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Transport phenomena at a critical point: Thermal conduction in the Creutz cellular automaton

K. Saito
Department of Physics, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan

S. Takesue
Faculty of Integrated Human Studies, Kyoto University, Kyoto 606-8501, Japan

S. Miyashita
Department of Earth and Space Science, Faculty of Science, Osaka University, Toyonaka 560-0043, Japan
(Received 13 November 1998

The nature of energy transport around a critical point is studied in the Creutz cellular automaton. The Fourier
heat law is confirmed to hold in this model by a direct measurement of heat flow under a temperature gradient.
The thermal conductivity is carefully investigated near the critical point by the use of the Kubo formula. As a
result, the thermal conductivity is found to take a finite value at the critical point, contrary to some previous
works. Equal-time correlation of the heat flow is also analyzed by a mean-field type approximation to inves-
tigate the temperature dependence of thermal conductivity. A variant of the Creutz cellular automaton called
the Q2R is also investigated and similar results are obta{i84063-651%99)11903-3

PACS numbg(s): 64.60.Ht, 05.60-k, 44.10:+i, 05.50+q

I. INTRODUCTION what really happens to the energy transport at the critical
point in the CCA.

Creutz devised a deterministic dynamics for the two- Thus, in this paper we investigate the temperature depen-
dimensional Ising model with a momentum teft). This  dence of the thermal conductivity in the thermodynamic
dynamics is a kind of cellular automat§@A), where states limit. We obtain the thermal conductivity by two methods.
are updated in a deterministic way with energy conservatioi©ne is a direct measurement of heat flow under a tempera-
and we call it the Creutz cellular automat@@CA). In the ture gradient. The validity of the Fourier heat law is estab-
CCA random numbers are not necessary for its time evolulished in a wide range of temperature values and the coeffi-
tion, which provides an advantage in numerical simulationscient of thermal conductivity is estimated. The other is the
Thus, the CCA and its variants have been used to investigatése of the Kubo formula. Explicit derivation of the formula
equilibrium properties of magnetic System instead of the is given and the coefficient of thermal Conductivity is calcu-
conventional Monte Carlo method, especially the criticallated from equilibrium autocorrelations of the energy flow.
phenomena at the critical point. We check that both the methods yield the same result and

Besides this advantage, the CCA provides a dynamicaﬁnd a finite conductivity aff, which does not agree with

model for time evolution with energy conservation. Thus theth€ Previous belief. , o
We also develop a mean-field approximation for the

CCA can be used to study transport phenomena where flows

of physical quantities take important roles. In fact, numericaltehqual'tt_'met C(E)rre|_l|at|0_n Ofdthcf e{er%ergy ﬂo‘.’\t"_ V\;E'c?_ wmoroves
results for heat conduction in the CCA were reportedlih € estimate by Harrs and raf. Since itis the nirst term

and the thermal conductivity was found to be proportional toOf the Kubo formula, the result of this treatment not only

P explains the temperature dependence at the high and low
T n high temperature, wher‘él denotes the temperature. temperature limits, but also gives a qualitatively good esti-
Harris and Grant showed that this temperature dependence

X ate for the overall temperature dependence.
explained by the Kubo formuld3]. They presented an  rpg conditions under which the Fourier heat law is satis-

asymptotic expression for the thermal conductivity in thefieq have been studied in the literat(iBe-9] mainly by using
high and low temperature limits by evaluating the first termyamiltonian systems. The dynamical rules of CA are so
in the Kubo formula. simple and local that fast simulations are possible. Thus, one
Then, it is natural to ask if there is a possible connectiorof the present authors applied CA to this problem and found
between the thermal conductivity and the phase transitionsome rules that clearly satisfy the Fourier heat |8y How-
Because the specific heat diverges at the critical point of thever, most of the studies have so far been confined to one-
Ising model, the thermal conductivity may also show somedimensional models, which might cause pathological effects
peculiarity at the point. Actually, in some materials, abnor-due to a single path of the flow. Here we study a two-
mal behavior of the thermal conductivity has been observedimensional system with CCA where we are free from the
[4]. Clearly, the CCA is suitable to look into the thermal above anxiety. We also investigate another model called the
conductivity near the critical point. In the above mentionedQ2R [10], where Q denotes that the neighborhood of a site
paper, Harris and Grant made a comment that the thermalonsists of the four nearest-neighbor sites, and 2R means that
conductivity must vanish at the critical temperatiliggwith-  a spin flips if and only if its neighborhood contains exactly
out any evidence. It is the purpose of our paper to clarifytwo up spins. Thus, the Q2R is regarded as a variant of the
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CCA without momentum terms. We find that the Fourier _ ~

heat law holds at all temperatures in the CCA. We find that U}jm: oii— Eo-it,j(o"i[—l,j+a—it+1,j+a-it,jfl+ ol 11)

the Q2R satisfies the Fourier heat law in two dimensions,

although energy transport is ballistic in the one-dimensionahnd the difference between the local energies at tiines

counterpart of the Q2R. +1/2 andt is given by
This paper is organized as follows. In Sec. Il, our model
and method are explained and an expression for the local ElVP—El =20} (0_y;+ 0] _1).

