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Energy distribution of maxima and minima in a one-dimensional random system
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We study the energy distribution of maxima and minima of a simple one-dimensional disordered Hamil-
tonian. We find that in systems with short-range correlated disorder there is energy separation between maxima
and minima, such that at fixed energy only one kind of stationary point is dominant in number over the other.
On the other hand, in the case of systems with long-range correlated disorder maxima and minima are
completely mixed.@S1063-651X~99!14703-2#

PACS number~s!: 05.40.2a, 75.10.Nr
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When the statistical properties of a system are stud
great attention is usually devoted to its ground state an
the first excited states. Moreover, in the case of random
tems it is known that, in addition to the lowest-energy sta
also metastable states are important, especially for the
namical evolution of the system. As a consequence,
physical understanding of disordered models is most of
time founded on the properties of absolute as well as lo
minima of the Hamiltonian, while the role of stationar
points of different nature is in general disregarded. In spite
this, the conviction is growing up that stationary points d
ferent from minima do have an importance, both from a d
namical and a static point of view.

Many different disordered systems display an o
equilibrium dynamical behavior which is suitable to be inte
preted in terms of nontrivial structure of their phase spa
Among these we find structural glasses@1#, spin glasses
@2,3#, random manifolds@4#, and neural networks@5#. In all
these cases the geometric structure of the energy landsca
often invoked in order to give at least an intuitive picture
the relaxational dynamics. In this context it is clear that a
unstable stationary points must be taken into considerat
For instance, the presence of flat directions in the ph
space, marking a borderline between the last stable min
and the first unstable saddles, has been proposed as a
sible explanation of slowness in glassy systems@6–8#.

In light of these considerations, we believe it is importa
to understand the connections between the physical pro
ties of a disordered system and the geometrical structur
all the stationary points of its Hamiltonian. Unfortunately,
is in general very difficult in anN-dimensional model to
discriminate the stationary points according to their deg
of instability. In this paper we will thus focus on a simp
one-dimensional case and exactly compute the average
ergy distributions of maxima and minima. We will find
simple connection between the nature of the disorder
rules the physics of the system and the mutual distributi
of the stationary points. Despite its simplicity, we expect
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model studied here to capture at least some of the main
tures of more general problems.

Let us consider the one-dimensional random Hamilton
@9,10#,

H~x!5 1
2 mx21V~x!,

where the positionx is a real variable and the massm is a
parameter.V(x) is a Gaussian random potential, with ze
average and varianceV(x1)V(x2)5G(x12x2), with G(x)
5G(2x). The statics and the dynamics of this model ha
been studied both for the one-dimensional case@10# and for
the more generalN-dimensional case@11–13#.

The number of stationary points ofH is determined by the
competition between the random potential and the harmo
mass term. This number is large for smallm, whereas only
one single minimum is present at largem. The physical prop-
erties of this model are encoded in the functionG. In order to
understand its meaning we consider the average displ
ment @D(d)#25@V(x1)2V(x2)#252G(0)22G(d), where
d5(x12x2) is the distance. Once introducedD it is natural
to define two different classes of random potentials. IfD(d)
goes to a finite valueD(`) for d→`, then the memory is
lost after a finite distance andV is calledshort range~SR!.
On the other hand, ifD(d);dg(g.0), then the displace-
ment grows indefinitely withd and the potential islong
range ~LR!. In the SR case we can assume without loss
generality thatG(x) is a positive even function which is zer
at infinity, so thatD(`)5A2G(0). In the LRcase we have
to be more careful, since a diverging displacement wo
requireG(d)→2` for d→`, which is incompatible with
the condition of having a positive kernel in the function
distribution ofV. In order to correctly define the LR mode
we must put the system in a box of sizeL and defineGL(x)
through its Fourier transform,

GL~x!5
1

pE1/L

`

dqĜ~q!eiqx. ~1!

The function Ĝ(q) must be positive and for the LR cas
must benot integrable in zero. In order to avoid any ultra
violet divergence we can assume both for the SR and
casesĜ(q) to decay at infinity faster than any power. W
can thus define these two classes of models simply in te

s.
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of the behavior ofĜ at zero momentum. In this way the LR
case is well defined:DL(d) increases indefinitely withd and
VL(x)25GL(0) diverges withL, as expected, since in a LR
random potential the uncertainty on the heightV of one
single pointx increases with the sizeL of the system, while
it remains finite in a SR potential. Our analysis will not d
pend on the explicit form ofĜ.

