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Thermodynamic depth of causal states: Objective complexity via minimal representations
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Thermodynamic depth is an appealing but flawed structural complexity measure. It depends on a set of
macroscopic states for a system, but neither its original introduction by Lloyd and Pagels nor any follow-up
work has considered how to select these states. Depth, therefore, is at root arbitrary. Computational mechanics,
an alternative approach to structural complexity, provides a definition for a system’s minimal, necessary causal
states and a procedure for finding them. We show that the rate of increase in thermodynamic dépehisor
the system’s reverse-time Shannon entropy rate, and so depth only measures degrees of macroscopic random-
ness, not structure. To fix this, we redefine the depth in terms of the causal state represertatariines—
and show that this representation gives the minimum dive consistent with accurate prediction. Thus,
e-machines are optimally shalloS51063-651X99)12401-2

PACS numbsgps): 05.20-y, 05.45-a, 05.70.Ce

I. NATURAL COMPLEXITY One class of approaches to natural complexity is based on
the theory of sequential discrete computatif7]—the
Dissipative dynamics, symmetry breaking, phase transitheory of how sundry sorts of discrete-state devices process
tions, bifurcations, and pattern formation, acting over differ-information at varying levels of sophistication. The resulting
ent temporal and spatial scales, at different levels and omeasures of complexity ultimately express structural proper-
different substrates, are presumably responsible for asserties in terms of universal Turing machines. Unfortunately,
bling and freezing in the wide diversity of structures ob-almost all interesting mathematical and quantitative ques-
served in the natural world. Each of these processes has ifidns about these measures of structure inherit the uncomput-
more-or-less well-developed foundations. But where are thapility associated with those all-powerful machines. More
principles that define and describe their products? What ifundamentally, though, the idea that everything in the world

structure itself? Does each and every particular combinatiofs really a discrete-state computer strikes one as inadequate;
of forces lead to a different and unique class of natural strucat 5 minimum nature is parallel, continuous, spatially ex-

ture, requiring its own vocabulary and theory? And, how doignged noisy, and quantum mechanical.
we detect that some new structure has emerged in the first Fortunately, in the thermodynamic depth of Lloyd and

? .
plagﬁ. d related . bout nature’ | _tPageIs [8] we have a proposal for a noncomputation-
e€se and related questions about nature s comp ex'diﬁeoretic, empirically calculable measure of the complexity
0

have engaged a large number of researchers for several ef'processes. One central motivation for defining the thermo-

cades now; for a sampling see, e.g., R¢ts:5] and refer- . . o

ences therein. One focus has been on quantitative measur%\én:m'c depth is ”]I_ar: Itis sma]tcll_tboth forl_regfulatr and_fotrh i

of the complexity of natural objects and of the processes thd"dOM Processes. Thus, one oT Its appealing features 1S tha
pth measures something other than randomness—a prop-

bring them into existence—measures that capture properti T
more interesting than mere randomness and disorder. Exist/ty already well-captured by both Kolmogorov-Chaitin

ing theory, such as is found in statistical mechanics, provide§oMplexity[9—11 and Shannon entropy raf@2—-15.
relatively well-understood measures of disordefsay) tem- In this paper we introduce the required background for
perature and thermodynamic entropy, and of the flow of enthermodynamic deptf8] and for an alternative approach to
ergy that can do work in the various free energies. Whilenatural complexity, called computational mechanit§,17,
many applications and problems remain, there is little pres§.hat extends statistical mechanics to address issues of struc-
ing need for new conceptual approaches to randomness attigre in a direct way. We review the definition of thermody-
energy transduction. However, when it comes to structur@aamic depth and apply it to several simple Markov pro-
something is missing—something else must be invented ancesses, revealing several ambiguities. To remove them we
then added to physical theory to account for, work with, andredefine the depth in terms of a representation based on
quantify different kinds of structure. causal states, those states through which computational me-
chanics views the minimal structure of a systglf,17]. We
then prove our main results on the predictive optimality and
*Electronic address: chaos@santafe.edu minimality of the causal state representation. Finally, we
"Electronic address: shalizi@santafe.edu draw a number of conclusions about using thermodynamic

1063-651X/99/561)/2759)/$15.00 PRE 59 275 ©1999 The American Physical Society



276 JAMES P. CRUTCHFIELD AND COSMA ROHILLA SHALIZI PRE 59

depth as a measure of structural complexity in natural prowhereu denotes the above-mentioned measure. The quantity

cesses. h, measures the irreducible randomness in the generation of
future behavior: the randomness that remains after the corre-
Il. PROCESSES lations over longer and longer futures are taken into account.