energy flux is derived via the equation of continuity. In Sec. ) i i
Ill, we demonstrate that the Fourier heat law holds in a widdf the spin o;; is not flipped, the local energy does not
range of temperatures by a direct simulation. In Sec. IV, théhange. Thus the energy change is generally expressed as

thermal conductivity is calculated by the use of the Kubo —t+12 ~t _ 5 t , t t t+1/2, t
formula and its temperature dependence is carefully investi- "] Bij= =201 (0iq 01001 F o)
gated, especially arountl:. A mean-field analysis is done :Uit—lj((fﬁm— o j)+0it j_l(o-ﬁm_ ot s
for the correlation of the energy flux in Sec. V. Numerical o ’ ’ ' ’
results for the Q2R are exhibited in Sec. VI. We give a 2.3
summary and discussion in Sec. VII. where 5(x) is Kronecker's delta,
1 if x=0
Il. MODEL S(x)= (2.4

The CCA is defined as follows. Let us consider the square 0 otherwise,

lattice. A couple of variablesd; ; ,'&i,j) are assigned at a sitte and we have used the equaliy(x+y)=(1—xy)/2 that

(i,j). Here o;e{+1,—1} denotes a spin and}i'j holds forx,ye{+1,—1}. The energy difference betwe¢n
€{0,1,2,3 is called a momentum. Then the total Hamil- +1/2 andt+1 is calculated in the same manner, and we
tonian is given by obtain

3 Bl L =200 0l i ol 1+ ol

H:_iEj (‘Ti,jUi+1,j+‘Ti,j0i,j+1)+izj 4Ui,j . (21)

tH12 412 o t+1 L t+172
2077 07 ;10007 jiatT o7 j11)

. . . . . _ t+1/2, t+1/2 t+1
The first term represents the ferromagnetic Ising interaction =0j; (o117 0717
between the nearest-neighbor spins and the second term rep- te12 1412 te1
toi 03107 1) (2.5

resents a kind okinetic energy. Note that every quantity is

measured in units where the Isi_ng coupling constant, Fh%ombining Eqgs(2.3) and(2.5), we obtain the following ex-
Boltzmann constant, and the lattice constant are all U”'typression for the energy difference betweeandt+ 1:
Thus, energy, temperature, and thermal conductivity are di-

mensionless quantities in this paper. We divide the latticeE
into two sublattices, like a checkerboard. Sitg) is called

t+1_
i

t+1_
i,j

t t+1 t t+1
gi )T o (01— 0141

t _ .t
Eij=0oi—1j(o J

. LS t t+1_ t t+1, t o t+1
even or odd according to whether the simj is even or toi -0 =00 )t 0oi (0.1~ T ji),
odd. One unit of time evolution consists of two processes (2.6)

each of which simultaneously updates variables on a sublat-

tice. Namely, when the variables are updated from the stateghere we have used the fact thalf; *= o{ ; for odd (,j)

at timet, first the even sites are updated at titRel/2 and and cri‘,*-l’zz cri‘fjl for even (,j). Because the total energy is
next the odd sites are updated at titiel. The updating rule conserved, E¢(2.6) must represent the equation of continu-
is the following. Spin flip is accepted when the momentum atity,

the site can compensate the energy change of the flip. That 5t 5t )
is, if the following relation is satisfied, 9o iy Ty @7
— 30 ;Zanonn=3, wherenn denotes the nearest-neighbor whereJ}; , (a=x ory) denotes thex component of the

sites of (,j), the spina; ; changes its sign, and the momen- energy fiux at sitei(j) at timet. Comparing Eqs(2.6) and

tum is changed to conserve the total energy. (2.7), we find that the components of the energy flux are
Now we derive expressions for a local energy and ajiven as

energy flux. From the total Hamiltonia®.1), we can define

t+1 t _ t t
Eij —Eij= = Jit1jxTIijx

the local energy on the sité,{) at timet as Jjx=0i_yoi it =ai)),
~ t _ t+1 t+1 t
Eit,j:_O-i,j(a-i+l,j+O-i,j+l)+4a-i,j' (22) ‘]i+l,j,X_0-i,j O-i+1,j_0-i+1,j)’
Note that the total energy is equal to the sum of the local Ly Y189 ij/
energies over the lattice. First we consider the case where the 3t ottt gt )
site (i,j) is even. If the spin at sitei (j) is flipped at time i+t T 9 Vi T )
t+1/2, we have The same argument can also be applied to the case where site