Let us denote byN k
V(E,m)dE, the number of stationary

points ofH(x) with degree of instability equal tok (k50 for
minima, k51 for maxima!, which have energy betweenE
andE1dE, for a given massm. The superscriptV indicates
that this distribution corresponds to the sampleV. Eventually
we shall average overV. The distributionN k

V(E,m) is given
by

N k
V~E,m!5E dxd~H8!d~H2E!uH9ud„u~2H9!2k….

In order to handle the modulus and theu function we use the
following relations:

u~2H9!5
1

2p i
lim
e→0

@ ln~H92 i e!2 ln~H91 i e!#,

~2!
uH9u5 lim

e→0
~H91 i e!1/2~H92 i e!1/2.

Using an integral representation for thed function, we can
write,

I[uH9ud@u~2H9!2k#5E dmeikm~H91 i e!~1/2!1~m/2p!

3~H92 i e!~1/2!2~m/2p!.

The last two factors can be rewritten using the identity

~H96 i e!n65E dx̄6
b dx6

b expS 2 (
b51

n6

x̄6
b ~H96 i e!x6

b D ,
e

th
wherex̄6
b andx6

b are Grassmann variables and the analy
continuationn6→(1/26m/2p) must be done. As a next ste
we define the Grassmann vector@15#:

ca[~x1
1 . . . x

1

n1 ,x2
1 . . . x

2

n2!,

which allows us to write

I 5E dmeikmE dc̄adca expS 2 (
a51

n

c̄a~H91 i ea!caD ,

where the vectorea is split into two parts:ea5e for a
<n1 , ea52e for a.n1 , andn5(n11n2)→1. Note that
this replica approach can be easily generalized toN dimen-
sions.

Let us introduce in the expression forN k
V the Lagrange

multipliers l and v, to represent respectivelyd(H8) and
d(H2E). The V-dependent part then becomes exp@(iv
1il]x2c̄aca]x]x)V(x)#, which can be averaged over th
Gaussian distribution ofV. This produces a quartic term
((ac̄aca)2, that can be made quadratic by means of
Hubbard-Stratonovich transformation, introducing an aux
iary variabley. It is now possible to perform all the Gaussia
integrals over (l,x,c). This gives a term (m1y
1 i e)1/21m/2p(m1y2 i e)1/22m/2p, which, using again rela-
tions ~2!, can be written asum1yu exp@2imu(2m2y)#. Inte-
grating overm we finally obtain the average distribution
Nk(E,m)[N k

V(E,m),

N0~E,m!5E
2m

1`

dyF~y,E,m!, ~3!

N1~E,m!5E
2`

2m

dyF~y,E,m!, ~4!

with
F~y,E,m!5
um1yu

Am

e2~y2/2a2!

A2pa2

3E dv

2p

exp@2 1
2 ~a02a1

2/a2!v21 ivE1 ivya1 /a2#

Am1 ia1v
, ~5!
l

ses
s-
he

the
wherea05G(0), a152G9(0), anda25G99(0). Thedif-
ference D(E,m)5N0(E,m)2N1(E,m) between minima
and maxima has a much simpler expression,

D~E,m!5
1

Am
E dv

2p
Am1 ia1ve2~1/2!a0v21 ivE.

By integrating Eqs.~3! and ~4! over the energy we get th
total number of minima and maxima,N0(m) andN1(m), at
a given value of the mass. Note that, as required by
Morse theorem@14#, the total number of minima minus
e

maxima is equal to one, that isN0(m)2N1(m)
5*dED(E,m)51. The explicit expression for the tota
number of minima is

N0~m!5 1
2 1 1

2 erfS m

A2a2
D 1

1

m
A a2

2p
expS 2

m2

2 a2
D .

