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Energy distribution of maxima and minima in a one-dimensional random system
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We study the energy distribution of maxima and minima of a simple one-dimensional disordered Hamil-
tonian. We find that in systems with short-range correlated disorder there is energy separation between maxima
and minima, such that at fixed energy only one kind of stationary point is dominant in number over the other.
On the other hand, in the case of systems with long-range correlated disorder maxima and minima are
completely mixed[S1063-651X99)14703-3

PACS numbegs): 05.40—a, 75.10.Nr

When the statistical properties of a system are studiednodel studied here to capture at least some of the main fea-
great attention is usually devoted to its ground state and ttures of more general problems.
the first excited states. Moreover, in the case of random sys- Let us consider the one-dimensional random Hamiltonian
tems it is known that, in addition to the lowest-energy states|9,10],
also metastable states are important, especially for the dy-
namical evolution of the system. As a consequence, the H(x)=3mxX+V(x),
physical understanding of disordered models is most of the
time founded on the properties of absolute as well as locavhere the positiorx is a real variable and the massis a
minima of the Hamiltonian, while the role of stationary ParameterV(x) is a Gaussian random potential, with zero
points of different nature is in general disregarded. In spite ofiverage and variancé(x;)V(x;) =G(x;—X;), with G(x)
this, the conviction is growing up that stationary points dif- =G(—x). The statics and the dynamics of this model have
ferent from minima do have an importance, both from a dy-been studied both for the one-dimensional dd<# and for
namical and a static point of view. the more generdl-dimensional casgl1-13.

Many different disordered systems display an off- The number of stationary points bifis determined by the
equilibrium dynamical behavior which is suitable to be inter-competition between the random potential and the harmonic
preted in terms of nontrivial structure of their phase spacemass term. This number is large for smail whereas only
Among these we find structural glassgl, spin glasses one single minimum is present at lange The physical prop-
[2,3], random manifold$4], and neural networkgs]. In all erties of this model are encoded in the funct&nn order to
these cases the geometric structure of the energy landscapeuisderstand its meaning we consider the average displace-
often invoked in order to give at least an intuitive picture of ment [A(d)]?=[V(x;) — V(X,)]°=2G(0)—2G(d), where
the relaxational dynamics. In this context it is clear that alsad= (x;—x,) is the distance. Once introducédit is natural
unstable stationary points must be taken into considerationo define two different classes of random potentials\ ()

For instance, the presence of flat directions in the phasgoes to a finite valué («) for d—, then the memory is
space, marking a borderline between the last stable minimiast after a finite distance ard is calledshort range(SR).
and the first unstable saddles, has been proposed as a p@m the other hand, iA(d)~d?(y>0), then the displace-
sible explanation of slowness in glassy systé¢61s8]. ment grows indefinitely withd and the potential idong

In light of these considerations, we believe it is importantrange (LR). In the SR case we can assume without loss of
to understand the connections between the physical propegenerality thaGG(x) is a positive even function which is zero
ties of a disordered system and the geometrical structure @4t infinity, so thatA (=)= +2G(0). In the LRcase we have
all the Stationary pOintS of its Hamiltonian. Unfortunat6|y, it to be more careful, since a diverging disp|acement would
is in general very difficult in arN-dimensional model to  require G(d)— — for d—2, which is incompatible with
discriminate the stationary points according to their degregne condition of having a positive kernel in the functional
of instability. In this paper we will thus focus on a simple distribution of V. In order to correctly define the LR model

one-dimensional case and exactly compute the average e@e must put the system in a box of sizeand defineG, (x)
ergy distributions of maxima and minima. We will find a tnrough its Fourier transform,

simple connection between the nature of the disorder that

rules the physics of the system and the mutual distributions 1> . ‘
of the stationary points. Despite its simplicity, we expect the G (x)= ;L/quG(q)e'qx. 1
*Electronic address: a.cavagnal@physics.ox.ac.uk The functionG(q) must be positive and for the LR case