12 ¢ (i,j) is odd. As a result we arrive at the following expres-
Oij T O0ij» sions for the energy flux. If sitel {j) is even,
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J! j X:gitilj(gﬁl_git 0 (2.8  the temperatures are lower thdg. We call this case B. In
v v ' each case, within T0time steps the system of any size (
t —gt. tl_ 4t < reached a stationary state where a uniform flux in the
‘]Itjy Ult]_l(glt]fl (TIYJ), (2.9 300 hed a stat y state wh f fl th
o ’ ’ ’ x direction is realized. After the system reached the station-
and if site {,j) is odd, ary state, we continued the simulation by’ fore steps for
. 1 i1 which we took time averages of physical quantities.
Jijx=oil1(oi; —oi)), (2.10 First we consider the distribution of a local kinetic energy,
. 1, el Pi,j('&). Because the system is translation invariant in the
Jijy=0ijtaloj —oi)). 21D yertical direction, we computed the averageRpf; over the

vertical line and found that it is given by a canonical distri-

Ill. THERMAL CONDUCTION UNDER A GRADIENT bution
OF THE TEMPERATURE
L
. . . 1 ~ ~
In this section, we report numerical results on energy C > P, (@) xexp —4B7), 3.1)

transport in the CCA obtained by a direct simulation. We =1
took the systems of sidzex L whereL varies from 10 to 300.

The periodic boundary condition was imposed on yhei-  whereg; is a fitting parameter which is regarded as the local
rection. At the ends in the direction, two heat reservoirs, inverse temperature at lineFigures 2a) and 2b) show the
one at temperaturg_ and the other alr, were attached as distributions for case A and case B, respectively. They
shown in Fig. 1. Each heat reservoir consisted of spins oglearly demonstrate the propertg.1). Thus local equilib-
two vertical lines, where the spins on a sublattice were sirium is realized and the local temperatures are well defined.
multaneously updated by the use of the Monte Carlo method Let T; denote the temperature at horizontal positipn
with the heat-bath algorithm. We have numerically CO”-namer,Ti=,8i_l. We plottedT; as a function ok=i/L for
firmed that if the two heat reservoirs have an identical temvyariousL’s in Figs. 3a) and 3b), which correspond to cases
perature the system relaxes to the equilibrium state at that gnd B, respectively. Clearly the scaling limit

temperature. This relaxation to equilibrium was also ob-

served in the case where only one reservoir was attached to
the system.

Energy transport occurs when the left and right reservoirs
have different temperatures. It is found that the reIaxatiothere[LX] means the integer part dfx, exists and is
time to a stationary state is very long at low temperature§ . ooth in both the cases A and B. '
below T¢=2/In(1+2)=2.270, while it is rather short at
high temperatures.

The following two cases are examined with particular
care. One is the case where both the temperaiyresxd Ty
are higher thafm, T, =5.0 andTg=5.5. This is called case Jiotx _
A. The other is the case df =2.1 andTg= 2.2, where both L

T(X): lim T[LX] ,

L—o

(3.2

Next we observed the total energy flux per row in the
stationary state

(3.3

i,j,x1

|~
__M'_
[

Il
.
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FIG. 2. (a) Distribution of local kinetic energies in case A. The FIG. 3. (a) Scaled temperature profiles in case A with various
probability that kinetic energy at a site with horizontal position system sizes: 39030, 200< 200, and 30& 300.(b) Scaled tempera-
takes a value is plotted against the value. Calculations were done iore profiles for case B.

a system of size 100100. (b) Distribution of kinetic energy in case
B obtained in the same manner @. IV. THERMAL CONDUCTIVITY COMPUTED
VIA THE KUBO FORMULA

whereJig is the 'total energy flgx in the dl_rectlon and the According to the Kubo formula, the thermal conductivity
bars mean the time average in the stationary state. If the

. . : . ; IS equal to the summation of the equilibrium autocorrelation
Fourier heat law is realized, this quantity must converge to 3 inctions of the enerav flux as
nonzero constant in the limlt—o with T, and Tg fixed, 9y

because then this quantity is written as 1z 1
x(T)= N2 2 <‘J?ot,x‘~]£ot,x>( 1- 2 5t,0) ) (4.9
Jiotx Tr NT= =0
' =—J k(T)dT, (3.9
L T ———————
0.14 2122 ©
with use of the thermal conductivity(T). We utilized this 012 | g:g:g:i ; |
property to judge whether the Fourier heat law is satisfied or ’ 2425 =
not. 01t N -
In Fig. 4, theL dependence ol /L is shown for vari- 4 o
ous temperature values. The figure shows that the size de- % 008 4 |
pendence disappears in the large systems. Thus we conclude = 0.06 - |
that the Fourier heat law is realized in a wide range of tem-
peratures including the critical point. 004 2 a2 ; 4 ] ; 1
Moreover, Ji,/L has a finite value and changes 002 ke go onb o0 |
smoothly around the critical temperature. This observation T et s s A 4
suggests that the thermal conductivity has no strong singu- 800000, 0, o o .

