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Average patterns of spatiotemporal chaos: A boundary effect
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Chaotic pattern dynamics in many experimental systems show structured time averages. We suggest that
simple universal boundary effects underly this phenomenon and exemplify them with the Kuramoto-
Sivashinsky equation in a finite domain. As in the experiments, averaged patterns in the equation recover
global symmetries locally broken in the chaotic field. Plateaus in the average pattern wave number as a
function of the system size are observed and studied and the different behaviors at the central and boundary
regions are discussed. Finally, the structure strength of average patterns is investigated as a function of system
size.@S1063-651X~99!00103-8#

PACS number~s!: 05.45.2a, 47.54.1r
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I. INTRODUCTION

Experimental studies of the chaotic pattern dynamics
Faraday waves@1,2#, in rotating thermal convection@3#, and
in electroconvection@4#, reveal that spatiotemporal comple
patterns can have surprisingly ordered time averages.
form of these average patterns~square, circular, hexagona!
is determined by the underlying symmetry@5,6# imposed by
the boundary conditions. Although the instantaneous patt
fluctuate chaotically, they are biased towards the aver
pattern because they have short-lived patches spatiall
phase with this average. This phase rigidity seems to co
from the boundaries, and quantization effects appear du
the finite size of the container. The amplitude of the tim
averaged pattern depends on the system size and contro
rameters. It is strongest near the sidewalls, and decays
increasing distance from the sidewalls and with increas
fluctuations about the ordered averaged state. For very l
containers the ordered average pattern exists only nea
sidewalls.

Given the general features of average patterns sugge
by experiments, it seems surprising that their possible e
tence and characterization have not been addressed w
the standard model equations displaying spatiotemporal
otic states@7#. One possible reason for this is that period
boundary conditions are usually considered in theoret
studies. In such situation spatial translational invariance
mogenizes out any time average~unless some unexpecte
ergodicity breaking takes place!. Boundary conditions break
ing translational symmetry, as in the experiments, are t
needed to obtain nontrivial average patterns. Motivated
this fact, we here consider the Kuramoto-Sivashinsky eq
tion, one of the prototype equations showing spatiotemp
chaos, in bounded one- and two-dimensional domains.
show that ordered average patterns do appear, despite
strong fluctuations, and we discuss the universal aspec
wave number selection and amplitude variations. More
rectly, our analysis of average patterns may be relevant
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suggestive for experiments on phase turbulence in con
tion cells @8#, fluids flowing down an inclined wall@9#, and
flame front propagation@10,11#.

II. THE KURAMOTO-SIVASHINSKY MODEL

The Kuramoto-Sivashinsky equation@8,12# is perhaps the
simplest partial differential equation exhibiting spatiotemp
ral chaos. The equation in one dimension has the form

ht52hxx2hxxxx1~hx!
2, ~1!

whereh5h(x,t) is a real function,xP@0,L#, and the sub-
scripts stand for derivatives. In two dimensions the spa
derivative is replaced by a gradient and the second deriva
by a Laplacian. The only control parameter for the equat
is the length of the domainL; prefactors to the terms in Eq
~1! can be scaled out. An equivalent equation foru5hx can
be obtained by taking the derivative of Eq.~1! with respect
to x,

ut52uxx2uxxxx12uux . ~2!

Equation ~1! possesses translational symmetries (h→h
1h0 , x→x1x0) a reflexion symmetry (h→h, x→2x),
and an infinitesimal Galilean symmetry (x→x12vt, h→h
1vx). Equation ~2! is also invariant under translation
(u→u, x→x1x0) and under a Galilean symmetry (x→x
12vt, u→u1v). A different reflexion symmetry is valid in
this case (u→2u, x→2x).

The stability of the laminar solutionh50 (u50) is ana-
lyzed by linearizing Eq.~1! @Eq. ~2!#. For commonly used
boundary conditions the growth ratem for the Fourier mode
of wave numberk is m5k22k4. In two dimensionsk2 is
replaced byuku2. The laminar solution is unstable for a
modes within 0,k,1. The fastest growing mode has
wave numberk051/A2 corresponding to a wavelengthl0

52A2p'8.9. The wavelengthl0 serves as a basic lengt
scale, and the system sizeL is naturally measured in units o
this scale,L/l0 , which is called the aspect ratio. Beyond th
linear range, the nonlinear term becomes important and
duces growth~linear in time! of the mean value ofh, while
the mean value ofu saturates. ForL large enough to permit a
2822 ©1999 The American Physical Society
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sufficient number of unstable Fourier modes, the solut
exhibits spatiotemporal chaotic behavior that can be ass
ated with a disordered evolution of a cellular pattern.