'On leave from Department of Physics, University of BuenosMUSt benotintegrable in zero. In order to avoid any ultra-
Aires, Argentina. Electronic address: j.garrahan1@physicsViolet divergence we can assume both for the SR and LR

ox.ac.uk casesG(q) to decay at infinity faster than any power. We
*Electronic address: i.giardinal@physics.ox.ac.uk can thus define these two classes of models simply in terms
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of the behavior ofs at zero momentum. In this way the LR where;[_’: andxl?: are Grassmann variables and the analytic

case is well definedA | (d) increases indefinitely witkd and
V|, (x)°=G,(0) diverges withL, as expected, since in a LR
random potential the uncertainty on the heightof one
single pointx increases with the size of the system, while

it remains finite in a SR potential. Our analysis will not de-

pend on the explicit form o6.

Let us denote by\/‘k’(E,m)dE, the number of stationary
points ofH(x) with degree of instability equal to (k=0 for
minima, k=1 for maximg, which have energy betwedn
andE+dE, for a given massn. The superscripV indicates
that this distribution corresponds to the samléeventually
we shall average ove¥. The distribution\')/(E,m) is given

by
NX(E,m)zf dx8(H") S(H—E)|H"|5(6(—H")—k).

In order to handle the modulus and théunction we use the
following relations:

O(—H")= %Iim[ln(H”—ie)—ln(H”+ie)],

e—0

2)
[H”|=lim (H"+ie)YAH"~ie)*.

e—0

Using an integral representation for tldefunction, we can
write,

|E|H”|5[9(—H”)_k]:J dMeikp(HII+i6)(1/2)+(;L/27T)
X(Hn_if)(lIZ)*(,uIZﬂ')'

The last two factors can be rewritten using the identity

(H"iie)“:f dx® dy®2 exp( -3

|m+ y| ef(y2/2a2)

continuatiomn .. — (1/2+ w/27) must be done. As a next step
we define the Grassmann vec{asb]:

Ya=(x% Xt ),

which allows us to write

|:fdﬂeikﬂf dy,dip, ex —Zl Ya(H +ie)) |,

where the vectore, is split into two parts:e,=¢€ for a
<n,, e;=—e€efora>n,, andn=(n,+n_)—1. Note that
this replica approach can be easily generalizell himen-
sions.

Let us introduce in the expression faf, the Lagrange
multipliers A and o, to represent respectively(H') and
6(H—E). The V-dependent part then becomes [gikp

+iNd— ild d)V(X)], which can be averaged over the
Gaussian distribution o¥. This produces a quartic term

(Z.¢a4,)%, that can be made quadratic by means of a
Hubbard-Stratonovich transformation, introducing an auxil-
iary variabley. It is now possible to perform all the Gaussian
integrals over X,x,#). This gives a term r+y
+ie)V2ru2m(m+y—ie)t2-#27  which, using again rela-
tions (2), can be written agm+y| exd —iuf(—m—y)]. Inte-
grating overu we finally obtain the average distributions

Nk(Evm)EN?(/(E!m)a

F(y,E,m)=

x| —
\/ﬁ \/2’7732 2m

whereay=G(0), a;=—G"(0), anda,=G""(0). Thedif-
ference D(E,m)=ANy(E,m)—N;(E,m) between minima
and maxima has a much simpler expression,

D(E,m)=

if 4o e (1Dag0?+i0E
Jm) 2mmr A |

By integrating Eqs(3) and (4) over the energy we get the
total number of minima and maxima/;(m) andA;(m), at

+ e
NoEm = [ ayFEm), @
Nl(Elm): f:oc dyF(y,E:m)' (4)
with
do exf — 3(ap—a?/a,) w’+iwE+inya, /a,] .
ym+iajw ' &
|
maxima is equal to one, that isNy(m)—N;(m)

=[dED(E,m)=1. The explicit expression for the total

number of minima is
m 1 [a, l{ m?
+ —\/—exp — =—
[2a,)] m N2 2a,

No(m) is a smooth function ofn which goes to one whem
goes to infinity and starts increasing very steeply at masses
smaller tharm~ \/a,. This value of the mass marks a cross-
over from the region where only one minimum exists to the

No(m)=13+ Zerf

a given value of the mass. Note that, as required by theegion where many different minim@nd maxima appear.