larity at T . However, we can treat not the thermal conduc- 0 50 100 150 200L250 300 350 400

tivity itself but the integration of it in the present method and

a possible singularity, if any, is hardly observed. Thus in the FIG. 4. J,,;,/L measured in the system of sizex L for various
next section we investigate the thermal conductivity in theboundary temperatures. The numbesb in the figure mean that
bulk at a given temperature with use of the Kubo formula. T,=a andTg=b.
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FIG. 5. The partial Kubo suma! at various temperatures. FIG. 7. Thermal conductivity near the critical temperature in the

systems with different sizes.

whereJi, ,=3; ;Ji ; . is the total energy flux in the direc-
tion at timet, { ) means the equilibrium ensemble average awith each other very well. From the figure we know that the
temperaturel, andN is the total number of sites. This for- thermal conductivity has a peak &t-2.70, which is slightly
mula is proved for the CCA in Appendixes A and B. above the critical temperatufig. . Above the peak value, the

We numerically computed the autocorrelation functionsthermal conductivity gradually decreases and tends to zero in
<J?ot,x~]{ot,x> for t=<150 in the CCA under the periodic bound- the high temperature limit. Below the peak value, the con-
ary conditions in thex andy directions. Initial conditions ~ductivity shows a remarkable change arotiidand reaches
were randomly generated by a Monte Carlo method witmhearly zero atT=2.0. Detailed measurements were done
temperaturél. We denote the partial Kubo sum up to time near the critical temperatui&. and the results are shown in

by «!, namely, Fig. 7. This figure shows tha¢(T) appears continuous and
smooth at the critical point, though the magnitude of the
1 Ut , 1 change is large. Because little size dependence is seen when
k=—— > (30 Il 1= =61 0] (4.2 L=100, we can conclude that at least no divergence or no
2 ot,x¥ tot,x 2 ,0 L
NT =0 vanishing ofx(T) occurs afT. Of course we cannot deny

the possibility of singularity or discontinuity in a higher de-

Figure 5 shows numerically computed in the system of rivative.
size 200< 200 at various temperatures. It is observed that the
summation converges bly=30 for every temperature. At V. MEAN-FIELD ANALYSIS OF
temperatures abové&., the sum monotonically increases THERMAL CONDUCTIVITY
and tends to a constant exponentially fast. At low tempera-
tures the monotonicity is lost and significant fluctuations ap- In this section, we estimate the equal-time correlation
pear. Howeverg! still reaches a convergence by 10. function of the heat flow using a mean-field approximation

Figure 6 shows the thermal conductivity thus obtainedand discuss its temperature dependence. This quantity is the
and that computed via the direct measurement of energy flufirst term of the Kubo formula Eq4.1), namely,«%(T), and

as explained in the preceding section. Both the results agrdBus we can obtain some information on the temperature de-
pendence of the thermal conductivity.

0.6 . . , , , As derived in Appendix Bx(T) is expressed in terms of
Kubo Formula < an average of the total flodyy , in the local equilibrium as
05} Simulation e
$ 0 1 . <‘]tot,x>le
04} © 1 K (T)= ——(JiotxJ = lim —,
* 00 ( 2T2N< tot,x tot,x> T~ Tgl—0 N(TL_TR)
o3l & ¢ ] (5.0
[§ &
02t 4 ¢ s 1 where( )|, denotes the average with respect to the local equi-
. M N librium product measur€A6) with the right reservoir tem-
01 4 ®. . . 1 peratureTg and the left reservoir temperature .
0 2 ¢ First we consider the quantit{J; j ). at an even site
(i,j). Denoting the local equilibrium measure lpy,, we
Tc
. s . . . have
2 4 6 8 10 12

Ji = Jii . 52
FIG. 6. Themal conductivity(T) measured in the direct simu- { "J’X>Ie {02;,} L xPle ®-2

lation and that calculated via the Kubo formula in the system of size
200x 200. Substituting Eq(2.8) into J; ; ,, we can express this as
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) where
<Ji,j,x>le: 2 (Ui—l,jUiJ_Ui—l,jUi,j)me
{owo} P(a’,a’,(a’))=exq—4,8i0'i’j)EXLIaa'i,1,j+ba’i'j,l
:_22 Oi—1j 0i,j Ples (5.3 +C0j 41t doj g+ 0 j(B_10i_1;

{o.a}
+Bioi 1t Bioij-1tBioiy1y)], (5.7

where (Ti"]- denotes the updated spin value at the even site

(i,j) and=* means the summation over the configurationswith
in which the spino; ; can flip. Whether the spin flip occurs

or not depends on the spin and the momentum variable at a=Bi_x0)i_2+Bi_1{o)i_1+Bi_1{o)i_1,

(i,j) and the sum of the spin values on the nearest-neighbor

sites, b=pgi_1(o)i—1+Bi(o)i+ Bi(o)i+1,
h:o-i—l,j+0—i+l,j+0-i,j—l+o-i,j+l' (54)

c=Bi_1(0)i-11+Bi(0)i+Bi(T)ii1,

Specifically, the spin flip is possible in the following con-

figurations: d=Bi+1(0)i+1+ Bi+1(0)ir1t Bi+2(0)i+2.
(x4,£1,3,2) The summation in the denominator of E§.6) is taken over
(+x2,£1,3,2,1) possible values oér; | ,Ei,j , and the nearest-neighbor spins.

