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Use of synchronization and adaptive control in parameter estimation from a time series
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A technique is introduced for estimating unknown parameters when a time series of only one variable from
a multivariate nonlinear dynamical system is given. The technique employs a combination of two different
control methods, linear feedback for synchronizing system variables and adaptive control, and is based on
dynamic minimization of synchronization error. The technique is shown to work even when the unknown
parameters appear in the evolution equations of the variables other than the one for which the time series is
given. The technique not only establishes that explicit detailed information about all system variables and
parameters is contained in a scalar time series, but also gives a way to extract it out under suitable conditions.
lllustrations are presented for Lorenz andsBler systems and a nonlinear dynamical system in plasma physics.
Also it is found that the technique is reasonably stable against noise in the given time series and the estimated
value of a parameter fluctuates around the correct value, with the error of estimation growing linearly with the
noise strength, for small noisgS1063-651X98)09412-4

PACS numbes): 05.45-a, 47.52+]

I. INTRODUCTION using synchronizatioh15—22.
The other method that we use is that of adaptive control
One of the objectives of time series analysis is to studywhich is used to bring back a system, deviated from a stable
the detailed structure of the equations of the underlying dyfixed point due to changes in parameters and variables, to its
namical system which govern its temporal evolution. Thisoriginal state. This mechanism was suggested by Huberman
includes the number of independent variables, the form ofind Lumer[12]. It was generalized for an unstable periodic
the flow functions, the nonlinearities in them, and parametersrbit and a chaotic orbit by John and Amritkdr3] where it
of the systenj1]. This paper concentrates on the last aspectwas shown that it is possible to synchronize with an unstable
i.e., estimating the parameters of a nonlinear system from periodic orbit or a chaotic orbit starting from a random initial
single time series when partial information about the systenezondition and different value of the parameter.
dynamics is availablg2—4]. In this paper, we show that a simple combination of syn-
Assuming that the number of independent variables anghronization and adaptive control methods similar to that
the structure of underlying dynamical evolution equations fordescribed by John and Amritkft3,14 can be used for ex-
a nonlinear system is known, we address the problem ofracting information contained in a scalar time series. We
determining the values of the parameters. In particular, giveapproach the problem by considering a dynamical system, in
a time series for a single variabla scalar time serigswe  which the number of independent variables and the structure
suggest a simple method which enables us to determine vabf evolution equations are assumed to be known. A linear
ues of the unknown parameters dynamically. The unknowrieedback function is added to the variable corresponding to
parameters may or may not appear in the evolution equatiothat for which the time series is given. This acts as a drive
of the variable for which the time series is given. For thisvariable. The feedback serves the purpose of synchronization
purpose, we employ a combination of two techniquesof all the system variables. The feedback function in our case
namely, synchronization and adaptive control. is proportional to the difference between the new and the old
Owing mainly to the extreme sensitivity to initial condi- values of the drive variable.
tions, engineering and controlling a nonlinear chaotic system The system variables respond to this feedback by syn-
requires a careful analysis. Feedback based synchronizati@hronizing with the corresponding values in the original sys-
techniques are investigated in this context to force a chaotitem. In the context of application of synchronization tech-
system, to go to a desired periodic or chaotic orbit. Suchmiques to telecommunications, the new system to be
control mechanisms were suggested by Pecora and Carroliconstructed is often referred to as the receiver whereas the
[5,6] and many otherf7—11,13,14 with an aim to synchro- old system, from which the time series is made available is
nize two chaotic orbits and to stabilize unstable periodic ortermed the transmitter. We will borrow the terminology, al-
bits or fixed points. In such mechanisms, some of the indethough the meanings of terms in the two cases are not ex-
pendent variables are used as drive variables and thactly identical.
remaining variables are found to synchronize with the de- The synchronization as described above becomes exact
sired trajectory under suitable conditions. There have beewhen the receiver parameters are set equal to those of the
many other important attempts in controlling chaotic systemsransmitter and takes place whenever the conditional
Lyapunov exponent§CLE’s) as defined in the next section
are all negative. Now assume that precise values of only a
*Electronic address: nil@prl.ernet.in few of the transmitter parameters are known to the receiver
"Electronic address: amritkar@prl.ernet.in system. We show that, in such a case it is possible to write
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simple evolution equations for the unknown paramefigis  parameter are not known, then formally the problem at hand
tially set to arbitrary values which when coupled with the consists of writing a set of evolution equations which will
system equations, yield precise values of all the state variyield the information about the unknown parameter and also
ables and the unknown parameters asymptotically to any desther variables. With the unknown parametgrwritten ex-

