a%) , (w°+a’) (4n’+a’)
Pi(s)= S—
24 2880 1080
. (4m?°+a?) (487*+727°a%+31a%) s°  (w?+a?) (472 +a?) (127%+13a?) S6+ 49
322560 B 226 800 (493
2 2 2 2 2 2 2 2 2 2 2 2
T+ a T +a‘)(2w+3a m°+a‘)(w°+2a°)(37°+5a
PL(s)= 32_( ) )S4+( )( )( )56+..., (49b)
3 45 945
16(m°+a?)(mw?+4a?)s* 128 w2+ a?)(w’+4a?) (372 +13a°)s®
Pa(s)= - ey (490

135

The above perturbative expansions are correct for the ker-
nel (13) of the g-Hermite ensemble in any polynomial orders

of a, while they lack nonperturbative terms of orck?r”z’a,

14175

IV. ANDERSON HAMILTONIANS AT MIT

In this section we make comparison between the LSDF's
and the level number variance in the exact diagonalization of

which depend on the reference point. On the other hand, faf,e AH's and our analytic results from multifractal RME’s.

s>1/a, it can be proven from Eq43) thatR(s) approaches
a constant. Then Eq#$45) imply
InPy(8)~— Ra()s,

(508

IN P, 4(S)~—Ry(®)s, (50b
for s—oo. In Fig. 1 we exhibit the decay rate(a)=R,(s
=) for 0<<a<4 computed numerically from Ed43). At
present we could not find an analytic form e{a). For
small a(<0.5), it is well approximated by i(a)
~0.2022, which agrees extremely well with the valuer3/
=0.2028 expected from Ed24) and the analytic formula

[27] that holds in generality,

X~ Z (51)
Egs. (49 and (50) tells that our LSDF's are indeed hybrids
of the Wigner—Dyson—Iike[PB(s)~sﬁ for s small] and the
Poisson-like distributionsP z(s) ~e™ “® for slarge]. In Figs.
2-4 we exhibit plots of the LSDF'B4(s) for =1,2,4 and
for variousa such thate™ ™/2< 1, obtained by numerically
solving Eq.(43).

0.5

04

03

1/x (@)

02

0.1

FIG. 1. The decay rate(a)=R,(«) of the LSDF.

As numerical data to compare with, we adopt Ref]
for the AH[Eq. (1)] (8=1), Ref.[24] for the AH under a
magnetic field5) with = 1/5(8=2), and Ref[25] for the
AH with spin-orbit coupling (6) with 6=/6 (8=4), at
their MIT points. We choose the best fit valuesadfom the
exponential decay ratesof the numerical data using Fig. 1.
Based on the numerical resuks=1.9,1.8,1.7 for3=1,2,4,
respectively, we estimate the parametén the potentials of
RME's to bea=2.95,3.55,3.90. Preference could alternately
be put on best matchings in the smaller values ¢&2),
which would lead toa=3.2 for =1 [although the differ-
ence inP(s) betweena=2.95 anda=3.2 is tiny]. In Figs.
5-7 we exhibit linear and logarithmic plots of LSDF's of the
RME’s and the AH’s. The numerical data fit excellently with
our analytic result from the kernéll4), for a large energy
range G=s=<6 where the LSDF’s vary by four to five orders
of magnitude. The use of this approximated kernel is justifi-

able because "/2<1 holds for these values @ Small
systematic deviations can be attributed to the errors involved
in determining the values dd from the decay rates of nu-
merical LSDF's, and possibly to an essential difference of

orderO(e*”Z’a) between the RME’s and the AH’s.

0.8
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QYR
o n oK

04

Piis)

02}

0.5

s

FIG. 2. The LSDFP,(s) of the orthogonal ensemble with the
kernel (14).
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FIG. 3. The LSDFP,(s) of the unitary ensemble with the ker- FIG. 5. The LSDF'sP,(s) of the multifractal orthogonal en-
nel (14). semble(MOE) at a=2.95 and of the Anderson Hamiltonidh) at

