PHYSICAL REVIEW E VOLUME 59, NUMBER 3 MARCH 1999

Walker diffusion method for calculation of transport properties of composite materials

Clinton DeW. Van Sicleh
Idaho National Engineering and Environmental Laboratory, Idaho Falls, Idaho 83415
(Received 5 August 1998

The morphology of a multiphase microstructure greatly influences the macroscopic transport properties of
the composite material. These properties are shown to be related to the diffusion coefficient of a random
(nonbiasefl walker. The proper diffusion rules are found by considering an isomorphic image of the micro-
structure in which distinct populations of walkers correspond to the phase domains, with the walker density of
a population proportional to the transport coefficient of the corresponding domain. To demonstrate the method,
it is applied to disordered two-phase percolating compodi&k63-651X99)14603-§
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A primary goal of materials physics is the discovery of discrete circuit elements corresponding to tHe), and the
relationships between the microstructure of a material and itpotential ¢; at each node is found by solving a system of
macroscopic properties. Transport properties in particular areoupled algebraic equations, each of which is a discretized
greatly influenced by the microstructure geometry, here conversion of the equation,
sidered to be the phase distribution and phase domain mor-
phology. Classic examples of this dependence are the metal- V. [o(r)V¢(r)]=0. (2
insulator system, which cannot conduct unless the | . i . :
conducting phase percolates, and porous media, where tHIth the ¢; in hand, the field); at each node is easily cal-
pore size and pore-space connectedness and tortuosity detéilated from the discretized version of the equation,

mine the electrical resistivity and fluid permeability of oil- I = — (V1 3
bearing rock, and the efficacy of materials designed for ca- (r) oV (r). @
talysis or chemical separation. The macroscopic transport coefficient is then obtained

Transport phenomena arise from the occurrence of twegm the relation(J)=oE.

vector fields, saj(r) andJ(r), that satisfy the set of equa- A rather different method for calculating exact values of
tions transport coefficients is inspired by the Einstein relation
VXE=0, V.J=0, J=o(r)E, E=-V¢. (1) fx_D betwe_e_n the conductivity_- of a ma}terial and the diffu-
sion coefficientD of the mobile electric charges. Schwartz
The quantity ¢ is a scalar potential, and(r) is the local and Banavaf?2] obtained the conductivity of a conducting
transport coefficient connecting the two local fiel[dsd is a  pore-insulating grain system by measuring the displacement
second-rank tensor in generalVhenE andJ are the electric  over time of a walker diffusing randomly through the pore
field and the current density, respectivelyis the electrical space while obeying “blind ant” boundary conditions at the
conductivity of the material. Other pairs of vector fields arepore-grain interface. The ratio of the diffusion coefficients
connected by the dielectric constantthe magnetic perme- for the walker in the pore space and the walker in a purely
ability u, the thermal conductivityk, and the particle diffu- conducting system, multiplied by the volume fraction of pore
sion coefficientD. space, then equals the ratio of the conductivities for the pore-
The local transport coefficients collectively produce thegrain and pure conductor systems. Buedeal.[3] and Hong
measured transport coefficient which describes the transpoet al. [4] calculated the composite conductivity of random,
property for the material as a whole. The macroscopic transtwo-phase conducting systems by having the walker diffuse
port coefficients are not generally simple functions of therandomly within each phase with diffusion coefficient pro-
volume fractions of the phases present in the composite, byttortional to the conductivity of that phase. They made the
reflect the geometry of the microstructure as well. ansatzthat an attempted move across a domain boundary
Two general approaches to the calculation of macroscopifrom phasei to phasej is accomplished with probability
transport coefficients are found in the literature. In the firstD;/(D;+D;)=o;/(oi+ ;). The walker diffusion coeffi-
effective values or bounds are obtained from a statistical decientD, which is proportional to the composite conductivity,
scription of the microstructurgl]; in the second, “exact” is then found from the walker displacement over a time that
values are calculated for a model system isomorphic with thequals the sum of time spent by the walker in each phase.
microstructure. The latter approach is usually accomplishe@his model for multi-phase systems was also used by Tobo-
by simply solving the set of equatiofi$) for a given applied chnik, Laing, and Wilso5] and Kim and Torquatf6], who
field E at the system boundafgr potential difference across adapted the first-passage-time method to minimize the com-
the systemn The continuum medium is replaced by a net-puter time required to track a walker diffusing within a large
work of phase domain.
The present work also obtains the macroscopic transport
coefficients via a diffusing walker, but does not use the Ein-
*Electronic address: cvs@inel.gov stein relation and so avoids thensatz mentioned above.
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While the method is developed here for discrete syst@ns The diffusion coefficienD of a walker in the thick wire is
digitized microstructuresit is applicable to continuum sys- unchanged when the walker trajectory is projected onto a
tems as well. one-dimensional space, and equals the diffusion coefficient
Consider a collection of noninteracting random walkers for the walker in the thin wire when the conductivities of the
When a driving force-V ¢(r) is imposed, a diffusion current two wires are equal. Thus the excursions of the walker in the