sired accuracy. plicitly for convenience we rewrite Eq1l) as
Our method comprises of raising the unknown parameters _
to the status of variables of a higher-dimensional dynamical x=f(x,{u;lj # 1}, 1) 2

system which evolve according to a simple set of evolution

equations. The receiver forms a subsystem of this higher- Now we introduce a new system of variables
dimensional system which in addition contains the evolution= (x;,x5, ... X;) whose evolution equations have identi-
equation for the unknown parameters. The input to thiscal form to that ofx. We fix x; as the drive variable and a
higher-dimensional system is a scalar time series obtaineféedback is introduced in the evolution ®f. The param-
from the transmitter system. Thus our method uses a dyeters are also the same except the one corresponding to the
namical algorithm to estimate the parameters which are obynknown parameter which will be set to an arbitrary initial

tained asymptotically. We note that the method of estimating/ajye denoted by:/ . Thus the receiver system will have the
parameters using synchronization and minimization as progcure

posed in Ref[2], is essentially a static method. The problem
of estimating model parameters was also handled in [Bgf. Lt L | ,
in which starting with an ansatz, the optimal equations for X1=gx ’{M'“#}”u')
parameter evolution are obtained. Our method gives a sim- = f2(¢" Ll i # 1} ) —wWe(X],X4(1)), ®)
pler and a systematic derivation of the parameter control
loop and in many cases, a better convergence rate.

It is well known that a great deal of information about a

chaotic system is contained in the time series of its Variable%vherew (X, x,(t)) is a feedback function which depends
Techniques such as embedding the time series in a space L

. . : X . , upon the drive variablg; and the variable, . The feedback
with chosen dimensionality are available for studying thefunction can be most simolv chosen to be proportional to the
universality class and otheglobal features of the system. Py prop

Our results suggest that a scalar time series, in addition to thcafference & —x,) and the evolution for the drive variable
information about the universality class also contains inforX1 €an be written as
mation about the exact values of the parameters of the un- . i
derlying dynamical system, including the ones which appear xp=TF2(X" { il ] # 1} ) — €(xg— x4 (1)), (5
in the evolution of other variables. )

The method and the required notation is developed in Sedvheree is called the feedback constant. More general forms
II. Section Il consists of illustrations for Lorenz and &ter ~ Of the feedback function are also possible and give similar
systems and a set of equations in plasma physics. The effetgsults. _
of noise in the transmitter system is studied in Sec. IV. Fi- The receiver system is formed by Eqd) and (5. If the

nally we conclude in Sec. V with a brief summary of resultsParameter/ in these equations is set precisely equakfo
along with a few remarks. then the two sets of variablesandx’ after a transient time,

evolve in tandem and show exact synchronization under suit-
able conditions, but because the valuewgfis unknownto

the receiver system, this does not happen.

A. Description of the method The solution is to set the parametgf to an arbitrary

In this section, we will describe our method of parameternitial value, while all others are set to the known valygs
estimation, for a general system withvariables andn pa- and adaptit through a suitable evolution equation. The re-

rameters. We will first consider the case when only one paSulting (n+1)-dimensional system then evolves all the re-
rameter is unknown to the receiver. ceiver variables to correct values of the corresponding trans-
Consider an autonomous, nonlinear dynamical systerflitter variables and simultaneously settles the valug,ofo
with evolution equations that of u, provided all the CLE's as defined in the next
subsection, are negative.
x=f(x,{x;}), ) The equation for evolution of thg| is chosen similar to
those used in adaptive control mechanigt® 14, and quite
where x=(X;,X,, ... X,) is an n-dimensional state generally can have the form
vector whose evolution is described by the function
f=(f,,...,f,). The overdot represents time differentiation cy
and{u;}, j=1,2,...m, are the parameters of the system. mi=h
Now suppose a time series for one variable, which with-
out loss of generality can be taken ®g, is given as an  The form of the functiorh that we have chosen is
output of the above system and in addition suppose the func-
tional form of f, and the values of all the parameters, g
=

X[ =Fi(x {gli =1 m), i=2,...0, ()

II. FORMALISM

J
X=Xy (1), >

I

(6)

i=1, ... )]=1]+1, ... m, are known while the time evo- p,'= —8(X1—X4(1))— (7)
lution of the remaining variables and value af, thelth I



286 ANIL MAYBHATE AND R. E. AMRITKAR PRE 59

where & is another parameter in the combined

. _ Jg ag of | ofs
(n+1)-dimensional system formed by Eg$), (5), and(7). — > — . 9
We call it thestiffness constaniThe values ofe and & to- I k' Xy IXs ) I

gether control the convergence rates involved in synchroni- .
zation and adaptive evolution. Towards the end of this supOne suc_:h case appears In the examp!e of Lorenz system,
section, we will show that the above form of functibfEq. which will be discussed in the next section. .