. . ___The reverse-time entropy rate, is defined similarly in
Following Lloyd and Pagels, we focus on discrete-time < .p
processes and consider a given process as a joint probabili&?rms ofS- and measures historical randomness. Both can be

distribution Pr(. .. X_1,Xo,Xy, ...) over random(“mi- expressed in terms of a conditional entropy: given knowl-
croscopic’) variablesX; at each time that take values; in edge of the measurement history, the uncertainty in the next

a continuous state spadé In accord with experimental con- measuremeng, is

straints, we assume that the process is not observed directly, . <

but states are in fact measured via a finite-precision instru- hu:H[So|S]? ®)
ment. The result is that our description of the proces
is in all practicality a joint distribution over a chain

S=.. -S_,S_15,S;- - - of discrete-valued random variables ﬁﬂ:H[sfﬂé], (6)
S that range over a finite set of observed stategAlthough
our notation differs, this setup follows the account in Ref.where the entropy of a random variatdeconditioned on the
[8], p. 194, of “macroscopic,” “measured,” or “coarse- value of another random variabl is defined asH[X|Y]
grained” states as partitions of the underlying microscopic=H[X,Y]—H[Y].
state space.

We divide the chain into two semi-infinite halves by IV. THERMODYNAMIC DEPTH
choosing a timé as the dividing point. Denote the past by

Snd similarly, given the future, we have

Lloyd and Pagels propose that the complexity of a mac-
S sS S (1) roscopic stats e A is determined by the history that led$o
S22l The motivation for this is that “complexity must be a func-
tion of the process—the assembly routine—that brought the
object into existence'(emphasis thei)s([8], p. 187; in par-
- ticular, it is a “measure of how hard it is to put something
S=SS+1S1+25+3" 2 together” ([8], p. 189. Starting from a distribution over

i i i macroscopic state sequences, one first finds the probability of
We will assume that the observed process is described byl@ngthL histories that end in stat

temporal shift-invariant measuge on bi-infinite realizations

S

and the future by

-+ +S_55_15051S . . ., € .A. The measurg@ induces a fam- P(S_Li1,...,.5 1,S=5|s) (7
ily of distributions. Let Pr§;) denote the probability that at

time t the random variablé&, takes on the particular value P(S_ |41, .-..5.1,S=5)

sie A and Pré;. 1, +,S4+1) the joint probability over se- = PI(s) : ®)

guences ofL consecutive measurements. Consistent with
Ref. [8], we assume time-translation symmef@g8] and so  Then the thermodynamic-depthD, (s) of states is defined

Pr(si+1, - - . St+L)=Pr(sy, ... ;5. ). We denote a sequence by the conditional entropy
of L consecutive measurements 8/=S,...S ; when
looking to the futurepas the sequence is denoté (S-). Du(s)=H[S L1, ..., S 1,5=5s]s]. ©)

[In dropping the time index from Eqg§l) and(2) we implic-

itly take t=0.] We shall follow the convention that a capital
letter refers to a random variable, while a lowercase lette
denotes a particular value of that variable. Herste will
denote a particular measurement sequence of ldngth

(From here on we ignore the distinction in RE8] between
“depth” and “thermodynamic depth” by, in effect, setting
Boltzmann's constant to 1/In 2.) Averaging over all such
states gives one thHe-depthD, of the system as a whole:

ll. ENTROPY AND RANDOMNESS DLEEA Pr(s)D(s), (10

The average uncertainty of dnsequences- is given by

the Shannon entropy of the joint distribution 8t} [14]: or
D =H[S_ 41, ...,5-1|S0], (1)
H[S"]=- Pr(sh)log,Pr(sh). I
[S'] SLEEAL 1(s7)log,Pr(s) @ where we have used the identity{ X,Y|X]=H[Y|X]. We
defineDy=0.
Looking forward in time, the rate of increase of this uncer- The backstage intuition motivating thermodynamic depth
tainty is defined by the entropy rate is the following: if there is little uncertainty about how to
attain a macroscopic state and if trajectories are confined
H[§'—] within narrow bounds, then the macroscopic state is easy to
h = lim (4 assemble. In this case the process leading to that state and
y23 I_ ! . . . . . .
Lo generating those trajectories is simple and the state is shal-
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low. If the historical uncertainty is large and if a wide range  For later use note that, sind¢{ Y]=H[Y|X], it follows
of historical alternatives has been excluded, then the proce$som Eq.(16) and from translation invariance that