densityJ(r) is created, where thick wire transverse to the wire axis correspond to attempts
by the blind walker in the thin wire to enter the insulator.
J(r)=—=D(r)p(r)V¢(r) (4) The conductivity o of a conductor-insulator system is

given byo/oc=¢cD=¢cD’, whereo is the conductivity

andD(r) andp(r) are the local walker diffusion coefficient of the conducting phaseic and ¢, are the volume fractions
and local walker density, respectively. As this diffusion of the conducting phase and the percolating conductor clus-
equation resembles the transport equatid)) the product ters(comprised of contiguous conducting sitagspectively,
D(r) p(r) is identified with the local transport coefficient andD’ is the diffusion coefficient for walker diffusion on a
o(r). More specifically,D(r)p®(r)=o(r), wherep®(r) is  percolating cluster. This same relation holds for a system
the (local) equilibrium walker density in the absence of a containing an infinite superconducting cluster. Systems com-
driving force. prised of separated, superconducting domains embedded in

Thus a connection is made between a composite coman ordinary conductor, however, are problematic, as those
prised of phase domains, each characterized by a transp@dmains absorb the walkers.
coefficient value, and an isomorphic configuration of walker  perhaps surprisingly, this walker diffusion method based
“domains” or populations, each characterized by values foron walker populations gives results identical to those ob-
equilibrium walker density and walker diffusion coefficient. tagined by the method mentioned above that relies oaran
In analogy with the local relation above, the macroscopicsatzfor moving a walker across a phase boundary. This fol-
transport coefficiento equals the product of the average |ows from the fact that, for a given system and starting point,
walker population(p°(r)) of the isomorph and the diffusion walkers in the two cases make identical trajectories over
coefficientD of a walker moving through the isomorph.  attempted moves. For a total walker displacemenRaf a

To maintain the equilibrium populations, the diffusing two-phase system, the latter method gives
walker must obey the principle of detailed balance. This re-

quires that the walker at siieattempt a move in a randomly 1 R2
chosen direqtion, and_t_hat th% moove (t)o adjacent jsibe o=D= 2d In7at (N—1)7g]’ (6)
successful with probabilitp;; = p;j/(p; + pj) . For the walker

diffusing within a domainp;;=1/2, so that the time; asso-  wheren is the number of attempted moves from a site with

ciated with a move attempt is given by the relation conductivityo s, andra=(4dos) L andrg=(4dag) ~* are
) the time increments associated with an attempted move from
D:i)‘_ (5) sites with conductivityo, and o, respectively; while the
2d 27’ former method gives

whereD; is the diffusion coefficient for the walker within the 2

domain,d is the dimension of the space, andis the site o=(a(r)D=(a(N) 54 N7 (@)
width (or pixel size.

In order that the walketrajectory fully reflect the micro-  with r=(4d)~!. The quantitiesn and N—n in Eq. (6)
structure geometry, the local diffusion coefficieD{(r) is  are proportional to the walker populations of the two
everywhere set equal to []. Thus the walker at a sitt  phases such thah/N=papS(p°(r))"1 and (N—n)/N
attempts a move toa rarlcilomly chosen adjacgnt] siteing  _ ¢Bpg<p°(r))’1, where ¢, and ¢ are the volume frac-
the time mtervalz-zl (432 (k)J\Ta'Il'thor cor/IE/enLenc))e Elt]hat tions of phase# andB, respectively. Use of these ratios and
move is successful with probability;;=o;/(oi+0j). The o relationsy? = 0_ and (o°(r)Y=(o(r)) then
walker diffusion coefficientD is then calculated from the converts Eq(%A)\ in(trcf ESBG)UB’ (p7(1))=(o()
total displacement of the walker over the time corresponding Both terms in the de.nor.ninator of E(6) contribute even
to the ”“'_m_ber of attempted MOVES. The Macroscopic rangyyan one phase is an insulator; failure to recognize this will
port coefficientc=(a(r))D, showing that the geometric as- result in a value for too large by a factorsSt, where g
pects of the microstructure are completely accounted for iri1S the volume fraction of the conducting phcas’e ¢
the parameteD. [But D is also a functional of the local The diffusion procedure described above is computation-
valueso(r) and so must be recalculated when those changg”