Morse theorem[14], the total number of minima minus

As expected this mass is the same critical mass as the
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4.0 ' ' . necessary to measure the energy in units of the natural di-
verging scale, that is/a,. Therefore, we must define a res-
caled energy&=E/\a, and study the distributions of
3.0 maxima and minima as functions 6f Denoting these new
distributions by P, and P,, we have, P(&m)dE
=N, (E,m)dE. We stress thaf is the only variable we can
20 sensibly regard as the energy for the LR potential. Note, on
the other hand, that this rescaling is irrelevant for the SR
/ case, wher@, is finite. Taking the limitL —« in Eq. (5) we
10 \ find,
0.0 \\‘ Po.(E,m)— N 1(”")L e~ (W2’ (6)
\\ - - y ) \/E
10 . . This equation shows that in the LR case the two distributions
-2.0 -1.0 0.0 E 1.0 2.0 3.0 are just thesamefunction, scaled by the total numhaf,(m)

or N;(m). Maxima and minima are no longer separated in

energy. Indeed, fom<m,, we haveNy(m)/N;(m)~1 and
the two curves collapse, one onto the other. The conclusion
is that when the total number of stationary points is large in
) ) ) a LR system, maxima and minima are completely mixed
N-dimensional mean-field casm.= JagTi where a glassy together, so that at each given energy they are equally nu-
transition occurd10,12. In the following we will always  merous. Thus, in stark contrast to the SR case, no decoupling
considerm<m. of the stationary points occurs, no matter how low the en-
We analyze now our results, starting with the SR potengrgy .
tial. In Fig. 1 we plotNo(E,m), Ni(E,m) and D(E,m) A further step is necessary to prove that this mixing in the
functions of the energ§, for m<mc. The first thing we | R case is aypical behavior and not simply an artifact com-
notice is that the two curves of minima and maxima are quit§ng from the average. Indeed, it is possible to think of a
Separated one with reSpeCt to the Other, so that their peaks @9stem where Samp'e by Samp'e maxima and minima are
not overlap. As a consequendE,m) gives by itself a well separated, but where the mixing described above ap-
rather clear piCture of the distribution of the different Station'pears 0n|y after averaging over different Samp|esl AS an ex-
ary points and at low energies it approximates wellample, we consider the family of Hamiltoniartd,(x)
No(E,m). This is important becaus® is always very  —sjn(x)+w, wherew is a random variable with zero average
simple to compute, beingD(E,m)=[dxs(H')H"6(H  and variancer. It is clear that for each sample maxima and
—E). Thus, the computation of this quantity does not requireminima are perfectly separated, singél (E)=S(E+1
the modulus, nor the function, which are in general very _,) However, averaging ovew we obtain two distribu-
difficult to treat. In other words, in the SR case there is ajons with separation between their averages equal to 2 and
partial decoupling between maxima and minima, whlch_ ISyariances. Thus, if we rescale the energy byafac{fE and
sharper the lower the energy. As a consequence, at fixedyq the Jimito— =, we would conclude that there is mixing

energy only one kind of stationary points is dominant OVelhatween maxima and minima, which is sample by sample
the other andV,(E,m)~D(E,m), for low enoughE. It is false.