(7)] is obtained as a result of dynamic minimization of the NOW. when more than one parameters of the transmitter
synchronization error. are to be estimated, one may use a set of equations similar in

The last factor in the Ed7), dg/du, , needs some elabo- fqrm to that of Eq.(7). We W'I.I use such a set when we
. L discuss Lorenz system where it will be assumed that two or
ration. In general the parametef may or may not explicitly

: . ) . ) N three parameters of the Lorenz system are unknown to the
appear in the evolution functiog(x ,{,uj|J #1},u1() in Eq.

) ; A1 receiver system. We note that a parameter estimation algo-
(3). This stresses a need for identification of two separatei,m as described in Ref3] can also be used in the estima-

cases. If the functiom explicitly depends oru , then the  tion of more than one unknown parameters. It uses autosyn-
calculation of ¢g/du/) is straightforward. chronization method based on an active passive
In the case wherg:[ does not appear in the functian  decomposition(APD) of a dynamical systerf4] and starts
explicitly, it still indirectly affects the evolution ok;. The  from an ansatz for the parameter control. In contrast, our
information about the value g, is contained in the given method is a dynamical minimization for the synchronization
time serie,(t). Functiondg/du| “taps” this dependence. error. This can be seen as follows.
The calculation ofig/du| in this case, when functiog does Let us define the dynamical synchronization error
not explicitly depend o/ needs to be done carefully. This e(u 1) as
is done as follows. , , )
Consider the system formed by E¢4) and(5) in which, e(u D= (Xy=X1)", (10
a change in the variabbe] in one time step due to a change

) . wherey, is the receiver parameter corresponding to the un-
in the parameteg can be estimated as follows: al P P 9

known parameter anx, is the drive variable. We note that if
u| takes precisely the value @f), then the transmitter and
receiver synchronize, which makes the error as defined by
Eqg. (100 minimum, i.e., zero. To go to this minimum, we
want to evolveu, such that it will go to a value making

99
Axj~Agdt~— Ax/dt
X

S

g , d9 dfs 5 e(y( ,t) minimum. With an analogy to an equation in me-
~— Afy(dt)"~ ———Ap/(dD)7, chanics, where an overdamped particle goes to a mimimum
XS IXGIp| . . -
of a potential, we write the following:
where x¢ is the sth variable of the receiver, such that its ., oe(u b
evolution contains the parametef explicitly. Thus the last Mo (11)
of the above equations gives us il
which leads to
J ag of
—g,~ g, = (8) ., , ax;
dpy IXsdp M “_(Xl_xl)a_,u,, (12
|

A further complication arises if the variablg itself does  Further, to the lowest order in dt, Ax]

not appear in the functiog explicitly. In such a case further = (ax./dp]) Ap dt. Hence Eq(12) can be written as
dependences appearing in more time steps may be consid- ros !

ered. Note that herex; may appear in more than one flow _ X,
functions and a summation over all such functions becomes ml=—8(X1—X1)—, (13
necessary. In this case we can write Iru
where § is a proportionality constant. This equation is the
, ag . ag 5 same as Eq(7). In the next subsection we will define the
Ax;~Agdt~ ?Axs dt~ ?Afs(dt) conditional Lyapunov exponentE€LE’s) for the newly re-
Xs Xs constructed receiver system and state the condition for the
og ox.) of combination of synchronization and a(_japti_ve C_ontrol to work
%{ — _’] S, Apf (dt)? convergently such that parameter estimation is possible.
ko X, IXg | I
B. Condition for convergence
ag oty | ofs _ _ _
”[ 4 gg]a ~Apy (dt)”. Consider the transmitter equatiofSg. (2)] and the re-
k 9%s) O ceiver equationgEgs. (4), (5), and (7)]. Convergence be-

tween two trajectories of these systems means that the re-
Thus the last factor in E(7) takes the form ceiver variables evolve such that the differences
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(X=X, (k=1,...n) and (u/ — u,) all evolve to zero. In  where k,y,z) form the state space andr(,b) form the

the (n+1)-dimensional space formed by these differencesthree-dimensional parameter space. Now assume that the
origin acts as a fixed point and the condition for the algo-time series fox is given, and two of the three parameters are
rithm to work is the same as the stability condition for this also known. We consider the following cases.

