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Crossover from Selberg’s type to Ruelle’s type zeta function in classical kinetics
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The decay rates of the density-density correlation function are computed for a chaotic billiard with some
disorder inside. In the case of the clean system the rates are zeros of Ruelle’s zeta function and in the limit of
strong disorder they are roots of Selberg’s zeta function. We constructed the interpolation formula between two
limiting zeta functions by analogy with the case of the integrable billiards. The almost clean limit is discussed
in some detail[S1063-651X99)03103-7

PACS numbegps): 05.45-a, 05.20.Dd, 51.16y

It is natural to assume that chaotic billiards with a small  Let us look for solutions proportional ® . The eigen-
amount of disordef1-3] are good models for ballistic cavi- valuess, of the kinetic equation are so-called mixing rates,
ties, which have been employed in a number of recent exer decay rates of the density-density correlation function
periments, see Ref4]. Such a model is interesting becausewhen r—0 or Ruelle’s resonances when-«<. These reso-
the disordefin two dimensionscan be characterized by one nances can be found as zeros of the spectral determinant
parameter: the elastic scattering timeThe mixing proper-  Z(s). Let us start to computg(s) in the limit of pure chaos.
ties of this model in two important limits—0 and 7— o Cvitanovic and Eckardf7] have computed the spectral de-
were known in the literature, see Ref5,6]. In the present terminant for the axiomA system, but the result is the ex-
paper we discuss the crossover from one limit to the other fopansion over the unstable periodic orbits and it seems to be
some two-dimensional billiard. The case of the three-valid for a wide class of systems. Therefore, in the limit
dimensional billiards is more complicated. Particularly, the—c, the spectral determinant is
uniform scattering in three dimensions leads to very fast
resonant mixing. At the end of the paper we provide the 1 1 Sirlo
generalization of our results for the case of three dimensions. —InZ(s)=2 ;—:1 rlde(i—MO[° " @

Let us focus attention on the eigenvalues and the eigen- P P
modes of the kinetic equation for the distribution function Wherev iS the Ve|0city. Th|s expression Contains the sum
f(F, ¢) of noninteracting particles inside a two-dimensional over the primitive periodic orbitp taken with repetitiorr. In
billiard. This function is defined on the constant energythe case of billiards, the action for the periodic trajectory is
manifold |J¢|=v=const, and7¢=(v cos(@),v sin(¢)). The just_ the I_engtH of . Each osp_illating term in the sum in Eq.
precise form of the kinetic equation depends on the details of2) is weighted by the stability amplitude, which behaves on
the impurity potential, but we are going to investigate twoaverage, as

models,
. 1 Eef)\prlpr/umefxlpr/v (3)
— — r !
of f f, model 1 |detl —Mp)|
_+5¢.€f: T ) (1) where the first equality defines,,, and\ is the Lyapunov
at 1 o model 2 exponent of the billiard. The zeta function given by E2).is

T g% of Ruelle’s type.
. ) When the disorder is strong, the kine_tic equation can be
wheref(r)=J f(r,¢)d¢/(27). The above equation has to transformed into the diffusion equation for
be solved with mirror boundary conditions‘(F, ®)

=f(r,2a(r)— m— ¢), wherer is taken on the boundary of ‘9_f__ A @
the billiard andh = (cos),sin(®)) is normal to the boundary. a2 '

Equation (1) has a special squtiomo(F, ¢)=const for all ) _ R
values ofr and we will ignore it in the rest of the paper. ~ Which has to be solved with boundary conditiansV f=0.

In both models, the collision integral conserves energyThiS approximation is valid if the spatial variation of the
The ﬁrst mode| Corresponds to uniform Scattering in a” di_|n|t|a| d|Str|bUt|On IS Sma” on the Scale Of the mean-free—path
rections and the second model is valid if small angle scatterrv- Equation(4) allows one to find the decay of modes with
ing is dominant. There is a relatively simple analytical treat-f#0. The decay rates for modes withk-0 for all r should
ment of these two limiting cases. In the same time it will be computed in a different way.
give us the qualitative understanding of the general case. In the limit 7—0 we can use the “semiclassical” ap-

proximation for equation
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where k?=2s/(v?7). The logarithm of the Selberg’s type q are “quantized,” and we will denote them),, and the
zeta function is again the sum over periodic orp89], modes withf=£0 can be numbered

1 1 7'71

—In(Z(s))= - ¢kl 6 F b t)x idnf st
@)= 2 s o © fol(T ) 2 — el sl (11)

S+ T_1+ i J¢an

Here the phase factors correspond to the case whei5Eq. where the sum is over four possible directionsogf Inte-
should be solved with the Neumann boundary condition angyration over¢ leads to the equation fag,
Maslov's indexes vanisfil0]. The natural question to ask is
whether it is possible to compute the decay rates of the T‘2=(sn—r‘1)2+v2qﬁ, (12
modes withfs£0 for all values ofr by constructing a suit-
able zeta function?

