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Average patterns of spatiotemporal chaos: A boundary effect
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Chaotic pattern dynamics in many experimental systems show structured time averages. We suggest that
simple universal boundary effects underly this phenomenon and exemplify them with the Kuramoto-
Sivashinsky equation in a finite domain. As in the experiments, averaged patterns in the equation recover
global symmetries locally broken in the chaotic field. Plateaus in the average pattern wave number as a
function of the system size are observed and studied and the different behaviors at the central and boundary
regions are discussed. Finally, the structure strength of average patterns is investigated as a function of system
size.[S1063-651X99)00103-9

PACS numbd(s): 05.45—a, 47.54+r

[. INTRODUCTION suggestive for experiments on phase turbulence in convec-
tion cells[8], fluids flowing down an inclined wall9], and
Experimental studies of the chaotic pattern dynamics irflame front propagation10,11].
Faraday wavefl,2], in rotating thermal convectiof8], and
in electroconvectiop4], reveal that spatiotemporal complex Il. THE KURAMOTO-SIVASHINSKY MODEL
patterns can have surprisingly ordered time averages. The
form of these average pattertequare, circular, hexagonal
is determined by the underlying symmef#;,6] imposed by
the boundary conditions. Although the instantaneous patterr@
fluctuate chaotically, they are b|a§ed towards the average he=—hy— hooot ()2, 1)
pattern because they have short-lived patches spatially in
phase with this average. This phase rigidity seems to comghereh=h(x,t) is a real functionx<[0L], and the sub-
from the boundaries, and quantization effects appear due tscripts stand for derivatives. In two dimensions the spatial
the finite size of the container. The amplitude of the time-derivative is replaced by a gradient and the second derivative
averaged pattern depends on the system size and control fig a Laplacian. The only control parameter for the equation
rameters. It is strongest near the sidewalls, and decays wiig the length of the domaih; prefactors to the terms in Eq.
increasing distance from the sidewalls and with increasingl) can be scaled out. An equivalent equation [j@fhx can
fluctuations about the ordered averaged state. For very largge obtained by taking the derivative of Ed) with respect
containers the ordered average pattern exists only near the x,
sidewalls.
Given the general features of average patterns suggested U= — Uy Uyt 2UUy . (2
by experiments, it seems surprising that their possible exis- . . _
tence and characterization have not been addressed withffluation (1) possesses translational symmetries—h
the standard model equations displaying spatiotemporal cha: o, X—=X+Xo) a reflexion symmetry {—h, x——x),
otic stateg7]. One possible reason for this is that periodic@nd an infinitesimal Galilean symmetryx-{x+2vt, h—h
boundary conditions are usually considered in theoreticalt vX). Equation (2) is also invariant under translations
studies. In such situation spatial translational invariance hotU—U, X—X+Xo) and under a Galilean symmetry-{:x
mogenizes out any time averagenless some unexpected +2vt, u—u+v). A different reflexion symmetry is valid in
ergodicity breaking takes placeBoundary conditions break- this case (— —u, x— —x).
ing translational symmetry, as in the experiments, are thus The stability of the laminar solution=0 (u=0) is ana-
needed to obtain nontrivial average patterns. Motivated byyzed by linearizing Eq(1) [Eq. (2)]. For commonly used
this fact, we here consider the Kuramoto-Sivashinsky equaPoundary conditions the growth ratefor the Fourier mode
tion, one of the prototype equations showing spatiotempore®f wave numberk is u=k?~k*. In two dimensionsk? is
chaos, in bounded one- and two-dimensional domains. Weeplaced by|k|?. The laminar solution is unstable for all
show that ordered average patterns do appear, despite tAgodes within 6<k<<1. The fastest growing mode has a
strong fluctuations, and we discuss the universal aspects @fave numberk,=1/y2 corresponding to a wavelengih,
wave number selection and amplitude variations. More di=2.27~8.9. The wavelength, serves as a basic length
rectly, our analysis of average patterns may be relevant anscale, and the system sikds naturally measured in units of
this scaleL/\q, which is called the aspect ratio. Beyond the
linear range, the nonlinear term becomes important and pro-
*Electronic address: victor@hpl.uib.es duces growth(linear in time of the mean value ofi, while
TURL: http://www.imedea.uib.es/Nonlinear the mean value afi saturates. Fok large enough to permit a

The Kuramoto-Sivashinsky equatip®,12] is perhaps the
simplest partial differential equation exhibiting spatiotempo-
| chaos. The equation in one dimension has the form
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sufficient number of unstable Fourier modes, the solution
exhibits spatiotemporal chaotic behavior that can be associ-
ated with a disordered evolution of a cellular pattern.