fixed point. Case 1: When the unknown parameter appears in the evo-
If the above differences are considered to form anlution of x. Here assuming to be the unknown parameter,

(n+1)-dimensional vector z=(zy,...,Z,:1)=(x;  We create a receiver system as described in the Sec. I, given

—X1, .. Xp—Xn,u{ — w;) then the differentiadz evolves by

as

_ X'=g(x',y",z)=0'(y' —x') — e(x' = (1)),
dz=Jdz, (14
where the Jacobian matrikis given by y' =t Xy, 2 =X =y =x'Z,

afq of, of, odfy z'=f;3(x"y',2")=x"y'—bZ, 17
iz, ¢ 9z, 020 opl o , ,
where &',y’,z') are the new state variables ang’'(r,b)

af, af, af, of, are the parameters,and b being the same as those in the
(9—21 (9—22 a_zn ? transmitter whiles' is initially set to an arbitrary valuee is

K the feedback constant. These constitute the receiver system.
J= : : : N (15)  x’ is thedrive variable.
of of Prap The parameter’, which is initially set to an arbitrary
_n _-n _n n value, is made to evolve through an equation similar the
dzy 97 92y gu| equation[Eq. (7)]. Here we can use only the sign of the last
factor in Eq.(7) since there is a single equation involving

parameter evolution.

dh dh dh  oh

(921 322 (?Zn O’)M(

o' =—5(x’ —x(1))s "—=x"). 18
where the functiorh describes the evolution of the parameter 7 ( (t)sgrty ) (18

mi as in Eq.(6) and the derivatives in the matrit are  This equation along with the receiver systgy. (17)], can
evaluated az=0 which is a fixed point. The condition for achieve required synchronization as well as parameter esti-
the convergence of our procedure is that the real part of thehation since, a randomly chosen initial vector' §',z’)
eigenvalues of the matrid or conditional Lyapunov expo- eyolves to k,y,z) ando’— o as timet— .
nents are all less than zero. Figure 1 displays the manner in which the synchroniza-
It can be seen from the above matrix equation that choicegon takes place and how the parametér initially set to an
of the feedback constant and the stiffness constant affect th@pitrary value finally evolves towards the precise “un-
values of conditional Lyapunov exponents. Thus the methogtnown” value o-. In Figs. Xa)—1(c) we show the differences
will work convergently only for suitably chosea and 6. x’ —x y’—y 7' —z as functions of time and we observe that
When these are chosen such that the largest of the CLEgey eventually settle down to zero after an initial transient.
become positive, the algorithm does not work due to divergyn Fig. 1(d) we ploto’ — o as a function of time which also
ing trajectories. In the next section we will illustrate the goes to zero simultaneously.
method using the examples of Lorenz ands8ler flows and  ~ The synchronization as shown in Fig. 1 occurs when con-
a set of equations in plasma physics. ditional Lyapunov exponents for the receiver system coupled
to the parameter evolution are all negative or at most zero.
Il ILLUSTRATIVE EXAMPLES This restricts the suitable choices ferand 5. The Jacobian
A. Lorenz system matrix J, for the evolution of the vectorx(—x,y’—v,

As a first example, we study the Lorenz system. We di> ¢ —0) is given by[Eq. (14]

vide the discussion in two parts. In the first, we present the
results when only a single parameter is estimated in a Lorenz

— r— I\t
system. Three different cases are discussed in detail. In the g€ o 0 y'—x
later part, we extend our method for the case when more _ r—z' -1 —x
parameters are to be estimated. J= y' < —b 0 (19
1. Single parameter estimation —osgny’'—x') 0 0 0

The Lorenz system is given b
y g y Figure 2 shows the curve along which the largest CLE

x=f1(x,y,2)=0(y—X), becomes zero, in thee(5) plane. In region I, all nontrivial
_ CLE’s are negative and the method works convergently,
y="1,(X,y,Z)=rx—y—xz, while in region Il, the largest CLE becomes positive and no

. convergence takes place. Nevertheless note that for any posi-
z="f3(X,y,2)=xy—bz (16)  tive value ofé, there can always be a suitably chogesuch
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FIG. 3. The figure shows the curve along which the largest
conditional Lyapunov exponent for Lorenz system with the param-
-4+ L — eterr as unknown and as drive variablgEgs. (17) and (21)]
0 5 10 15 becomes zero in thee(d) plane. In region | all the CLE’s are

t negative and the parameter estimation can be achieved. In region Il

FIG. 1. (9—(d) show the differencesx(—x.y' —y.z'—z,0" the the largest Lyapunov exponent is positive.
— o), respectively, as functions of time, for the Lorenz system
[Egs.(16)—(18)]. The unknown parameter is and the drive vari-
able isx. The figures show that the differences tend to zero asymp-
totically. " which is set to an arbitrary initial value finally evolves
to o facilitating the parameter estimation to any desired accuracy in
the asymptotic limit.