the MIT point W=16.4, on a lattice of siz&3=12%. Numerical
Furthermore, we exhibit in Fig. 8 the number variancedata are reprinted from Fig. 1 in R¢23] courtesy of Zharekeshev.
32(S) of the orthogonal AH obtained in Reff16], together
with the RME result(22) with (8=1) with Gaussian potential@beying the Wigner-Dyson statis-
tics), or from diagonal random matrices whose entries are
B 5L, * independently derived from the semicircle distribution
Y2(X)=K(X)+K"(x) L K(y)dy (520 (obeying the Poisson statisticoor from any intermediate
ensembles. From these grounds, we conclude that the inter-
at a=3.2. We can confirm that not only the asymptotic 8ction betweerunfolded energy levels of the 3D AH on
slopesy of 32(S) (first pointed out by Canali34], who equilateral {,=Ly=L,) toroidal Iattlszes at the MIT is very
computedy by the Monte Carlo simulation of RME)sbut ~ well described by the forrfe?®*—e?3|A, which is common
their full functional forms are in a good agreement for to the RME’s with log-squared potential8), in contrast to
<10. To recapitulate, we have the following three distinctthe standard fornjx—x'|# of the Gaussian RME’s and the
functional observablegconsisting of the correlation func- AH’s in the metallic regime. We surmise that the dimension-
tions in the second columhat agree well between the criti- ality and the fractal dimensionality enter the critical spectral

cal AH’s and the deformed RME’s: statistics primarily through a single parameteras long as
the multifractality of the critical wave functions is not too

Quantity Correlation function strong. Further work is needed to explain this form of the
level repulsion from the multifractality8) of the wave func-

Potential V(A)  1-level tions, and its origin from microscopic models.

Number variance 32(S)  unfolded 2-level Finally, remarks related to novel numerical results on

Level spacing P(s) unfoldedn-level (n=2) critical AH’s are in order. Recently it was observed that the

critical LSDF of the 3D AH is sensitive to the geometry of
the lattice, i.e., the topologyboundary condition[51,52

and the aspect rati3], due to the coherence of the critical
ave functions maintained over the whole lattice. Since
ME's treat randomness on all cites and bonds on equal
oting, it is likely that our RME’s describe best the critical

In addition, both the critical AH'S[9] and the deformed
RME'’s [42] are shown to have multifractal eigenstates, al-
though the sequences of the multifractal dimensions are y%
to be compared. Agreements in the unfolded quantitie§0
should not be considered a tautological consequence of the
first line; one should recall that an identical semicircle spec-

trum could as well be obtained either from invariant RME'’s 08 \\ . RN ; o1
12 R T . 0.01
“r JR— aio (GSE) 0.6 5, i 0.001