even when the geometry does not. The excention to this is &Y inefficient since not all attempted moves by the walker
: the g yd ‘ xcep &re successful. This is overcome by statistically weighing the
simple scaling of allo(r) with no change in the geometry,

which does not affec.] behavior of the walker such that every attempt is successful
X but the move is accomplished over a variable time interval.

For a percolating conductor-insulator system, the prin- -
ciple of detailed balance is equivalent to the blind ant bound- On average, an attempted move by the walker atisge

ary condition. That this is the correct boundary conditionsuccessml with probability

(rather than the “myopic ant)’is evident by considering the 2d

conductivities of thin(one-dimensional and thick (three- _ 1 E ) 8
. . . . . L . i Pik » ( )

dimensional straight conducting wires encased in insulation. 2di=1
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FIG. 2. Calculated values of the conductivity ratibo 5 of two-
dimensional, random conductor-insulator systems, where the con-
ducting phase has conductivity, and volume fractionp,. The
eight data points are taken fef,=1.0, 0.9, 0.8, 0.7, 0.65, 0.62,
0.61, and 0.60.

FIG. 1. Calculated values of the conductivity ratito , of two-
dimensional, two-phase random composites, where phases vol-
ume fractiong o= p. and conductivityo, , and phas® has volume
fraction og=(1—p,) and conductivityog. The four data points
are taken fotog/0,=0.5, 0.1, 0.01, and 0.001.

where the summation is over all adjacent sites. Then the time ) ) . L
interval T; associated with a successful move is, on average, 't IS intéresting that thy intercept of the straight line in
7l . That successful move is made to sjtérather than Fig. 1 is 0.04270.0107 rather than zero. Calc_ulatlons with
another adjacent sitewith probability P;;=p;;/(2dm;). 98~ A gave 0/o,=0.9999£0.0015, suggesting that the
Thus the actual behavior of the walker is well approximatedcOmputational procedure is not systematically overestimating
by a sequence of moves in which the direction of each mov&€ conductivity ratio. Perhaps the discrepancy is due to the
from a sitei is determined randomly by the set of probabili- tendency of the walker to prefer the higher-conductivity re-

ties{P;;}, where gions that are inevitable in imperfectly random p_onfigura-
tions. Van Sicler{9] has shown that such composition fluc-
o) oy -1 tuations are present over a large range of I_ength_ scales for
Pij= gy - , (9  computer-generated, nominally random configurations.
OiTOj/ [ k=1 10T Ok The variable residence time algorithm was also used to

calculate the conductivity of two-dimensional, random

nd the time interval over whi i :
and the time interval ove ich the move occurs is conductor-insulator systems, where the volume fractign

2d -1 of the conducting phase was varied from unity to near the
T,=|2> Tk (10)  Percolation threshold. These results are presented in Fig. 2
k=1 \0itT oy along with a “best fit" straight line having slopeu

=1.2534+0.0053 andy intercept 1.12140.0083. This fit

This variable residence time algorithm was used to obtaifo the four rightmost poinjsis consistent with the relation
the analytical resulto=(o(r)"!)~1 for various one-

dimensional composites. It was also used to calculate the o | ba—pe|”
conductivity of two-dimensional, two-phase random com- _:( A pc) (1)
posites at the percolation threshols, of the higher- oA 1-pc