X'=g(xy’,Z')=a(y’ —x') = e(x = x(1),
S/’=f2(X’,y’,Z')=r’X’—y’—X’Z’,

7' =fy(x"y",2)=x"y —bZ, (20)

that the convergence occurs. On the other hand, there is\hile the evolution ofr’ takes the form of Eqq7) and(8).

critical value ofe below which the method does not work. Similar to Eg.(18) we use only the sign of the derivative
Case 2a: When the unknown parameter appears in thévolved:

evolution of y variableHere, we consider the caserdds the

unknown parametel6) and reconstruct the receiver as

r'=—8(x"—x(t))sgnox’).

When a time series fox from Eq. (16) is fed into these

(21)

L L B LN B B equations, setting’, y’, z', andr’ to arbitrary initial con-
i dition, they finally evolve to the corresponding values of
- X, Y, z, andr. The associated Jacobian mafrigg. (14)] is
S r given by
- 4 —
,§ i —o—¢€ o 0 0
s | r—z' -1 —x" x
7] J= 22
- y Y b 0 (22
£ 2 ’
5 —osgnox’) O 0 0
=
r Figure 3 shows the curve along which the largest CLE be-
- comes zero, in thee(5) plane. In region I, all nontrivial
e T e a  m a T CLE’s are negative and the method works convergently,
0 5 10 15 20 25

FIG. 2. The curve along which the largest conditional Lyapunov
exponent[computed using Eq(19)] becomes zero in thee(s)
plane for the Lorenz system with as the unknown parametgzqgs.

Feedback constant (e)

while in region Il, the largest CLE is positive.

Let 7 denote the time required for the convergence to the
correct value of the parameter within a given accuracy, de-
fined asA=(r'—r)/r. In Fig. 4 we plot ¢) as a function of
the feedback constaat when the stiffness constasts held

(17) and(18)] is plotted. In region I, the CLE’s are all negative and fixed. On the other hand; may be plotted as a function of
parameter estimation works convergently. Region Il corresponds té0r @ fixed value ofe. This is plotted in Fig. 5. In both Figs.

a positive largest CLE, where the method does not work. Note thaf @and 5,r is assumed to be unknown and a time seriesfor
there is a criticak below which the method does not work. Never- is assumed to be given. The chosen accuracy for conver-
theless for anys, ane can be chosen so that the method works. gence was 10’
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FIG. 4. The plot shows the timer) required for convergence of

r’ tor to a given accuracy with a fixed value of the stiffness con-

stant (5), as a function of the feedback constanfor Lorenz sys-
tem. The drive ix while the unknown parameteriisit can be seen
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FIG. 6. The graph shows the tinterequired to achieve the
parameter estimation to within a given accuracy as a function of the
accuracyA (logarithmic scalgnormalized with respect to the initial

that the synchronization time tends to infinity when the largest CLEJeviation of the parameter from the correct value for Lorenz system

becomes zero.

In Fig. 6 we plot the time required for convergencer 6f

[Eq. (16)]. The time series fox is assumed to be known while the
value of r is unknown. The straight line shows that the time re-
quired for a better accuracy grows exponentially.

to r to within a given accuracy as a function of logarithm of
the accuracy, which is normalized with respect to the initial
value. The straight line shows that the time required to
achieve better accuracy grows exponentially. The slope of
the line in Fig. 6 corresponds to the Lyapunov exponent. It
was compared with the Lyapunov exponent computed using
a numerical algorithm and a fair agreement was observed.
Case 2b: When the unknown parameter appears in the
evolution of z variableThe case where the paramebeap-
pearing in the evolution of [Eq. (16)] is unknown, while the
given time series is fok is a particularly interesting case.
Since the variable does not appear explicitly in the evolu-

has to be done using E(R). Thus with the evolution fob’,
the complete receiver system becomes

X' =g(x',y", 2 )= oy’ —x') = e(x' =X(1)),
yr:fz(xr,yr,zf):rxr_yr_X/Zr,

72/ =fy(x"y",2)=x"y'—b'Z, (23

tion equation forx, the calculation of derivative in Ed7)