Many studies have been devoted to the bulk behavior of
the Kuramoto-Sivashinsky systdm]. In relation to average
patterns however the boundaries are of paramount impor-
tance, as discussed above. Here, we consider two types of
boundary conditions. One of them is the rigid boundary con-
ditions, where

u(0t)=u(L,t)=u,(0t)=u,(L,t)=0, 3

or equivalently,

<@p>,<u>

-05] ~ .
hx(out):hx(l—vt):hxx(out):hxx(l—vt)zo- (4) \

-1.0

Our other choice of boundary conditions is —_—
0 10 20 30 40 50 60 70
U(0) =u(L,t) =U,,(0t) =Uy(L,t)=0, (5 X

) FIG. 1. Results from simulations of the one-dimensional

or equivalently, Kuramoto-Sivashinsky equation with stress-free boundary condi-
B _ B _ tions. System sizé.=70. (a) A characteristic frontp at time t

h(0,6) =hy(L, 1) =hy)(0.1) =y L, 1) =0, (6) =1000.(b) The time average of the frogt (continuous lingand of

which we call stress-free boundary conditions, with referencé (dashedl

to similar conditions in hydrodynamics. . . . . .
We integrate the Kuramoto-Sivashinsky equation usingVe" its reflection symmetrig$or reflexions with respect to
he center of the domainAs in the experiments, here we

explicit finite differences of first order in time, second order _.

in space for the linear terms, and fourth order in space forth‘fz’lndt _that Ith?havt?hr/ag;_ patterns ldlsplayt;hese remamlrt]tg Sym-
nonlinear term. The time step is chosen sufficiently small tgnetrnes. m the two-dimensional case the average pattern re-
avoid any spurious behavior. The number of grid points use overs also the square sym_metry.of the integration domain
is 128 in one-dimensional simulations and>6&4 in two Fig. 3). Except for the one-dimensional case with stress-free

dimensions. In all cases, the simulations were started frorﬁ]oundary conditio_n$Fig. .l)’ an ov_erall parabolic proﬁl_e of
random initial conditions’ e average front is obtainddee Figs. 2-}4 For the deriva-

We are interested in the average patterru@ind the av- tiveua mean slope is 0btaine§ﬂi3]_. This_ parabalic profile IS
erage pattern of the front of h, a peculiarity of the !(urgmoto—Swashlnsky. equation. It can
be removed by considering the second derivative of the front
1 (L ¢ instead ofe itself; for this variable(and for the Laplacian
e(X,t)=h(x,t)— fj h(x,t)dx. (7) in two dimensiony the discussion for all the cases is very
0 similar to the one-dimensional stress-free situation that we

To optimize the measurements of the average, the samplinagd(lj:rigife'nSfU;;:)%\rlsd?ﬁz" ;T/;?aeg;er;:;?ér;gsog gopaarr)gi_

was first started well beyond the initial transient behavior. 100. The number of oscillations increases with the size of
For the system sizes considered, the typical transient time :

was limited to approximately 20 time units, and we dis-

carded the first 100 time units. Then, averages where taken 2l @ i
from configurations sampled every five time units. A total of
10 000 configurations per run were included, and further av- 0r ]
erage over 10 runs with independent random initial condi- o
tions was performed. This is a large sample, but was neces- -2r 1
sary to compensate for the slow convergence of the averages
produced by the long-range time correlations present in the 4t .
KS equation. -
At (®)
Ill. RESULTS Y VT
In both one and two dimensions and with both rigid and i -1k _
stress-free boundary conditions we obtain nontrivial and or- g
dered time-averaged patterns from the spatiotemporally cha- ol i
otic evolution(Figs. 1-5, emphasizing that the formation of

average patterns in spatiotemporal complex systems is gen-
eral despite the presence of very large fluctuations. The pres-
ence of boundaries breaks the translational symmetry of the
equations. The boundary conditio3)—(6) respect, how- FIG. 2. The same as Fig. 1 but for rigid boundary conditions.

0 10 20 30 40 50 60 70

X



2824 V. M. EGUILUZ et al. PRE 59

1.5 ‘
1.0
0.5
A
S
g 0.0
-0.5
-1.0
_1.5 L L 1 L L
FIG. 3. Results from simulations of the two-dimensional 0 10 20 30 40 350 60
Kuramoto-Sivashinsky equation with stress-free boundary condi- X
tions. System sizé XL=70X70. Left: A characteristic instanta-
neous image of the fronp (t=1000), different values ob are 1.0 b‘
coded with different gray levels. Right: The averagé/éfo, show- 05" (b) |
ing the square symmetry. The average of the Laplacian instead of :
the front itself is shown to eliminate the dominant parabolic shape
of the average, thus improving the visibility of the sidewall oscilla- A 0.0
tions. \9/'
-0.5
the system, although only those close to the boundaries are 1.0
large. Furthermore, the distance between consecutive ’
maxima is closgbut not equal, see belgvio the character- -1.5 ‘ ‘ ‘ ‘
istic length scale\y~8.9. Similar observations were done in 0 20 40 60 80 100