~ Here B; is the inverse temperature at horizontal position
o )={ (x0,% i
(h.oij,0i)) ( 0'_ 1(3,2,1.0) 5.5 andgj_, takes the same value #&_,. We introduceds;_,

(+4,+1,(1,0) for later convenience{o); denotes the local equilibrium
(=2,¥1,2,1,0)). value of the spin variable at horizontal position

Under the above approximatiofl; j «) iS represented as
Because the summatidb.3) must be taken over the con-

figurations for the whole system, it is difficult to carry it out 2 97*
exactly. Thus we consider the following mean-field approxi- (Jijxe=— PP (5.9
mation. In this approximation the spin variables at the next IBi-1

nearest-neighbor sites are replaced by their average values. .

Those average values should depend only on the horizont4fhereZ andZ* are defined by
position and not on the vertical position, since the local equi-

librium measure is translation invariant in tlyedirection. Z*:z* P(o,o,(c))
Thus the average concerning the local equilibrium measure — " '
is replaced by the average concerning the following measure:

3 P(o7.(0))

With straightforward calculatioZ* is obtained as

7% =2ePi-17Bi (e *Pi+e 8Bi)cosla+b+c+d)+2(e 1+ e 6hi+ e 2A)(efi~A1cosa—b—c—d)
+efi-17Ai costfa—b+c+d)+efi-17 i costfa+b—c+d) +efi-1Aicosia+b+c—d)}
+2(e”%i+e 8+ e i+ 1){efi-1Ficosla+b—c—d)+ef-17Fi cosfa—b—c+d)
+efi-17Picosa—b+c—d)+e A ~Ficosi—a—b+c+d)+e A PFicos—a+b—c+d)
+e A ~Bicost{—a+b+c—d)}+2e Ai-1*hi(e *Ai+ e 8B coslia+ b+ c+d)+2(e 1%+ e 8hit e 26i)
x{efi-17Bi cost{—a+b-+c+d)+e Ai-1+Aicosa—b+c+d)+e Ai-1*Ficosla+b—c+d)

+e Bi-1tFicosia+ b+c—d)}. (5.9

In the first order ofAT(:=T;—T,;_1), (az*/‘wi,—l)|B{,1:Bi+ﬁi2AT can be simplified as
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* A
oz = g{(e,% +e 8B)cosi(12B,( o)) +4(e 1Pi+e %Fi+e 2h) cosh68(o))

!
IPBi-1 Bl_ =B+ B2AT

+3(1+e %) (1+e A, (5.10
Z is also calculated as
Z=2%cosK(3Bi(a)i+ Bi)+ cosH(3Bi(a)i— B)1(1+e *Pi)(1+e 8F), (5.1
Thus we arrive at the approximate formula feéf(T),
0 - {Jiotx/N)e  cosh12B(o))coshi2B{c))+2(1+2 cosh 83)cosH6B(a))+6 cosh 28 cosh 43
«°(T)= lim ’ = , (6.12
AToo AT 4T?[cosH(3B(c) + B) + cos(38(c) — B)]cosh 28 cosh 43

where in the limit of AT—0 the system becomes uniform T-=2.27. In addition the simulation results have no cusp

and we identify (Jiorx/N)ie With (Jj x)ie and set(o) and actually change smoothly.

:=(0o);. In the high temperature limit, usingo)=0, we In Fig. 9 we showk(T) and 3.5< <°(T), both of which

have are numerically obtained from the equilibrium autocorrela-
tion functions of the energy flux. This figure shows that

0 13 1 «°(T) is nearly proportional tac(T) in high temperatures.
Kk (T)~ R (5.13  This implies that the autocorrelation functions of the energy
flux are similar in this temperature region, which is also per-
while in the low temperature limit, usinfr)=1, ?nell\:/%d é)y comparing the two curves for=3.0 andT=3.5
4
Ko(T)~—e 8. (5.14 VI. HEAT CONDUCTION IN THE Q2R
T2