600

400

200

Synchronization time (1)

0 2 4 6 8
Stiffness constant (&)

FIG. 5. The plot shows the timer) required for convergence of

b’ =—8(x' —x(t))sgn(ox'z’). (24)

An initial vector (x',y’,z’,b’) in the above system goes
to (x,y,z,b) and thus makes the estimation of the valud of
possible. Here the matriX takes the fornfEq. (14)]

—0—€ o 0 0
_X'
x' -b =7

—-8sgnox'z’) O 0 0

(29

Figure 7 shows the curve along which the largest CLE be-
comes zero in thee— &6 plane. In region |, all CLE’s are
negative and the condition of convergence is satisfied.
Finally we note that in all the three cases discussed above,
since the time series fox in Eq. (16) is assumed to be
known, x' acts as a drive variable. A similar procedure is
possible when a time series fgrin Eq. (16) is given as an

r' tor to a given accuracy, with a fixed value of the feedbackinput. Herey’ can be chosen as a drive variable which drives

constant €), as a function of the stiffness constahtor the Lorenz
system. The drive ig while the unknown parameter is It can be
seen that the synchronization time tends to infinitypagpproaches
a value so as to make the largest CLE zero.

the evolution of the remaining variables as well as the un-
known parameter. Thus it is possible to know an unknown
value of any of the parameters of the Lorenz system from a
single time series fox ory.
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Feedback constant (e) FIG. 8. Plots(a) and (b) show the differences’ —o andr’

—r, respectively, as functions of time in the Lorenz sysfén.
16]. The unknown parameters aseandr and the drive variable is

e>_<ponent becomes zero in the, §) plane _for the Lorenz system X. The plots show that the differences go to zero, and hence indicate
with b as the unknown parameter axds drive[Egs.(23) and(24)] . o
that a simultaneous estimation of more than one unknown param-

is plotted. In region |, the CLE’s are all negative and parameter . .
. . . eter is possible.
estimation works convergently. Region Il corresponds to a positive

largest CLE, where the method does not work. Similar to other, . .
cases, there is a critical below which the method does not work. tion about all the parameters of Lorenz system is contained

in a time series for eithex or y variables and can be ex-
2. Extension to the many parameters estimation tracted as above. . . .
) ) o It should, however, be mentioned that when a time series
Here we will consider the estimation of two or three pa-for 7 is given from a Lorenz system, the eigenvalues of the
rameters for the Lorenz syste(®i6). We have applied our associated matrid [Eq. (15)] do not satisfy the condition of
method for estimation of two parameters of the Lorenz sysgonvergence for any choice ef and 5. Thus the method
tem (16), takingx or y as drive variables. A typical receiver fajls when a time series faris known.
system, takingx as the drive and &,r) as the unknown
parameters, is constructed as

FIG. 7. The curve along which the largest conditional Lyapunov

B. Rossler system

X' =o' (y —x')— e(x' —x(1)) We next consider the Rasler system of equations given
1 by
y/:rx/_y/_xrz/' 5(=—y—Z,
z’=x"y' bz, y=x+ay,
a'==8x' —x(t)(y' —x), z=b+z(x—c) (27)
== 8 —x(t)(oX). (26) which contains the three parametessl{,c). We have ap-

plied our procedure to estimate any of these parameters,
Note that the same stiffness constant is used in controllin hen u_nknovyn, assuming the knowledge of a time Series for
both the unknown parameters. e variabley in the Rassler system. The corresponding vari-

We have found that with similar receiver structure to thatabley’.' which acts as a drive variable fax'(y’,z') and the
in Eq. (26), it is possible to estimate any two of the three evolution of the unknown parameter, then evolves through
parametersr, r, andb, when a time series for either &for :
yis given. In Fig. 8a) we plot the differenced¢’ — o) while y'=x'+ay —e(y’' —y(t)), (28
Fig. 8b) shows ¢’ —r) as functions of time, when the drive
is x and two parameters andr are assumed unknown to the while the unknown parameter evolves adaptively. Thus with
receiver. We see that the differences converge to zero, indthe given time serieg(t), fed into the evolution of the drive
cating that it is possible to estimate two parameters simultavariabley’, we find that the convergence condition can be
neously. satisfied by a suitable choice of feedback constant and the
Finally we mention that, if the time series fgris given, stiffness constant.
estimation of all the three parameters is possible though in In Fig. 9 we show the convergence of' - x,y'—vy,z’'
this case, the convergence is very slow. The method fails te-za’'—a) to (0, 0, 0, Q when the parameta is unknown.
estimate all the three parametarsr, andb, when time  Thus our algorithm of parameter estimation works yoras
series forx is given. We thus note that the detailed informa-a drive variable and any of the three parameters can be esti-
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FIG. 10. (8—(d) show the differences;—a;, a;—a,, ¢’
— ¢, and 8’ — § as functions of time, respectively, in the plasma
system[Eq. (29)]. The unknown parameter &and the drive vari-
able isa;. The figures show that the differences tend to zero
asymptotically.é’ which is set to an arbitrary initial value finally
evolves toé facilitating the parameter estimation.