N0(m) is a smooth function ofm which goes to one whenm
goes to infinity and starts increasing very steeply at mas
smaller thanm;Aa2. This value of the mass marks a cros
over from the region where only one minimum exists to t
region where many different minima~and maxima! appear.
As expected this mass is the same critical mass as
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N-dimensional mean-field case,mc5Aa2/3, where a glassy
transition occurs@10,12#. In the following we will always
considerm,mc .

We analyze now our results, starting with the SR pot
tial. In Fig. 1 we plotN0(E,m), N1(E,m) and D(E,m)
functions of the energyE, for m,mc . The first thing we
notice is that the two curves of minima and maxima are qu
separated one with respect to the other, so that their peak
not overlap. As a consequenceD(E,m) gives by itself a
rather clear picture of the distribution of the different statio
ary points and at low energies it approximates w
N0(E,m). This is important becauseD is always very
simple to compute, beingD(E,m)5*dxd(H8)H9d(H
2E). Thus, the computation of this quantity does not requ
the modulus, nor theu function, which are in general ver
difficult to treat. In other words, in the SR case there is
partial decoupling between maxima and minima, which
sharper the lower the energy. As a consequence, at fi
energy only one kind of stationary points is dominant ov
the other andN0(E,m);D(E,m), for low enoughE. It is
remarkable that this holds for the SR potential. Indeed, it
been proved in@7# that in theN-dimensionalp-spin spherical
spin glass, which belongs to the SR class@12#, an identical
phenomenon occurs: in that mean-field model, besi
minima and maxima there are saddles of any order, bu
fixed energy only one kind of stationary points is domina
over the other, so that the number of minima of the me
field free energy~and therefore of states! can be safely cal-
culated via the approximationN0(E);D(E). We note that
this same approximation has been used many times in
context of spin glasses, regardless of its grounding@16#.

Let us now turn to the LR potential. We stress that t
model is defined as long range~and thus it is different from
the SR case! only in the limit L→`. From Eq.~1! we know
that a05GL(0)5V(x)2 diverges with L. As mentioned
above, the physical meaning of this is that the uncertainty
the value ofH in any pointx diverges whenL goes to infin-
ity. As a consequence, the energyE is no longer a good
variable to label the height of the stationary points. In ord
to keep everything well defined in the limitL→` it is thus

FIG. 1. SR potential:N0(E,m), N1(E,m), andD(E,m), func-

tions of the energyE, at m,mc . HereĜ(q)5e2q.
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necessary to measure the energy in units of the natura
verging scale, that is,Aa0. Therefore, we must define a re
caled energyE5E/Aa0 and study the distributions o
maxima and minima as functions ofE. Denoting these new
distributions by P0 and P1 , we have, Pk(E,m)dE
[Nk(E,m)dE. We stress thatE is the only variable we can
sensibly regard as the energy for the LR potential. Note,
the other hand, that this rescaling is irrelevant for the
case, wherea0 is finite. Taking the limitL→` in Eq. ~5! we
find,

P0,1~E,m!→N0,1~m!
1

A2p
e2~1/2!E 2

. ~6!

This equation shows that in the LR case the two distributio
are just thesamefunction, scaled by the total numberN0(m)
or N1(m). Maxima and minima are no longer separated
energy. Indeed, form!mc , we haveN0(m)/N1(m);1 and
the two curves collapse, one onto the other. The conclus
is that when the total number of stationary points is large
a LR system, maxima and minima are completely mix
together, so that at each given energy they are equally
merous. Thus, in stark contrast to the SR case, no decoup
of the stationary points occurs, no matter how low the e
ergy.

A further step is necessary to prove that this mixing in t
LR case is atypical behavior and not simply an artifact com
ing from the average. Indeed, it is possible to think of
system where sample by sample maxima and minima
well separated, but where the mixing described above
pears only after averaging over different samples. As an
ample, we consider the family of HamiltoniansHw(x)
5sin(x)1w, wherew is a random variable with zero averag
and variances. It is clear that for each sample maxima an
minima are perfectly separated, sinceN 0,1

w (E)5d(E61
2w). However, averaging overw we obtain two distribu-
tions with separation between their averages equal to 2
variances. Thus, if we rescale the energy by a factorAs and
take the limits→`, we would conclude that there is mixin
between maxima and minima, which is sample by sam
false.