As a simplified variant of the CCA, the Q2R was devised

These asymptotic forms are the same as obtained by Harr@d some equilibrium and dynamical features were investi-
and Gran{3]. gated[10-12. There are no momentum variables in the
However, the formula(5.12 gives more information QZ2R, where a spin flips only when the sum of the nearest-
about overall temperature dependence. Although the presefgighbor spins is zero. Despite the simplicity of the model, it
approximation is not good near the critical point, within this is known that the critical behavior for the magnetization can
approximation we find that®(T) is continuous but shows a be simulated by this model.
cusp at the mean-field critical temperatdig=3.5 because =~ We have performed direct simulations of the Q2R in con-
<0'>OC(TM—T)1/2_ In Fig. 8 we compare the mean-field re- tact with two heat reservoirs_ at different temperature_s in al-
sults with the numerical ones obtained in the preceding sednost the same manner as in Sec. lll. Heat reservoirs were
tion. In the high temperature region both the results agre&ealized by the same algorithm as shown in Fig. 1. The tem-
with each other, while discrepancies appear at low temperdieratures of the reservoirs were set Bs=6.0 and Tg
tures. This is partly due to the difference between the mean-

field critical temperature and the true critical temperature 07 - . , . K(')
) ©
” ' ' 08y . 35xKT) &
Simulation © 05 | . -
0.25 Mean Field —— ] ‘00
04 f woe |
0.2 :
| 0.3 « g ]
3 i o ) |
< 0.15 < o : ’
te
01 - <> 01 g M 0 . E
o ..
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FIG. 8. Numerically compute@®(T) and the mean-field results.

FIG. 9. Thermal conductivity and 3:5«°(T). Both are numeri-
cally obtained.
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FIG. 12. Thermal conductivity near the critical point in the Q2R

FIG. 10. Profile of the local energies in the Q2R of various computed via the Kubo formula in the system of size Xa00.

sizes.

point. This discrepancy may be attributed to the differences

=10.0. Here we took quasi-one-dimensional systems of sizg system sizes and heat reservoirs in their and our systems.
L X10 with variousL’s. Simulation time for each size is 5 |n[11], the distance between the reservoirs is 20, which may
X 10" time steps. The expressions for the energy f28)  be too small to obtain bulk thermal conductivity. Their heat
and(2.10 can be used without changes because they do natservoir is deterministic and keeps energy a constant in the
contain momentum variables. For the same reason, in thigoundary layer representing the reservoir. Thus the motion
Q2R we cannot determine local temperature from the distriof the total system must eventually become periodic. Be-
bution of local kinetic energy as was done in the CCA. Thuscause energy flow rarely occurs in low temperature, such
we plotted local energies in the stationary state for variousimple dynamics may not be able to generate it, whereas our
system sizes in Fig. 10. As in the Creutz model, the Q2R alsgeservoirs are stochastic and rare events can happen. Another
shows a smooth energy profile in the scaling lif8t2).  possible interpretation is that they misunderstand the great
System-size dependence of the total energy flux is shown ishange of thermal conductivity around the critical point as
Fig. 11. The total energy flux converges to a nonzero finiteyanishing.
value in the limitL — and it demonstrates that the Q2R has In addition, Costa and Herrmann reported two different
a normal thermal conductivity at least when the temperaturegy/pes of transport processes. One is normal diffusion and the
are sufficiently high. This means that the normal thermabther is a systematic transport called “highway.” The latter
conductivity in the CCA is not caused by the presence of theauses a ballistic transport. However, we did not find such
momentum terms. ballistic transport in our simulations. This is also attributed

The thermal conductivity was carefully calculated with to the differences in heat reservoirs and system sizes. The
use of the Kubo formula in a system of size 20000 at  highway is characteristic of their deterministic reservoirs and
temperatures aroundic. The result is shown in Fig. 12, moreover the fraction of highways decreases to zero as the
which exhibits similar behavior to the CCA. The thermal system size increases.
conductivity shows a remarkable change n€arbut seems At the end of this section, we mention the one-
continuous and smooth. This result disagrees with Costa ardimensional Q2R dynamics. Ifis even, the spin value of
Herrmann11]; they reported that energy flux vanished at thesitei at timet+ 1 is expressed in terms of spin variables at
critical point and no transport occurred below the criticaltime t as

t+1_ t+1/2_ t t t t _t tt
' ' ' ' o =0y =077207 8(0i_1F 01,41) = 071010741 -

09t 1 (6.2)
08 r ]
07t ] In the same manner, ifis odd
- [o] 4
06 o o < o 0_;[+1:o_}+1/2_20_}+1/2 5(0}4:%/2_’_ Uitﬁlz)
£ 05 o tot ottt
04} ] =0i_20i_10i0i+10+2- (6.2)
03 Defining local energy of sité at timet as
02 r
01t 1 Eit:_a-ito-itJrl! 6.3
0 200 400 600 800 1000 we obtain the following relation for the local energy using

L Egs.(6.1) and(6.2). Namely, ifi is even,

FIG. 11. System-size dependence of the total energy flux in the trl ot
Q2R. Ei = Ei+2 ) (64)
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and ifi is odd, Education, Science and Culture. The numerical computation
1t in this work was carried out at the Yukawa Institute Com-
Ei =Ei_>. (6.9  puter Facility.