conductivity phase, where Stralgg] has predicted that
oloax(ogloa)Y? These numerical results are presented inwith the critical exponentw in good agreement with the
Fig. 1 along with a “best fit” straight line having slope value 1.28-0.05 found experimentally by Watson and Leath
0.5005+ 0.0025 to compare with Straley’s critical exponent[10].
of 3. Each data point in Fig. 2 is obtained from the average
Each data point in Fig. 1 is obtained from the averagevalue of o/o, calculated for thirty different 208 200-site
value of o/ o, calculated for fifteen different 200200-site  (periodically continuefl random configurations having a
(periodically continued random configurations havingg,  fixed value of¢, above the percolation threshold. For each
=p.=0.59275. The length of the error bar superposed orconfiguration, the walker is initially placed at a randomly
each point is two standard deviatio@ly one error bar is selected conducting sitéhot necessarily on a percolating
not obscured by the plotted points, howeveFhe walker cluste) since all conducting sites have equal walker densities
diffusion coefficientD for a single configuration was calcu- p°. Thus the length of the error béxwo standard deviations
lated by fitting 5x 10* walker displacementsto a Gaussian superposed on each point reflects the size distribution of con-
distribution[sor is plotted against 2rp(r,t), wherepisthe ducting clustergto one of which the walker is confingébr
Gaussian distribution functign where each displacement random systems with conductor volume fractiop. In par-
was determined after a time interta# 10° (this corresponds ticular, the error bars are large fgr, nearp, since there is
to the time required for the walker to make>@00xX200 a broad size distribution of conducting clusters on which the
moves in a single-phase systern every case the fit was walker may be randomly placed and consequently a broad
extremely good. It is believed that this fitting procedurerange of possible values for the walker diffusion coefficient
yields a more accurate value fbr than is given by the ex- D; in fact, the average values for/ o5 incorporate values
pressionD =(r?)/(2dt), particularly when the number of o<D=0 obtained when the walker is placed on an isolated
measurements is limited. conducting site. However, the calculated valuesBonear
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p. are questionable in any case since walker diffusion isand the transport coefficient o=(o(r))D
anomalous on such fractal-like clustgfdl]. =(a(r))(2dT) "L

Alternatively the points in Fig. 2 could be obtained by Like effective-medium approximations, this expression is
confining the walker to a percolating cluster. Theho,  less accurate as the conductivities of the phases diverge and
=¢,D’, where ¢, is the volume fraction of percolating as the percolation threshold of a high-conductivity phase is
clusters andD’ is the diffusion coefficient of the walker on a approached. This is because the derivation does not take into
percolating cluster. This relation reflects the fact that the avaccount the correlation between subsequent moves by the
erage diffusion coefficient for those walkers at conductingdiffusing walker; indeed, if the walker environment were
sites not belonging to a percolating cluster goes to zero as th&erandomized” after every move, the RMA would be ex-

measurement time intervalgoes to infinity. ButD’ simul-  act.

taneously increases and so must be calculated for targe For a two-phase disordered composite, the RMA gives
A “random medium” approximatiofRMA) for transport 1

coefficients of disordered composites may be derived fromgz<0(r)>2 TAPA T8 ds

the variable residence time algorithm. The probabikty, 20p 20p

that the walker is found at a site of phasés proportional to Pat oAt g s oat o Pat P

the equilibrium walker population corresponding to that (15

hase, so that . .
P When og=0 as in a conductor-insulator system, Ef5)

-1 reduces too/op= ¢,§, which resembles Archie’s Lafl2]
=omdm(a(r))”Y, (120 with a cementation index of 2.
By relating phase domains to walker populations, the

where N is the number of different phases present in thewalker diffusion method provides a way to calculate the

composite.(In this and the following expressions, the sub- transport properties of compos_ite materials. The computa-
scripts refer to the phase to which the site belongs rather thath()nal eff|C|e_ncy of the_ method is enhanced by the varlaple
to the unique identification of the sijeFrom Eq.(10), the residence time algorithm. Some results from percolation

time interval over which the walker at a site of phawe theory have been rgproduced to verify the methc_)d and algo-
moves to an adjacent site is, on average rithm. The walker diffusion method may be applied to con-

tinuum, anisotropic, and higher-dimensional systems as well
o -1 as to discrete systems such as digitized microstructures. It is
4d< n > the only viable method for determining transport properties
Om™On/ of complex systems such as fractals, and is the best “exact”
13 method to use to evaluate the results from statistical methods
Thus the time interval over which an arbitrary move occur
in a random system is This work was supported in part by the U.S. Department
N of Energy, Office of Environmental Management, under U.S.
T= 2 P. T (14) DOE Idaho Operations Office Contract No. DE-ACO07-
m=

N
Pn= quﬁbm{ ngl p2¢n

-1
On

ont o,

N
Tn=|4d> ¢,
n=1

Sof calculating transport coefficients.
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