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Walker diffusion method for calculation of transport properties of composite materials

Clinton DeW. Van Siclen*
Idaho National Engineering and Environmental Laboratory, Idaho Falls, Idaho 83415

~Received 5 August 1998!

The morphology of a multiphase microstructure greatly influences the macroscopic transport properties of
the composite material. These properties are shown to be related to the diffusion coefficient of a random
~nonbiased! walker. The proper diffusion rules are found by considering an isomorphic image of the micro-
structure in which distinct populations of walkers correspond to the phase domains, with the walker density of
a population proportional to the transport coefficient of the corresponding domain. To demonstrate the method,
it is applied to disordered two-phase percolating composites.@S1063-651X~99!14603-8#

PACS number~s!: 05.60.2k, 44.30.1v, 91.60.Pn, 66.30.2h
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A primary goal of materials physics is the discovery
relationships between the microstructure of a material and
macroscopic properties. Transport properties in particular
greatly influenced by the microstructure geometry, here c
sidered to be the phase distribution and phase domain m
phology. Classic examples of this dependence are the m
insulator system, which cannot conduct unless
conducting phase percolates, and porous media, where
pore size and pore-space connectedness and tortuosity d
mine the electrical resistivity and fluid permeability of o
bearing rock, and the efficacy of materials designed for
talysis or chemical separation.

Transport phenomena arise from the occurrence of
vector fields, sayE~r ! andJ~r !, that satisfy the set of equa
tions

“3E50, “•J50, J5s~r !E, E52“f. ~1!

The quantityf is a scalar potential, ands~r ! is the local
transport coefficient connecting the two local fields~and is a
second-rank tensor in general!. WhenE andJ are the electric
field and the current density, respectively,s is the electrical
conductivity of the material. Other pairs of vector fields a
connected by the dielectric constante, the magnetic perme
ability m, the thermal conductivityk, and the particle diffu-
sion coefficientD.

The local transport coefficients collectively produce t
measured transport coefficient which describes the trans
property for the material as a whole. The macroscopic tra
port coefficients are not generally simple functions of t
volume fractions of the phases present in the composite,
reflect the geometry of the microstructure as well.

Two general approaches to the calculation of macrosco
transport coefficients are found in the literature. In the fi
effective values or bounds are obtained from a statistical
scription of the microstructure@1#; in the second, ‘‘exact’’
values are calculated for a model system isomorphic with
microstructure. The latter approach is usually accomplis
by simply solving the set of equations~1! for a given applied
field E at the system boundary~or potential difference acros
the system!. The continuum medium is replaced by a ne
work of
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discrete circuit elements corresponding to thes~r !, and the
potentialf i at each nodei is found by solving a system o
coupled algebraic equations, each of which is a discreti
version of the equation,

“•@s~r !“f~r !#50. ~2!

With the f i in hand, the fieldJi at each node is easily ca
culated from the discretized version of the equation,

J~r !52s~r !“f~r !. ~3!

The macroscopic transport coefficients is then obtained
from the relation̂ J&5sE.

A rather different method for calculating exact values
transport coefficients is inspired by the Einstein relations
}D between the conductivitys of a material and the diffu-
sion coefficientD of the mobile electric charges. Schwar
and Banavar@2# obtained the conductivity of a conductin
pore-insulating grain system by measuring the displacem
over time of a walker diffusing randomly through the po
space while obeying ‘‘blind ant’’ boundary conditions at th
pore-grain interface. The ratio of the diffusion coefficien
for the walker in the pore space and the walker in a pur
conducting system, multiplied by the volume fraction of po
space, then equals the ratio of the conductivities for the po
grain and pure conductor systems. Bundeet al. @3# and Hong
et al. @4# calculated the composite conductivity of random
two-phase conducting systems by having the walker diff
randomly within each phase with diffusion coefficient pr
portional to the conductivity of that phase. They made
ansatzthat an attempted move across a domain bound
from phasei to phasej is accomplished with probability
D j /(Di1D j )5s j /(s i1s j ). The walker diffusion coeffi-
cientD, which is proportional to the composite conductivit
is then found from the walker displacement over a time t
equals the sum of time spent by the walker in each pha
This model for multi-phase systems was also used by To
chnik, Laing, and Wilson@5# and Kim and Torquato@6#, who
adapted the first-passage-time method to minimize the c
puter time required to track a walker diffusing within a larg
phase domain.