We can understand the connection between different

and the corresponding zeta function is

types of zeta functions by making use of the following ap- —In(Z(s))=2 (|_4q/7-r3|p)eiq'p, (13
proximation: P
1 wherep is not a single orbit but the resonant t¢ti5], and
—IN(Z,(x))= D, =X Npr/Miprlv, (7)  the connection betweemandq is as in Eq.(12).
pr T In the case of model 2, the solutions are still proportional
~ 2 (X4 N2 8 to €9, but the angular dependence is different. The solution
200~=Z5(x ), ®  \With T£0 is the “ground state” of
whereZ, is Ruelle’s type zeta functiorz,, is Selberg’s type 1 52
zeta function and Eq8) is known as a/2 shift. Such a shift —s+iv, gp— = 95 f,=0, (14)
T

was observed in the problem of quantum and classical scat-

tering in a three-disk problem, compare Figs. 2.14 and 3.6 of . .
Ref.[11] and see Ref§12,13 for details. Equatior) holds %Because the real parts of the decay rates are positive. Surpris

with high accuracy in various systemi&4]; however, it is ingly, Eq. (12) gives a nurI]erlcaIIy”good approximation for
not yet known whether it is an approximation or an exactSn for this model. Other “angular” modes, which have
result. =0, are very different for models 1 and 2.

Assuming that Eq(8) is accurate enough, we have the It IS not easy to compute eigenmodes of EX. for the

relation for our zeta function being taken for different valuesintégrable billiards, which have other than rectangular
of 7 shapes. For such cases, Efj3) becomes an interpolation

formula for the kinetic zeta function. One should only re-

A 1 1 place the pre-exponential factor by the amplitude from the
Zl(s)~22( S— E) , TS H’X Berry-Tabor{ 16] formula. For example, the resonant tori for
Z(s)= S (9) the circular billiard of radiusk are numbered by the winding
. /2s 11 numberM and by the number of vertices, have length
Lo\ I\ T<E’X- Imn=nLun/m, wherelLy,=2mRsin(zM/n). Then one can

use Eq.(13) after the replacemem—Mn, andL—Ly,,
We argue that the kinetic zeta function is the functibnof ~ See Ref[17].
the yet unknown combination af 7, and\. This combina-  Combining together Eqg2), (6), (12), and (13) we can
tion can be obtained for integrable billiards. The path inte-ntroduce the kinetic zeta function as
gral method will help us to modify this combination in the 4
chaotic case. As an immediate consequence of the relation | _ [ V(5= 2o )s— A, /2] L oriv

, = , —In(Z(s))= — r r , (15

Eqg. (9), we have for the eigenvalues of the kinetic equation, n(Z(s)) % 21 re ' P e (159

N2+iqpv, 7T— where
Sn=1 2 2 (10
qrv T2, 7—0, T Npr7/2<1
Tor= (15b
whereq,,n=1 ... are the eigenvalues of the wave num- 2prs Nprrl2>1.

ber in Eq.(5). The full dependencs, onq,,7 and\ exists
if our postulate is correct, and we will compute it.

Let's examine first the integrable case. Model 1 for the
square billiard was solved by Atland and Gefgll, and
Agam and Fishmamf2], who modeled the short-range ran-
dom potential by random spheres or circles. For the squal B> 1

billiard of sizeL the spatial dependence of the den?(ty) is The interpolation formula Eqg15) for the kinetic zeta

Sexp(g-r), whereq is such that siL)sin(@yL)=0, and the  function implies the following interpolation formula for the
sum is over four possible directions @f Then the values of decay rates:

For A7<1/2 the kinetic zeta function coincides with Sel-
berg’s type zeta function Eq6) in the domain of the com-

plex s plane|s7|<1. For A 7>1/2 the kinetic zeta function

becomes independent aefand coincides with Ruelle’s type

Zeta function Eq(2) in the domain of the complex plane
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- - - - te
G(r,d),ro,qso,t):j D[¢]6(r—r0— fovwdt)
@ T4 Pt f:i¢2dt+ oI} 9Py
17

and the path o+ [t ydt touches the boundarigstimes at

the pointsry, .. . ,Fn, at the timed, ... t,. The angley;
is the direction of the tangent to the boundary at the reflec-

tion point Fj. The trace of the propagator E(L7) known
also as the return probability is

()= [ afo [ ag | D[w]ef"%*’zdta( fotzlpdt),

Ims

(18

A2 Res
wherey(t) = (0)= ¢ and[Ly?dt is defined as in Eq17).
FIG. 1. The decay rates of the density-density correlation func- Thel/,( r)o &ll/,(atz)r (é (17)fgﬁould interoolate betwger?the
tion move on the complex plane when disorder decreases, as Shovﬂobeniﬂs-ge?ron o grator in the |irnit_[>)oo and the diffu-

by arrows. The termination point is Be\/2, where\ is the . . p . .