FIG. 9. (a)—(d) show the differenceg’ —x, y'—y, z'—z, and
a’ —a as functions of time, respectively, in the $&ter systeniEg.
(27)]. The unknown parameter &sand the drive variable ig. The
figures show that the differences tend to zero asymptotically.
which is set to an arbitrary initial value finally evolves adacili-
tating the parameter estimation.

mated. We have, however, found that the convergence is not

possible forx or z as the drive variables. IV. EFFECT OF NOISE
Finally, we have also applied our method to estimate two
or three parameters of the Rossler system wits a drive In this section we will study the effect of noise present in

variable. It was seen that no choice of the feedback constarite transmitter system. We will take the example of the Lo-
and the stiffness constant lead to convergences required f@énz systenfEq. (16)] for this purpose, where- is assumed
estimation. to be the unknown parameter ardcts as a drive variable.
Assuming that there is a small additive noise present in
C. An example from plasma physics the time series given for, we feed the noisy time series into

As our final example, we present a set of nonlinear equathe receiver systerfEq. (17)] and carry out the parameter
tions appearing in p|asma physics_ This is the so-called res@.snmauon as described. We find that for weak noise, the
nant three-wave coupling equations when the high frequencgsymptotically estimated value of the parameter fluctuates
wave is unstable and the remaining two are damj2s]. around the correct value with a small amplitude. Thus the
These equations are estimation is possible using our method. The error in the

) estimation can be reduced by a suitable averaging over the

a;=a;+ a22 COSd, time evolution ofg’ in the asymptotic limit. For increasing
_ strengths of noise, the fluctuations in the estimated value
a,=—ay(y+a,cosq), (29 grow larger and precise estimation becomes difficult. Figure

11 shows the convergence @f to o when additive noise is

¢=—6+a; Y(2a,°—a,?)sing, present in the evolution of, the drive variable of the Lorenz

system, for which the time series is given.
wherey and § are the system parameters. We define the accuracyAj in the estimation ofo as

We find that with time series given for eithag or a,, it (o’ —o)/o while w denotes the strength of noise with uni-
is possible to know an unknown parameteror é using  form distribution ranging from-w to w. In Fig. 12 we plot
synchronization and adaptive control. The method fails whenhe asymptotic value of A, the accuracy of the estimation of
a time series fokp is known. o, against the strengtiv of noise inx. It can be seen from

Figure 10 displays the evolution of the differences be-the curve that the accuracy grows linearly as the noise in-
tween the transmitter and receiver variables as well as thereases to a value @f=2 which corresponds to about 12%
evolution of ' — & as functions of time, when the time series of the range ok values. The plot thus shows that our method
for a; is known. As expected, the differences go to zerois quite robust for weak noise ix, while it can fail as the
asymptotically. noise strength increases to a larger value.
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FIG. 11. The graph shows the evolution®f— o as a function FIG. 12. The plot of asymptotic accuracy of parameter estima-

of time, in the presence of an additive noise<0.1) in the given  tion [A=(¢'—o)/c], as a function of strength of the noise, in

time series fox for Lorenz systen{16). The value ofo is assumed the given time series of in Lorenz systen{Eq. (16)]. The noise

unknown. The plot shows that the difference —o fluctuates  with strengthw takes uniformly distributed values fromw to

around zero with a small amplitude after an initial transient and a+w. The drive isx and the unknown parameterds It is seen that

reasonably good estimation is possible using a suitable averagingie estimation ofr is stable for a range of noise strength growing

over these fluctuations. from zero to about 2.0 which corresponds to about 12% of the range
of x values.