The present work also obtains the macroscopic trans
coefficients via a diffusing walker, but does not use the E
stein relation and so avoids theansatzmentioned above.
2804 ©1999 The American Physical Society
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While the method is developed here for discrete systems~or
digitized microstructures!, it is applicable to continuum sys
tems as well.

Consider a collection of noninteracting random walke
When a driving force2“f~r ! is imposed, a diffusion curren
densityJ~r ! is created, where

J~r !52D~r !r~r !“f~r ! ~4!

andD(r ) andr~r ! are the local walker diffusion coefficien
and local walker density, respectively. As this diffusio
equation resembles the transport equation~3!, the product
D(r ) r~r ! is identified with the local transport coefficien
s~r !. More specifically,D(r )r0(r )[s(r ), where r0(r ) is
the ~local! equilibrium walker density in the absence of
driving force.

Thus a connection is made between a composite c
prised of phase domains, each characterized by a trans
coefficient value, and an isomorphic configuration of walk
‘‘domains’’ or populations, each characterized by values
equilibrium walker density and walker diffusion coefficien
In analogy with the local relation above, the macrosco
transport coefficients equals the product of the averag
walker population̂ r0(r )& of the isomorph and the diffusion
coefficientD of a walker moving through the isomorph.

To maintain the equilibrium populations, the diffusin
walker must obey the principle of detailed balance. This
quires that the walker at sitei attempt a move in a randoml
chosen direction, and that the move to adjacent sitej be
successful with probabilitypi j 5r j

0/(r i
01r j

0). For the walker
diffusing within a domain,pi j 51/2, so that the timet i asso-
ciated with a move attempt is given by the relation

Di5
1

2d

l2

2t i
, ~5!

whereDi is the diffusion coefficient for the walker within th
domain,d is the dimension of the space, andl is the site
width ~or pixel size!.

In order that the walkertrajectory fully reflect the micro-
structure geometry, the local diffusion coefficientD(r ) is
everywhere set equal to 1@7#. Thus the walker at a sitei
attempts a move to a randomly chosen adjacent sitej during
the time intervalt5(4d)21 (l51 for convenience!; that
move is successful with probabilitypi j 5s j /(s i1s j ). The
walker diffusion coefficientD is then calculated from the
total displacement of the walker over the time correspond
to the number of attempted moves. The macroscopic tra
port coefficients5^s(r )&D, showing that the geometric as
pects of the microstructure are completely accounted fo
the parameterD. @But D is also a functional of the loca
valuess~r ! and so must be recalculated when those cha
even when the geometry does not. The exception to this
simple scaling of alls~r ! with no change in the geometry
which does not affectD.#

For a percolating conductor-insulator system, the pr
ciple of detailed balance is equivalent to the blind ant bou
ary condition. That this is the correct boundary conditi
~rather than the ‘‘myopic ant’’! is evident by considering the
conductivities of thin~one-dimensional! and thick ~three-
dimensional! straight conducting wires encased in insulatio
.
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The diffusion coefficientD of a walker in the thick wire is
unchanged when the walker trajectory is projected ont
one-dimensional space, and equals the diffusion coeffic
for the walker in the thin wire when the conductivities of th
two wires are equal. Thus the excursions of the walker in
thick wire transverse to the wire axis correspond to attem
by the blind walker in the thin wire to enter the insulator.

The conductivitys of a conductor-insulator system i
given bys/sC5fCD5fC8 D8, wheresC is the conductivity
of the conducting phase,fC andfC8 are the volume fractions
of the conducting phase and the percolating conductor c
ters~comprised of contiguous conducting sites!, respectively,
andD8 is the diffusion coefficient for walker diffusion on
percolating cluster. This same relation holds for a syst
containing an infinite superconducting cluster. Systems co
prised of separated, superconducting domains embedde
an ordinary conductor, however, are problematic, as th
domains absorb the walkers.