L sion operator in the limit— 0. Then the trace of this propa-

yapunov exponent. . . .

gator Eq.(18) should provide us with a systematic way to

compute the interpolation formula for the zeta function, be-

N cause—In Z(s)=[Zet " Ip(h)dt. Here the sign ofst in the
T Qnv Laplace transform is positive, because we want the roots of
1 2 1 the zeta function to have the meaning of the decay rates.
Sn=§ ;+|\/(an)2—1/7'2, K== a0 (16) In the limit of weak disorderr—o, one may hope to

obtain the small corrections 1/ to the Frobenius-Perron
operator, and, therefore, to E€R). Particularly, one may
expect to obtain the additional “stabilization” of the peri-
odic orbits through the disorder. Let us consider the vicinity
whereq,, are the eigenvalues of the wave number in &).  of the periodic orbitp in phase space. The path in such a
There is a gap between the last two expressiyhs.,,_o  Vicinity can be described by the coordinatét) =vt along
=Sl —on+0~N?/(Qnv), Which is numerically small for the orbit, by the coordinatg(t) normal to the orbit, and by
most cases. The motion of the decay rates on the completke deviation of the direction of motiog#(t). The position of
plane is schematically shown in Fig. 1. In the limit of strong the particle at the end of the path and at the beginning of the
disorder some of the, are on the real axis, and the imagi- path are connected by

nary part ofs, becomes nonzero wherg,v=1. Thens,

A _2
\2 1qn, 7'/)\,

moves along the arc and stops when\/2. 0 o Lpj
Equations(10) and (16) show that a chaotic system is y(t) _M y(0) w2 (19
qualitatively different from a diffusive system from the point &(1) Plgp0)) =2 ™ P ’
j

of view of the position of Ruelle’'s resonanceg on the
complex plane. In the chaotic limit all resonances lie on a . . )
line parallel to the imaginary axis. The disorder induces moWhere the orbitp crosses the billiarch, times. In other
tion of the resonances toward the real axis as was found b{frds, the orbit consists of, segments of length,,; . When
Agam and Fishmaf2]. e partu_:le is going along the segménit can be scattered
The interpolation formula between Ruelle’s type and SelPy the disorder at small anglé;, and then the rest of the
berg’s type zeta exists only if the diffusion modes transformPath is distorted too. The cumulative change of the end of the
to the so-called Frobenius-Perron modes as the disorder go@@th is given by the sum in the right-hand side of Etp),
to zero. This has not yet been proven for our case. The maifNe€reMp; is the monodromy matrix of the piece of the orbit
difficulty is that the diffusion modes are selected from allconsisting of the segmentsy;;, ... Ly, . One can see
kinetic modes by the conditioi0. At the same time immediately from Eq(19) that the stability amplitude of the
Frobenius-Perron modes are selected by the choice of tfdosed pathy(t)=y(0),¢(t)=¢(0) is independent of
functional space. However, in other systems, one can corfs, - - -»0n , and, therefore, it is independent of There-
sider the diffusion modes as modes of the Frobenius-Perrofore, there are no t/corrections to the zeta function E@)
operator{ 18]. and our interpolation formula Edq15) is independent ofr
Some additional information might be obtained from thefor 7>2/\.
properties of the propagator of E({), which can be written In the case of the three-dimensional billiards, the effect of
as a path integral for model 2, the disorder is different because the scattering becomes
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three-dimensional and the distribution function depends o’mall , but it cannot be used for large If the mode hag

the three coordinates and two angles: close tow/(v7), then the decay of such a mode is very fast
sx(m—qu7r) L
_ The model with small angle scattering in three dimensions
of . . 1)f—f, model 1 is the Fokker-Planck equation for the distribution function,
Gt ves VI=T V2 f  model 2 (20 which should be solved together with mirror boundary con-
oo ’ ditions on the billiard boundary. The solutions inside the
cubic billiard have the dispersios(qg) similar to that of the

where 59¢=(sin6cos¢, singsing, cosé), V20¢E(_']_/ square billiard, iff£0. Therefore, one may hope that Eqg.
sin 6)(dld )sin &(ala6)+ (L/sirtd)(#19¢4?) is the angular part (15 gives the interpolation of the zeta function of the
of the Laplace operatof#0, and the bar means the averageFokker-Planck equation for modes witk 0.

over the solid angle. For the cubic billiard the spatial depen- In summary, we have constructed the interpolation for-
dence of the density is agameid-F' where the sum is over Mula for the zeta function of the kinetic equation, in both

the six orthogonal orientations of, and the modes are se- “chaotic,” Egs. (15, and ‘integrable,” Bq/(13), cases. Our
lected by the rule sigL)sin(q,L)sin(,L)=0. Then, the dis- zeta function describes the modes with nonzero angle aver-

. . . ; ly, i.e. ith ity of icles. F
persion relation for the model Liniform scattering can be ?hge rc;n %/h Iri ,t:noldes |Vr\1/'lt fnc\)/?zv(\alro dfnlzlrtlyt? pzarttlcfesn tiror:n
found in Ref.[19], Eq. (12.2.12: € mathematical point ot view, our Kinetic zeta functio

interpolates between Ruelle’s and Selberg’s zeta functions.
Our formulas are independent of the particular choice of the
collision integral for two-dimensional billiards and are suit-
1-sr= P (21)  able for small angle scattering in three dimensions.
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