Therefore, the energy transport in one-dimensional Q2R is
ballistic and the Fourier heat law is not satisfied. Thus we
have found that the dimensionality has an important role for In this and the next Appendix, we derive the Kubo for-

APPENDIX A

the Fourier heat law in the Q2R. mula(4.1) for the CCA. We denote a state of the total system
by w=(w;;), wherew; j=(o; ; ,}i,j), and the transforma-
VIl. SUMMARY AND DISCUSSION tion from the state at timet, o', to that at timet

t+1
In this paper we have studied the thermal conduction inJr L o7 byQas

the CCA with two methods. One is the direct measurement 0= (oh). (A1)
of the heat flux under a temperature gradient. The other is the

use of the Kubo formula. The former revealed that the asThen, the time evolution of any functid® ) is represented
sumption of local equilibrium is satisfied and that Fourierpy

heat law is realized in a wide range of temperatures. The

thermal conductivity was carefully calculated near the criti- F'" Y (0)=F'(Q(0)) (A2)
cal point by the latter method and the results show no singu- ) .
larity for «(T) at Tc. and F°(w)=F(®), and the time evolution of a measure

How a thermal conductivity behaves @t is a highly p(w) by
nontrivial problem. Harris and Grart3] and Costa and
Her_rmann[ll] both argued that the thermal conductivity Pt w)=2> 8w, Q(w))pl(w) (A3)
vanishes at the critical point. On the other hand, the autocor- o'
relation of the total energy flux might show a slow decay due 0
to the critical slowing down. Then the thermal conductivity @ndp~(@)=p(w), where
might be divergent af . Our present result shows neither is
the case. "
: . dw,0") , ,
The present result does not mean that there is no singu- 0 if w#w'.
larity in energy transport & . The Fourier heat law means i
that the macroscopic motion of energy density obeys the Now we define the total flud,«(w) by
diffusion equation with diffusion constant D(T)
=xk(T)/C(T), WhereC(T) is.the spe.ciﬁc heat. -The present Jtot,x(w):_z Jijx(®), (A5)
result shows that«(T;) is finite while C(T) diverges to B
infinity at T. Thus the diffusion constam(T) vanishes at .

Te. WhereJiyj,a(w)_ (qfx ory) is thea component of the en-
We evaluated the equal-time correlation of the heat flowf'9Y flux at site {,j) when the system is in stawe. We
by the use of mean-field approximation. This quantity is thedSsume that the |n|'§|al measys€ equals the local equilib-

first term in the Kubo formula and we can obtain a roughlum measure, defined by

1 if w=o'

(Ad)

estimate forx(T). In the high and low temperature limits, 1
our approximation reproduces the result by Harris and Grant pre(®)= Z_H e FiEi (@) (AB)
[3]. le'ij

Similar calculations were also done for the Q2R, a sim- ) .
plified variant of the CCA. The results obtained are almostVN€reEi () is the local energy around sité,[) in state
the same as in the CCA. The normal thermal conductivity®: Zle denotes the normalization constant
was found and it was continuous and smooth at the critical
point. This proves that the existence of the momentum terms Zie= > H e~ BiEij(o) (A7)
is not relevant to the normal thermal conductivity. On the o 1]
other hand, the dimensionality is important. Energy transport ) ) ]
is ballistic in the one-dimensional Q2R. Such importance ofl "€ parametep; is the local inverse temperature at tib
the dimensionality was reported also[{ts]. colqmn. We consider the tempe_raturg variation in xheh-
The similarity of the thermal conductivities in the CCA rection only. If the temperature is uniform and all fBgs
and the Q2R also implies that the smooth change afthe ~ €qual a values, pe becomes the equilibrium measure of
critical point is rather generic. To investigate to what extenfiemperatureT=g"". The average of functiof () with
this behavior is generic, however, we must examine othef€spect to the local equilibrium measure is written as
dynamical systems with a critical point. It is a problem to be

addressed in future. (Fle=2, F(w)pie(w). (A8)
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<J otx>|e <‘]totx Ie+ E <J§o:xl_3£ot,x>le (A9)
t'=0

= (oot 2 2 [Joid(@) =3 (0)10%w)

t'=0 @
(A10)
t—1
=Jodiet 2 2 Jax(@)ptw)—p%w)].
t'=0 @
(A11)

In the last equality, we have used the identity

> Fr Y w0)p%0)=2 2 F'Yw) 8o’ ,Q(0))p%(w)

!
@ ®

=2 Fl(w)pH(w"). (A12)

Utilizing the equation of continuity

El,m(Q(w)): El,m(w) —J +1,m,x(w) +‘]I,m,x(w)

_‘]I,m+l,y(w)+\]l,m,y(w)a (A13)

p(w) is calculated as
1 !
pHw)=—> 8w,Q(w')]] e AELme"
Zle o' I,m

1
=72 Q)] exp=BIE m(@(e)

+JI+1,m,x(w’)_JI,m,x(w,)+J|,m+1,y((1”)

_‘]I,m,y(w,)]}

=p|e(w)2 8w, Q(w"))

X H efﬁl[‘]l+1,m,x(“”)7‘]l,m,x(")’)]
I,m

=pie(0)2 8,00 D] e Aimsde”,
(A14)