Perhaps surprisingly, this walker diffusion method bas
on walker populations gives results identical to those
tained by the method mentioned above that relies on anan-
satzfor moving a walker across a phase boundary. This f
lows from the fact that, for a given system and starting po
walkers in the two cases make identical trajectories oveN
attempted moves. For a total walker displacement ofR in a
two-phase system, the latter method gives

s5D5
1

2d

R2

@ntA1~N2n!tB#
, ~6!

wheren is the number of attempted moves from a site w
conductivitysA , andtA5(4dsA)21 andtB5(4dsB)21 are
the time increments associated with an attempted move f
sites with conductivitysA and sB , respectively; while the
former method gives

s5^s~r !&D5^s~r !&
1

2d

R2

Nt
~7!

with t5(4d)21. The quantitiesn and N2n in Eq. ~6!
are proportional to the walker populations of the tw
phases such thatn/N5fArA

0^r0(r )&21 and (N2n)/N
5fBrB

0^r0(r )&21, wherefA and fB are the volume frac-
tions of phasesA andB, respectively. Use of these ratios an
the relationsrA

05sA , rB
05sB , and ^r0(r )&5^s(r )& then

converts Eq.~6! into Eq. ~7!.
Both terms in the denominator of Eq.~6! contribute even

when one phase is an insulator; failure to recognize this
result in a value fors too large by a factorfC

21, wherefC

is the volume fraction of the conducting phase.
The diffusion procedure described above is computati

ally inefficient since not all attempted moves by the walk
are successful. This is overcome by statistically weighing
behavior of the walker such that every attempt is succes
but the move is accomplished over a variable time interv

On average, an attempted move by the walker at sitei is
successful with probability

p i5
1

2d (
k51

2d

pik , ~8!
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where the summation is over all adjacent sites. Then the t
intervalTi associated with a successful move is, on avera
t/p i . That successful move is made to sitej ~rather than
another adjacent site! with probability Pi j 5pi j /(2dp i).
Thus the actual behavior of the walker is well approxima
by a sequence of moves in which the direction of each m
from a sitei is determined randomly by the set of probabi
ties $Pi j %, where

Pi j 5S s j

s i1s j
D F (

k51

2d S sk

s i1sk
D G21

, ~9!

and the time interval over which the move occurs is

Ti5F2(
k51

2d S sk

s i1sk
D G21

. ~10!

This variable residence time algorithm was used to ob
the analytical result s5^s(r )21&21 for various one-
dimensional composites. It was also used to calculate
conductivity of two-dimensional, two-phase random co
posites at the percolation thresholdpc of the higher-
conductivity phase, where Straley@8# has predicted tha
s/sA}(sB /sA)1/2. These numerical results are presented
Fig. 1 along with a ‘‘best fit’’ straight line having slop
0.500560.0025 to compare with Straley’s critical expone
of 1

2.
Each data point in Fig. 1 is obtained from the avera

value ofs/sA calculated for fifteen different 2003200-site
~periodically continued! random configurations havingfA
5pc50.592 75. The length of the error bar superposed
each point is two standard deviations~only one error bar is
not obscured by the plotted points, however!. The walker
diffusion coefficientD for a single configuration was calcu
lated by fitting 53104 walker displacementsr to a Gaussian
distribution@sor is plotted against 2prp(r ,t), wherep is the
Gaussian distribution function#, where each displacemen
was determined after a time intervalt5105 ~this corresponds
to the time required for the walker to make 1032003200
moves in a single-phase system!. In every case the fit was
extremely good. It is believed that this fitting procedu
yields a more accurate value forD than is given by the ex-
pressionD5^r 2&/(2dt), particularly when the number o
measurements is limited.

FIG. 1. Calculated values of the conductivity ratios/sA of two-
dimensional, two-phase random composites, where phaseA has vol-
ume fractionfA5pc and conductivitysA , and phaseB has volume
fraction sB5(12pc) and conductivitysB . The four data points
are taken forsB /sA50.5, 0.1, 0.01, and 0.001.
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It is interesting that they intercept of the straight line in
Fig. 1 is 0.042760.0107 rather than zero. Calculations wi
sB5sA gave s/sA50.999960.0015, suggesting that th
computational procedure is not systematically overestima
the conductivity ratio. Perhaps the discrepancy is due to
tendency of the walker to prefer the higher-conductivity
gions that are inevitable in imperfectly random configu
tions. Van Siclen@9# has shown that such composition flu
tuations are present over a large range of length scales
computer-generated, nominally random configurations.