Many studies have been devoted to the bulk behavio
the Kuramoto-Sivashinsky system@7#. In relation to average
patterns however the boundaries are of paramount im
tance, as discussed above. Here, we consider two type
boundary conditions. One of them is the rigid boundary c
ditions, where

u~0,t !5u~L,t !5ux~0,t !5ux~L,t !50, ~3!

or equivalently,

hx~0,t !5hx~L,t !5hxx~0,t !5hxx~L,t !50. ~4!

Our other choice of boundary conditions is

u~0,t !5u~L,t !5uxx~0,t !5uxx~L,t !50, ~5!

or equivalently,

hx~0,t !5hx~L,t !5hxxx~0,t !5hxxx~L,t !50, ~6!

which we call stress-free boundary conditions, with refere
to similar conditions in hydrodynamics.

We integrate the Kuramoto-Sivashinsky equation us
explicit finite differences of first order in time, second ord
in space for the linear terms, and fourth order in space for
nonlinear term. The time step is chosen sufficiently smal
avoid any spurious behavior. The number of grid points u
is 128 in one-dimensional simulations and 64364 in two
dimensions. In all cases, the simulations were started f
random initial conditions.

We are interested in the average pattern ofu and the av-
erage pattern of the frontw of h,

w~x,t !5h~x,t !2
1

LE0

L

h~x,t !dx. ~7!

To optimize the measurements of the average, the samp
was first started well beyond the initial transient behavi
For the system sizes considered, the typical transient t
was limited to approximately 20 time units, and we d
carded the first 100 time units. Then, averages where ta
from configurations sampled every five time units. A total
10 000 configurations per run were included, and further
erage over 10 runs with independent random initial con
tions was performed. This is a large sample, but was ne
sary to compensate for the slow convergence of the aver
produced by the long-range time correlations present in
KS equation.

III. RESULTS

In both one and two dimensions and with both rigid a
stress-free boundary conditions we obtain nontrivial and
dered time-averaged patterns from the spatiotemporally
otic evolution~Figs. 1–5!, emphasizing that the formation o
average patterns in spatiotemporal complex systems is
eral despite the presence of very large fluctuations. The p
ence of boundaries breaks the translational symmetry of
equations. The boundary conditions~3!–~6! respect, how-
n
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ever, its reflection symmetries~for reflexions with respect to
the center of the domain!. As in the experiments, here w
find that the average patterns display these remaining s
metries. In the two-dimensional case the average pattern
covers also the square symmetry of the integration dom
~Fig. 3!. Except for the one-dimensional case with stress-f
boundary conditions~Fig. 1!, an overall parabolic profile of
the average front is obtained~see Figs. 2–4!. For the deriva-
tive u a mean slope is obtained@13#. This parabolic profile is
a peculiarity of the Kuramoto-Sivashinsky equation. It c
be removed by considering the second derivative of the fr
w instead ofw itself; for this variable~and for the Laplacian
in two dimensions! the discussion for all the cases is ve
similar to the one-dimensional stress-free situation that
address in further detail in the remaining of the paper.

Figure 5 shows the average patterns forL560 and L
5100. The number of oscillations increases with the size

FIG. 1. Results from simulations of the one-dimension
Kuramoto-Sivashinsky equation with stress-free boundary co
tions. System sizeL570. ~a! A characteristic frontw at time t
51000.~b! The time average of the frontw ~continuous line! and of
u ~dashed!.

FIG. 2. The same as Fig. 1 but for rigid boundary condition
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2824 PRE 59V. M. EGUÍLUZ et al.
the system, although only those close to the boundaries
large. Furthermore, the distance between consecu
maxima is close~but not equal, see below! to the character-
istic length scalel0'8.9. Similar observations were done
the experiments referred to at the beginning. In Fig. 6
number of local maximaN in the average front is shown fo
increasing values of the aspect ratioL/l0 . N is written in
terms of the average distancel between two consecutiv
minima,N5L/l. The line wherel5l0 is also indicated in
Fig. 6. Plateaus are obtained at every integerN between 6
and 11 for system sizesL between 59 and 112. The avera
distancel is consistently larger thanl0 . Consistent devia-
tions ~positive or negative! are also known from the Farada
wave experiments@1#.