the experiments referred to at the beginning. In Fig. 6 the
number of local maxim# in the average front is shown for
increasing values of the aspect raltibhy. N is written in FIG. 5. Average patterns of the froptfor the one-dimensional
terms of the average distande between two consecutive Kuramoto-Sivashinsky equation with stress-free boundary condi-
minima, N=L/\. The line where. =\ is also indicated in tions.(a L=60.(b) L=100. The arrows indicate the central region,
Fig. 6. Plateaus are obtained at every intelyebetween 6  as defined in the text.

and 11 for system sizds between 59 and 112. The average _ ) o

distance\ is consistently larger than,. Consistent devia- find the number of maximh/\ . characteristic for the central

tions (positive or negativieare also known from the Faraday "€9ion. The results are shown in Fig. 6. Intriguingly, the
wave experimentfl]. plateaus now fall off, an observation also done in experimen-

If only the central region is considered, the plateaus falltal Studies of the central regidi]. In order to explain this
off. More specifically, consider the “central region,” defined falloff” effect, we determine the average distaneg, be-

as the domain ranging from the second local minimum to théwWeen minima in the boundary regions. Over the entire range
second last local minimum af (see Fig. 5. The rest of the ©Of System sizes considered, these distances change very little,

the pattern is thus considered the “boundary region.” Wenot more than 4%, so that to a first approximation we can
now determine the average distanebetween consecutive consider\, independent of. For the central region we now
minima in the central region for various system sizesand have
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* FIG. 6. +: The number of maximaN=L/\ in the avs front

FIG. 4. (a) A central horizontal cut of the configuration shown versus the aspect ratid\,, \ being the average distance between
in the left panel of Fig. 3(b) Solid: a central horizontal cut of the consecutive minima in the entire regiofr.: the number of maxima
time average of the fronp for the same parameter values; dashed:in the central region, given bly/\.. The solid line corresponds to
the same cut for the time average @f. N=N\g.
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The last approximation is valid fox,/L small. For\y con- 0.50

stant, it is seen thdt/\ falls off as ~L ™! within a given

plateau characterized By. Thus an almost constant value of 045 .

\p Serves as a generic explanation for the generally observed

fall off of the plateaus. The overall picture is that whelis 2

) - . E040 |

increased the total number of oscillations tends to remain

constant, as well as,, so that\. increases. This situation <

continues until the local wavelength in the central region is 035 1

far enough from\y, moment at which a new oscillation is

accommodated and a jump hoccurs. 0.30 . ‘ .
From Fig. 5 it is clear that the amplitud&(x) of the 60.0 70.0 80.0 200 1000

average pattern in general decays with increasing distance L

from the boundarie14]. Experimental studies show the g 7. variation of the root mean square amplitdle,, over
same behaviof1—-4]. To quantify this observation, we con- the range of system sizes 62 < 107. The solid curve is the func-
sider the spatial averagé\?)=L"'fsA?dx. The variation  tjon c/\L, with C fitted to the data.
of Arms= V(A?) with system size is shown in Fig. 7, showing
a power-law dependence ds,s~L "2 We explain this have determined the selected wavelengthits variation
fact by noting that Fig. 5 indicates tha#,s receives its with system sizel, and interpreted the different behavior
largest contribution from the boundaries, so that the integrabetween the central and boundary regions. Most of these
in the definition of{ A%) becomes a constant for system sizesobservations are also found in experimental systems for
larger than the boundary region. Thus the fadtor in the  which the Kuramoto-Sivashinsky equation does not apply,
definition of (A%) becomes the dominahtdependence thus thus indicating its generic, mainly geometrical, origin: What
providing the observed behavior 8f. is relevant for these phenomena to occur is the occurrence of
In conclusion, we have established the formation of or-strong enough chaotic fluctuations in the presence of non-
dered time-averaged patterns in the Kuramoto-Sivashinskyivial boundaries.
equation, in one and two dimensions, and with rigid as well
as stress-free boundary conditions. The average pattern re-
covers the symmetries, which are respected by both the equa-
tion and the boundary conditions. The amplitude is strongest We acknowledge the financial support of the Spanish Di-
at the boundaries and decays with increasing distance t@ccion General de InvestigaaioCientfica y Tecnica under
them. The law of decay has been found and explained. WE€ontract Nos. PB94-1167 and PB94-1172.
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