— a=1 P
1 — a=2 e \ 0.0001
e a=3 N04 . 2 3 4 3 )
sy SN\ a=4 AN - AH — MUE
2 .
ay 0.6 0.2 N e GUE
~~~~~~~~~~~~~~~~~ Poisson
o4l HlY SN\ 1 W NS e »
1 2 3 4
02 s
....... » FIG. 6. The LSDF'sP,(s) of the multifractal unitary ensemble

0.5 1 1.5 2 2.5 3

5 (MUE) at a=3.55 and of the AH(5) under a magnetic fieldy

=1/5 at the MIT pointW=18.1, on a lattice of siz&3=5%. Nu-
FIG. 4. The LSDFP,(s) of the symplectic ensemble with the merical data are reprinted from Fig. 1 in RE24] courtesy of L.
kernel (14). Schweitzer.
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FIG. 7. The LSDF'sP,(s) of the multifractal symplectic en- FIG. 8. The level number varian&(S) (divided byS) of the

semble(MSE) at a=3.90 and of the AH(6) with spin-orbit cou-  Multifractal orthogonal ensemble at=3.2 and of the AH1) at the
pling 6=/6 at the MIT pointW=19, on a lattice of size.3 MIT point W=16.5, on a lattice of siz&3=10°. The Poisson dis-

=123, Numerical data are reprinted from Figs. 2 and 3 in [R25] tribution corresponds t&2(S)/S=1. Numerical data are reprinted
courtesy of Kawarabayashi. from Fig. 2b) in Ref.[16] courtesy of Evangelou.

AH’s on maximally symmetric lattices, i.e., equilateral tori, We use the above convention between the weight functions
but not those on less symmetric lattices, such as unequila@nd the potentials so as to simplify the relations between
eral toroidal lattices or lattices with boundaries. Besideskernels[Eqg. (A5) below]. We introduce the “wave func-
since the validity of our expressions for the LSDF'’s is lim- tions” {#i(X)}i=o,1,... by orthonormalizing the sequence
ited to the case of weak multifractalityelatively smalla), it~ {x'e” V9", and the projection operatdt to the subspace
will not properly describe the critical orthogonal AH in four spanned by the firsN wave functions. As an integration
dimensions[54], where the level compressibility was ob- operator acting on the Hilbert space spanned by the wave
served to be larger than the value in three dimensigns (functions,K is associated with the kern@lve shall use the

~0.27[22]) and close to its upper boung=0.5. same letter for an operator and the kernel associated with it
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ESl(le)_e(X!y) Sl(y1x)

S4(2x,2y)  $4D(2x,2y)
In the Appendix we collect known results on random ma- Ka(xy)= €S4(2x,2y)  Su(2y,2x) | (Adc)
trix theories that are relevant to our purpose of evaluating the
LSDF of three symmetry classes of RME’s. We follow Here det is to be interpreted as a quaternion determinant in
Mehta's classical booK3] and the works by Tracy and the case of3=1 and 4[3]. D stands for the differentiation
Widom [47,55,58. Readers are referred to them for deta”edoperator, ande, S;, and S, stand for integration operators
proofs. Subsequently we shall concentrate on the case wheygth kernels[56]:
the spectral correlation is translationally invariant after un-

Kl(X,Y)=( ) (A4b)
APPENDIX A: FREDHOLM DETERMINANT

IN RANDOM MATRIX THEORY

folding. e(x,y)=zsgnx—y),
The joint probability densities of eigenvalues WX N
random real symmetric 4=1), complex Hermitian 8 Si(x,y)=[1—(1—K)eKD] *K(y,x), (A5a)

=2), and quaternion self-duaB& 4) matrices are given by
Si(x,y)=[1—(1—K)DKe] K(x,y). (A5b)
Pg(Xq, - .. Xy)=const

N A composite operator such &S, is defined to have a con-

_ Y voluted kernel, €S;(x,y)=/".dze(x,2)S;(z,y) and so

Xi];[l WB(X')lsilesN =%, forth, and[ - - -]~ stands for an inverse operator.
The probabilityE [ J] of finding no eigenvalues in a set
wy(x)=e V2w, (x)=e VX, (A1)  of intervals] is defined as
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XN)- (A6)

E,B[‘]]:J

dxg- - - dXyPs(Xq, - -
Xj¢J

By virtue of Eq. (A3) and the identityE‘{ni}detijninj

det, n My, it is expressed in terms of the Fredholm de-

terminant of the scalar or matrix kernd5]:

E [J]=de(1-Kjly), (A7)
E1dJ]=Vde(1-K,4,), (A7b)

where|; represents restriction of the kernel to the interdal

In the following we assume that the scafanitary) kernel
K is translationally invariant and symmetiithe latter prop-
erty is respected for invariant RME’s by constructigk®),
but it is violated for RME’s with partly deterministic matrix
elementq50]),

K(x,y)=K(y,x)=K(x—y).

If K has these two properties, E¢45) immediately reduce
to

(A8)

S1(X,y) =S4(X,y) =K(Xx—Yy), (A9)

because oDK=KD, eD=1 and the orthogonality of the
two projection operators, (AK)K=0. We assume that
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t

EZ[—t,t]=exp[—2f dt R(t,t)J, (A123)
0

El[—t,t]=exW’ - ftdt[R(t,t)wL R(—t,t)]},
0
(A12b)

E4[_t1t]:%

2t
ex% - f dt[R(t,t) + R(—t,t)]]
0

2t
+exp[ —J dt[R(t,t)—R(—t,t)]]).
0

(A120)

Equation (A12a) can be proven by taking the logarithmic

derivative of Eq.(A7a):

1-K dt

dK
dt

d
—In Ez[—t,t]=tr<

1
:_tr(l_KK(I—t><—t|+|t><t|))

B K
=-2 tﬁt . (A13)

limy_. and the algebraic manipulation that lead to the rela-
tion (A5) can be interchanged. In the following we let the Egs.(A12b,0 can be proven analogously from Ed#4b),
notationK represent its restriction td, formerly denoted as (A4c), and (A7b). These relations are equivalent to Egs.
Kl|;. If J consists of a single intervgl—t,t], we can sim- (6.5.19 and (10.7.9 of Ref. [3] because exXp-[LdR(tt)
plify Eg[J] significantly [47]. To do so, we introduce the +R(—tt)]} is a Fredholm determinant of the kerr€(x,y)
resolvent operatoR=K(1—-K) !, and denote the associ- +K(—x,y) (although Ref[3] concerns primarily the sine
ated kernel in the form of a matrix element, kernel, the proofs of these equations are equally valid for any
translationally invariant and symmetric kernel

Now we set 2=s and denotéE 4(s) = Eg[ —s/2,s/2]. The
probability P4(s) for a pair of consecutive eigenvalues to
have a spacingis clearly equal to the probability of finding
an eigenvalue in an infinitesimal interjat s/2— €,s/2], an-
other in[s/2,s/2+ €' and none in betweep—s/2,5/2], di-
vided by ee’. Thus we have

(A10)

K
1-k|/
Due to the propertyA8) assumed on the kernel, it satisfies

R(x,y) =R(y,x) =R(=x,~Y).

Using this resolvent kernel, the Fredholm determindAf
are expressed as

R(x,y)E<x

(A11)

Ps(s)=Ej(s). (A14)
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