Inserting the above formula into EGA11), we have

t—-1

<J{0t,x>le:<‘]tot,x>le+ E 2 Jiot‘x(w)pm(w)
t'=0 @
x| 2 8w, (" ))]] eBimA-Dhmdeh 11,

' I,m

(A15)
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t—1

<J{ot,x>le:<‘]tot,x>le+ 2 E E J{(,)t,x(w)peq(w)
t'=0 © g’
X (0, Q@) 2 (Bi=Bi-D)Imul @)

t—1
=Tt 2 2 Jord(@)ped @)

t'=0 o’

XE —Bi-DImx(@")

(A16)

t
T )
:<‘]tot,x>le_ 2 z <Jt0t,x‘]£ot,x>eqv
t'=1

where we have used the time invariance of the equilibrium
measurepe{{2(w))=ped ®)-

As we will show in Appendix B, the following equality
holds for the first term in the right hand side:

T
_<(~]tot,x)2>eq (A17)

<‘]tot,x>le: - >T2
in O(VT). In addition, we assume that the average energy
flux goes to a stationary value in the lintit>c irrespective

of an initial measure. Then the stationary energy flux per site
obeys the Fourier heat law

1
JstE"mN<Jtot,x>le:_KVT in O(VT)  (A18)

t—o

and the thermal conductivity is given by

(T)= 2

<‘]t0t X‘]:ot X>

1
3 5t,0) , (A19)

which is the Kubo formula for the CCA. We remark that the
expansion is formal and not justified. The coefficiennight

be divergent. Currently we have no means to judge the con-
vergence of the coefficient except the numerical methods.

APPENDIX B

In this Appendix we prove the formuléAl17). First we
note that

= 2 E |(<Ji,j,x>eq<El,m>eq

,j Im

J
m<‘-]tot,x>le|VB=O
—(JijxEi.meq- (B1)
This is obtained by a straightforward calculation. From now

on, we only deal with equilibrium averages and the suffix
“eq” will be omitted.

Now we formally expand the right hand side with respectto Since the total HamiltoniarH is invariant, namely,

VT and obtain inO(VT)

H(Q(w))=H(w), we have
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(JjxErm=Z"12 3 ((@)E) m(w)e PR (JixEm=2"12 3, (0 Yw)

5 XE| m(S 1eQoS(w))e Al (B9)
=Z712 Jij (@)E| pm(w)e” AHE)

=71 Jii« 0-log 1
=Z712 3 Q7 0)E m(Q " H(w))e A, 2“’: it (@)
’ XE| m(S™ T (w))e™ AN (B10)
(B2)

=272 3 Q7S H(w))
where )1 is the inverse operator db. Denoting the op- B
eration of updating the even sites B and that for the odd —BH(w)
sites by°, we can decompose the time evolution operator XEimia(Q(w))e ' (B11)
QO as
From the definition of the flux; ; ,(w),

0=0°%0¢ (83) ] ( - o-i—l,j(o-il,j_o-i,j) if (l,]) is even
WX (o ey i (i) is odd,

(B12)
Since we havé)®)¢=0%0°%=1 (identity), the inverse op-

erator is given as where w’=Q(w), w={wi’j=(0i’j !}i,j)}! and w’={wi’j

=(o{;.0{ )}, and the identityQ S} ()=S0 (w),
we obtain
Q7 1=0%0°, (B4)
Jijx( QS Hw)=—J 1 14(®) (B13)

Let us define the shift operat&b
P y in both the cases that site,|) is even or odd. Combining

Egs.(B11) and (B13), we have
(Sw)j j=wjj_1. (B5)
R (3 jxErm == (Fi - 1xE L) (B14)

This means that the operatBrshifts the state by one site in Similarly we have (J; ;)= —(J;1x). Inserting these
they direction. Because the shift exchanges the roles of thgdualities into Eq(B1), we arrive at
even and odd sites, we have

J
m<‘]tot,x>le|VB:O

S 0= (%S, (B6)
:_iEj: % 1(Ji,; xEl,m)
S 0°=0%S, B7 1
atd T L I<Ji,J,XEIl,m>:§2 2 |<‘]i,j,x(E|1,m_EI,m)>
i,j I,m i,j I,m
. ) 1
Thus the inverse operator has another representation =§Z | I(Ji,j,X(JLm,X—J,H,m,XvL Jl,m,y_‘]l,m+1,y)>
1] ,m
1
0O 1=51L0-S. (B8) :EIEJ “~ I<‘]i,j,X(‘Jl,m,x_‘]|+1,m,x)>
1 1 5
:Eij = <‘Ji,j,x‘]l,m,x>:E«‘]tot,x) > (B15)

Inserting this formula into Eq(B2) and utilizing the shift
invariance of the Hamiltoniafi.e., H(S(w))=H(w)], we
can write This is equivalent to the formulgA17).
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