The variable residence time algorithm was also used
calculate the conductivity of two-dimensional, rando
conductor-insulator systems, where the volume fractionfA
of the conducting phase was varied from unity to near
percolation threshold. These results are presented in Fi
along with a ‘‘best fit’’ straight line having slopem
51.253460.0053 andy intercept 1.121460.0083. This fit
~to the four rightmost points! is consistent with the relation

s

sA
5S fA2pc

12pc
D m

~11!

with the critical exponentm in good agreement with the
value 1.2860.05 found experimentally by Watson and Lea
@10#.

Each data point in Fig. 2 is obtained from the avera
value of s/sA calculated for thirty different 2003200-site
~periodically continued! random configurations having
fixed value offA above the percolation threshold. For ea
configuration, the walker is initially placed at a random
selected conducting site~not necessarily on a percolatin
cluster! since all conducting sites have equal walker densi
r0. Thus the length of the error bar~two standard deviations!
superposed on each point reflects the size distribution of c
ducting clusters~to one of which the walker is confined! for
random systems with conductor volume fractionfA . In par-
ticular, the error bars are large forfA nearpc since there is
a broad size distribution of conducting clusters on which
walker may be randomly placed and consequently a br
range of possible values for the walker diffusion coefficie
D; in fact, the average values fors/sA incorporate values
s}D50 obtained when the walker is placed on an isola
conducting site. However, the calculated values forD near

FIG. 2. Calculated values of the conductivity ratios/sA of two-
dimensional, random conductor-insulator systems, where the
ducting phase has conductivitysA and volume fractionfA . The
eight data points are taken forfA51.0, 0.9, 0.8, 0.7, 0.65, 0.62
0.61, and 0.60.
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pc are questionable in any case since walker diffusion
anomalous on such fractal-like clusters@11#.

Alternatively the points in Fig. 2 could be obtained b
confining the walker to a percolating cluster. Thens/sA

5fA8D8, where fA8 is the volume fraction of percolating
clusters andD8 is the diffusion coefficient of the walker on
percolating cluster. This relation reflects the fact that the
erage diffusion coefficient for those walkers at conduct
sites not belonging to a percolating cluster goes to zero as
measurement time intervalt goes to infinity. ButD8 simul-
taneously increases and so must be calculated for larget.

A ‘‘random medium’’ approximation~RMA! for transport
coefficients of disordered composites may be derived fr
the variable residence time algorithm. The probabilityPm
that the walker is found at a site of phasem is proportional to
the equilibrium walker population corresponding to th
phase, so that

Pm5rm
0 fmF (

n51

N

rn
0fnG21

5smfm^s~r !&21, ~12!

where N is the number of different phases present in
composite.~In this and the following expressions, the su
scripts refer to the phase to which the site belongs rather
to the unique identification of the site.! From Eq.~10!, the
time interval over which the walker at a site of phasem
moves to an adjacent site is, on average,

Tm5F4d(
n51

N

fnS sn

sm1sn
D G21

5F4dK sn

sm1sn
L

n
G21

.

~13!

Thus the time interval over which an arbitrary move occ
in a random system is

T5 (
m51

N

PmTm ~14!
oc
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and the transport coefficient s5^s(r )&D
5^s(r )&(2dT)21.

Like effective-medium approximations, this expression
less accurate as the conductivities of the phases diverge
as the percolation threshold of a high-conductivity phase
approached. This is because the derivation does not take
account the correlation between subsequent moves by
diffusing walker; indeed, if the walker environment we
‘‘rerandomized’’ after every move, the RMA would be ex
act.

For a two-phase disordered composite, the RMA give

s5^s~r !&2F sAfA

fA1S 2sB

sA1sB
DfB

1
sBfB

S 2sA

sA1sB
DfA1fB

G21

.

~15!

When sB50 as in a conductor-insulator system, Eq.~15!
reduces tos/sA5fA

2, which resembles Archie’s Law@12#
with a cementation index of 2.

By relating phase domains to walker populations, t
walker diffusion method provides a way to calculate t
transport properties of composite materials. The compu
tional efficiency of the method is enhanced by the varia
residence time algorithm. Some results from percolat
theory have been reproduced to verify the method and a
rithm. The walker diffusion method may be applied to co
tinuum, anisotropic, and higher-dimensional systems as w
as to discrete systems such as digitized microstructures.
the only viable method for determining transport propert
of complex systems such as fractals, and is the best ‘‘exa
method to use to evaluate the results from statistical meth
of calculating transport coefficients.
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