In order to prove that the LR potential does not cor
spond to such an artifact, we consider the statistics of
extreme values of the Hamiltonian. Let us define t
two distributions A0(E)[d(E2EMIN) and A1(E)
[d(E2EMAX), whereEMIN and EMAX are the energies o
the absolute minimum and maximum ofH(x) ~we consider
as absolute maximum the highest local maximum!. The
separation between these two distributions isDA
5EMAX2EMIN5^E&A1

2^E&A0
, and letS be their variance.

Consider now the ratioDA/AS. It is easy to see that in the
artificial case described above this ratio goes to zero w
the variance of the disorders goes to infinity, sinceDA is
finite, whereasSdiverges ass. On the other hand, for the LR
potential the ratioDA/AS remains finite in the limitL→`.
This is simple to prove exactly forg51/2, which corre-
sponds to a Brownian random potential of sizeL @9#. For the
general case the idea is that in a LR potential bothDA and
AS diverge asLg @17#, as can also be checked by means
numerical simulations. The divergence ofDA implies that
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the variance of the energy distribution of maxima a
minima issample by samplediverging as well withL. There-
fore, unlike what happens in the case of the artifact,
average scenario of the long-range potential, where max
and minima are completely mixed in energy,is the typical
one.

In this paper we have shown that the energy distribut
of maxima and minima in a one-dimensional random sys
is radically different whether the disorder is long-range
short-range correlated. An important issue is the extensio
this investigation toN dimensions, where we expect to find
qualitative similar behavior, at least at the mean-field lev

Indeed, as mentioned above, thep-spin spherical spin
glass is a clear example of anN-dimensional mean-field SR
system where at sufficiently low energies a decoupling
tween stationary points of different nature does occur. Mo
over, a crucial feature of this SR model is that the asympt
dynamical energy reached by the system is exactly the s
energy where the stationary points decouple@7#, and is larger
than the equilibrium one, so that the dynamics never get
the equilibrium landscape.

On the other hand, let us assume that for a
N-dimensional model a generalization of Eq.~6! is valid, so
that all the stationary points collapse on one single distrib
tion, since saddles of any degree of instability will b
bounded in energy by maxima and minima. This allows us
put forward the following hypothesis: if, as indicated by o
results, in a LR system there is no separation at all betw
different stationary points, then no decoupling energy c
exist, which means no energy level capable of trapping
ill-

,

es

int
e
a

n
m
r
of

.

-
-

ic
e

to

-

o

en
n
e

system. In such a situation we would expect the dynamic
reach the minimum available energy, that is, the equilibri
energy.

An evidence of this conjecture can be found in the cont
of mean-field models for spin glasses. Here two very diff
ent classes of systems exist, a first class where the dynam
energy is larger than the equilibrium one and a second c
where these two energies are the same. What has been
in @12#, is that the first class corresponds to systems with
disorder~as thep-spin model!, whereas to the second clas
belong LR disordered systems. This correspondence find
natural explanation in the framework we have depic
above: the inability of a SR system to dynamically reach
equilibrium energy is due to the existence of an energy le
below which stationary points of different nature are deco
pled, while this cannot happen in the LR case. As we h
tried to show in this paper, whether this decoupling occurs
not is information encoded in the energy distribution ofall
the stationary points.
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@11# M. Mézard and G. Parisi, J. Phys. A23, L1229~1990!; J. Phys.
I 1, 809 ~1991!.

@12# L.F. Cugliandolo, J. Kurchan, and P. Le Doussal, Phys. R
Lett. 76, 2390 ~1996!; L.F. Cugliandolo and P. Le Doussa
Phys. Rev. E53, 1525~1996!.

@13# S. Franz and M. Me´zard, Europhys. Lett.26, 209 ~1994!;
Physica A209, 1 ~1994!.

@14# B. Doubrovine, S. Novikov, and A. Fomenko,Geometrie Con-
temporaine~Mir, Moscow, 1982!.

@15# J. Kurchan~private communication!.
@16# For a discussion of this problem see J. Kurchan, J. Phys. A24,

4969 ~1991!, and references therein.
@17# G.R. Grimmett and D.R. Stirzaker,Probability and Random

Processes~Clarendon Press, Oxford, 1982!.