V. CONCLUSIONS
) o We have thus numerically demonstrated that the explicit
To summarize, we have shown that a combination of Syngeajled information about the parameters of a nonlinear cha-
chronization based on linear feedback given into only &yic system is contained in the time series data of a variable
single receiver variable with aadaptiveevolution for pa-  4nq can be extracted under suitable conditions. This informa-
rameters unknown to the receiver, enables the estimation Qfon incjudes the particular values of the parameters of the
the unknown parameters. The feedback comes from a Scalg{/stem which can be estimated even if they appear in the

time series. We have also shown that our procedure corresoution of variables other than the one for which the time
sponds to dynamic minimization of the synchronization er-ggies is given.

ror. We have also checked the robustness of the method

We have presented examples of Lorenz an@si sys-  yqaingt the noise and it shows reasonable robustness against
tems taking different candidate parameters to be unknown i@ q nojise though the error of estimation becomes larger as
the receiver as well as that of a plasma system obeying resgra noise strength is increased.

nant three-wave coupling equation. In the Lorenz system tpe hossibility of improving the efficiency of the method
[Eq. (16)], any of the three parameters can be estimatedieeqs to be explored. This can be done, for example, by
when a time series is given for either Bfandy, but the  himizing the choices of parametarsind & or by trying to
method fails when the known time series is for the variable,gtimate initial values of variables of the transmitter system,

z. Extensions to estimation of more than one parame_ters Qforresponding to response variables and thereby starting
the Lorenz system are also presented as a representative Cgggm 4 “petter” initial point. Work in these directions is
Estimation of two parameters is possible for batbry as |, qqer progress.

drive variables while estimation of all the three parameters is
possible only when time series fgris given.
In the case of Resler systeniEq. (27)] the method works
only when the time series is given for the variaplehere it ACKNOWLEDGMENTS
is possible to estimate any of the three parameters. We find
that in case of the plasma system, the parameters can be One of the authoréA.M.) would like to thank UGC, India
estimated with the feedback in the evolution for eithgror  and the othe(R.E.A) would like to thank DST, India for

a,. financial support.
[1] H.D.I. Abarbanelet al, Rev. Mod. Phys65, 1331(1993. [4] U. Parlitz, L. Kocarev, T. Stojanovski, and H. Preckel, Phys.
[2] U. Parlitz, L. Junge, and L. Kocarev, Phys. Rev5& 6253 Rev. E53, 4351(1996.

(1996. [5] L.M. Pecora and T.L. Carroll, Phys. Rev. Let}, 821(1990.

[3] U. Parlitz, Phys. Rev. Let{76, 1232(1996. [6] L.M. Pecora and T.L. Carroll, Phys. Rev. 4, 2374(199)).



PRE 59 USE OF SYNCHRONIZATION AND ADAPTIVE CONTRQ.. .. 293

[7] J. Singer, Y-Z. Wang, and H.H. Bau, Phys. Rev. L&&.1123 [15] N.H. Mehta and R.M. Henderson, Phys. Rev.44, 4861

(1991). (1991).
[8] J. Singer and H.H. Bau, Phys. Fluids3\ 2859(1991). [16] Y-C. Lai and C. Grebogi, Phys. Rev. &7, 2357(1993.
[9] G. Chen and X. Dong, Int. J. Bifurcation Chaos Appl. Sci. [17] R. Lima and M. Pettini, Phys. Rev. Al, 726 (1990.
Eng.2, 207 (1992 [18] Y. Braiman and |. Goldhirsch, Phys. Rev. Le@i6, 2545
- ' (1991).

[10] K. Pyragas, Phys. Lett. A70, 421 (1992.

[11] T.L. Carroll and L.M. Pecora, iéonlinear Dynamics in Cir- [19] V.S. Anishchenkeet al, Int. J. Bifurcation Chaos Appl. Sci.

: . . Eng.2, 633(1992.
cuits, edited by L.M. Peccora and T.L. CarrgiVorld Scien- [20] N.F. Rul'kovet al, Int. J. Bifurcation Chaos Appl. Sci. En3,

tific, Singapore, 1996pp. 215. 645 (1992.

[12] B.A. Huberman and E. Lumer, IEEE Trans. Circuits SB&t.  [21] L. Kocarev, A. Shang, and L.O. Chua, Int. J. Bifurcation
547(1990. Chaos Appl. Sci. Eng3, 479 (1993.

[13] Jolly K. John and R.E. Amritkar, Int. J. Bifurcation Chaos [22] S. Sinha, R. Ramaswamy, and J.S. Rao, Physic&3D118
Appl. Sci. Eng.4, 1687(1994. (1990.

[14] Jolly K. John and R.E. Amritkar, Phys. Rev. 49, 4843  [23] J. M. Wersinger, J.M. Finn, and E. Ott, Phys. Rev. Lé#,
(1994. 453 (1980.