remarkable that this hplds for the SR_potentia[. Indeed_, ithas |n order to prove that the LR potential does not corre-
been proved ifi7] that in theN-dimensionap-spin spherical  ¢,004 to such an artifact, we consider the statistics of the
spin glass, which belongs to the SR clgsg], an identical oyireme values of the Hamiltonian. Let us define the
phe_nomenon occurs: in that mean-field model, beside o distributions AO(E)E—é(E—EMW) and  A,(E)
minima and maxima there are saddles of any order, but atl ——— )
fixed energy only one kind of stationary points is dominant’,_ S(E—Ena), .vyhereE,v”N and Ewax are the energies of
over the other, so that the number of minima of the mean'-[he absolute minimum and maximum Hii(x) (we _con5|der
field free energyand therefore of statgsan be safely cal- 25 absplute maximum the highest Io_call mgxwmuﬁihe
culated via the approximatiaN,(E)~D(E). We note that separation between these two dIStI’IbutI.OnS .ISA
this same approximation has been used many times in thg Emax— Emin=(E)a, —(E)a,, and letSbe their variance.
context of spin glasses, regardless of its groundlir. Consider now the ratid A/\/S. It is easy to see that in the
Let us now turn to the LR potential. We stress that theartificial case described above this ratio goes to zero when
model is defined as long rangend thus it is different from the variance of the disorder goes to infinity, since\A is
the SR caseonly in the limitL—o. From Eq.(1) we know finite, whereasSdiverges ag. On the other hand, for the LR
that ao=G_(0)=V(x)? diverges with L. As mentioned potential the ratidAA/+/S remains finite in the limit.— .
above, the physical meaning of this is that the uncertainty orThis is simple to prove exactly fory=1/2, which corre-
the value ofH in any pointx diverges wher_ goes to infin-  sponds to a Brownian random potential of sizg9]. For the
ity. As a consequence, the ener§yis no longer a good general case the idea is that in a LR potential bt and
variable to label the height of the stationary points. In ordery/S diverge ad.” [17], as can also be checked by means of
to keep everything well defined in the limit—ce it is thus  numerical simulations. The divergence &R implies that

FIG. 1. SR potentialNVy(E,m), N;(E,m), andD(E,m), func-
tions of the energy, atm<m,. HereG(q)=e".
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the variance of the energy distribution of maxima andsystem. In such a situation we would expect the dynamics to
minima issample by sampldiverging as well with_. There-  reach the minimum available energy, that is, the equilibrium
fore, unlike what happens in the case of the artifact, theenergy.
average scenario of the long-range potential, where maxima An evidence of this conjecture can be found in the context
and minima are completely mixed in enerdy,the typical  of mean-field models for spin glasses. Here two very differ-
one. ~_ entclasses of systems exist, a first class where the dynamical
In this paper we have shown that the energy distributiorgnergy is larger than the equilibrium one and a second class
of maxima and minima in a one-dimensional random systenhere these two energies are the same. What has been noted
is radically different whether the disorder is long-range or;, [12], is that the first class corresponds to systems with SR
sh_or_t-rang_e cc_)rrelated_. An ir_nportant issue is the exten_sion Cﬂisorder(as thep-spin model, whereas to the second class
this investigation to\ dimensions, where we expect to find & pe|ong LR disordered systems. This correspondence finds its
qualitative similar be_hawor, at least at the mean.—fleld 'e_VQLnaturaI explanation in the framework we have depicted
Indeed, as mentioned above, tpespin spherical spin  ahoye: the inability of a SR system to dynamically reach its
glass is a clear example of ahdimensional mean-field SR ¢qyilibrium energy is due to the existence of an energy level
system where at sufficiently low energies a decoupling bepe|ow which stationary points of different nature are decou-
tween stationary points of (_Jllfferent nature does occur. Morg-med, while this cannot happen in the LR case. As we have
over, a crucial feature of this SR model is that the asymptotig ied to show in this paper, whether this decoupling occurs or

dynamical energy reached by the system is exactly the samgy; s information encoded in the energy distributionatif
energy where the stationary points decoufleand is larger  he stationary points.
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