If only the central region is considered, the plateaus
off. More specifically, consider the ‘‘central region,’’ define
as the domain ranging from the second local minimum to
second last local minimum ofw ~see Fig. 5!. The rest of the
the pattern is thus considered the ‘‘boundary region.’’ W
now determine the average distancelc between consecutive
minima in the central region for various system sizesL, and

FIG. 3. Results from simulations of the two-dimension
Kuramoto-Sivashinsky equation with stress-free boundary co
tions. System sizeL3L570370. Left: A characteristic instanta
neous image of the frontw (t51000), different values ofw are
coded with different gray levels. Right: The average of¹2w, show-
ing the square symmetry. The average of the Laplacian instea
the front itself is shown to eliminate the dominant parabolic sh
of the average, thus improving the visibility of the sidewall oscil
tions.

FIG. 4. ~a! A central horizontal cut of the configuration show
in the left panel of Fig. 3.~b! Solid: a central horizontal cut of the
time average of the frontw for the same parameter values; dash
the same cut for the time average ofwx .
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find the number of maximaL/lc characteristic for the centra
region. The results are shown in Fig. 6. Intriguingly, t
plateaus now fall off, an observation also done in experim
tal studies of the central region@1#. In order to explain this
‘‘falloff’’ effect, we determine the average distancelb be-
tween minima in the boundary regions. Over the entire ra
of system sizes considered, these distances change very
not more than 4%, so that to a first approximation we c
considerlb independent ofL. For the central region we now
have

L

lc
5~N24!

L

L24lb
.N14S ~N24!lb

L
21D . ~8!

l
i-

of
e

:

FIG. 5. Average patterns of the frontw for the one-dimensiona
Kuramoto-Sivashinsky equation with stress-free boundary co
tions.~a! L560. ~b! L5100. The arrows indicate the central regio
as defined in the text.

FIG. 6. 1: The number of maximaN5L/l in the avs front
versus the aspect ratioL/l0 , l being the average distance betwe
consecutive minima in the entire region.L: the number of maxima
in the central region, given byL/lc . The solid line corresponds to
l5l0 .
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The last approximation is valid forlb /L small. Forlb con-
stant, it is seen thatL/lc falls off as ;L21 within a given
plateau characterized byN. Thus an almost constant value
lb serves as a generic explanation for the generally obse
fall off of the plateaus. The overall picture is that whenL is
increased the total number of oscillations tends to rem
constant, as well aslb , so thatlc increases. This situation
continues until the local wavelength in the central region
far enough froml0 , moment at which a new oscillation i
accommodated and a jump inN occurs.

From Fig. 5 it is clear that the amplitudeA(x) of the
average pattern in general decays with increasing dista
from the boundaries@14#. Experimental studies show th
same behavior@1–4#. To quantify this observation, we con
sider the spatial averagêA2&5L21*0

LA2 dx. The variation
of Arms5A^A2& with system size is shown in Fig. 7, showin
a power-law dependence asArms;L21/2. We explain this
fact by noting that Fig. 5 indicates thatArms receives its
largest contribution from the boundaries, so that the integ
in the definition of̂ A2& becomes a constant for system siz
larger than the boundary region. Thus the factorL21 in the
definition of ^A2& becomes the dominantL dependence thu
providing the observed behavior ofArms.

In conclusion, we have established the formation of
dered time-averaged patterns in the Kuramoto-Sivashin
equation, in one and two dimensions, and with rigid as w
as stress-free boundary conditions. The average patter
covers the symmetries, which are respected by both the e
tion and the boundary conditions. The amplitude is strong
at the boundaries and decays with increasing distanc
them. The law of decay has been found and explained.
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have determined the selected wavelengthl, its variation
with system sizeL, and interpreted the different behavio
between the central and boundary regions. Most of th
observations are also found in experimental systems
which the Kuramoto-Sivashinsky equation does not app
thus indicating its generic, mainly geometrical, origin: Wh
is relevant for these phenomena to occur is the occurrenc
strong enough chaotic fluctuations in the presence of n
trivial boundaries.
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FIG. 7. Variation of the root mean square amplitudeArms over
the range of system sizes 59,L,107. The solid curve is the func
tion C/AL, with C fitted to the data.
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