is complex and the macroscopic state is deep. “The thermo-

dynamic depth of a state is proportional to the amount of v<H[S]. (19

information (in bits) needed to identify the trajectory that . icall .
leads tob given the information that the system istifi (8], For stationary or asymptotically stationary processes, we
p. 196 haVeH[S_L+2, - ,So]:H[S_L+1, P ,S_l]. ThUS, start-

Like all statistical complexity measures, thermodynamicind from Eq.(14) we also conclude that

depth has forsworn awarding high complexities to mere ran- ; -~
domness. Referen¢8] states that it vanishes for completely M {HES Legs - Sl =HIS ey, - Salh (19
random processes, as well as for totally ordered dqf@s

L—o

pp. 187, 190, and 191For systems satisfying the microca- = limH[SS 41, .. ..S.1] (20)

nonical assumption of statistical mechanics, Lloyd and Pa- L—oo

gels([8] pp. 190, 194, and 19%rovide another expression

for the depth, as the difference between a coarse-grained and =H[Sy|S] (21)

a fine-grained thermodynamic entropy. Using this alternate

expression, they argue that black holgs, p. 191, gases at —h 22)
-

thermal equilibrium([8], p. 191, and salt crystal4[8], p.

191) are shallow and the self-assembly of protein complexegom this we see that) the forward-time and reverse-time
([8], p. 196 is deep. While it is sometimes easier to evaluateentro rates are equdl, =F. , and(ii) they are the same
the alternate expression than Efyl), it is strictly equivalent by quat, =N, Y

to the latter in the cases where the necesseggtrictive as the divev=h,,. (Fr(?m here on we drop the time arrows
and denote a process’s entropy raterpy.)

conditions behind the former hold, so we shall confine our- '
' To summarize, we have shown that the Shannon entropy
selves to Eq(11) in what follows. . ;
rate controls the average rate of increase in the thermody-

bo;:rilfstgl ﬁﬁ(%thdgrg&’]wgéeg;g dzrgzeszg]slgm:s%gtl it;eitnamic depth and that the dive is invariant under time rever-

depends on the time when we judge the process to hav%al' Recall thah, also controls the average rate of increase

o
started and on the depth accumulated from the beginning of KoImogorov—Chait?n complexit_){14]. Thes_e aspects of
time until then. At best, these choices can be a bit tricky tq,epth are not a surprise and are in accord with the claim that
figure out. Of greater physical significance, therefore, is th%

the average complexity of a state must be proportional to
asymptotic rate at which the depth increases, which we call he Shannon entropy of the set of trajectories that experiment
dive

determines can lead to that statd'8], p. 190. From these
elementary uses of information-theoretic identities, it is clear
v=Ilim[D_—D,_,]. (12)  at this point that thermodynamic depth measures nothing
Lo other than the macroscopic randomness generated by a sys-
tem.

The benefit of looking at a rate which is not considered in

Ref. [8] is thatv is ind(.apendent of the Origin of time and SO V. SOMETHING ROTTEN IN THE STATES

allows one to more fairly compare processes by their rate of

depth generation. The analysis of the preceding section leaves us with a
We now show that is the reverse-time entropy rate. puzzle: How is it that Lloyd and Pagels can state—e.g., on

Recalling the definition of conditional entropy[Y|X]  each of the first six pages of R¢B]—that depth discounts

=H[X,Y]—-H[X], Eq. (12 becomes for disorder and so captures something other than random-
ness?
v=IIm{H[S_ 11, ....S]—H[S] The problem, we claim, lies in their choice of states. In
L—ee the illustrative examples in Ref8] macroscopic states are
_ selected that support the desired properties of depth. That is,
HIS-Li2, .- Sol+HISo L} (13 the results and interpretations do not follow from a direct
T application of the given definition of thermodynamic depth
- “m {H[S*LJrl! 150]

alone; biases external to the definition are invoked.
Moreover, employing an appropriate set of macroscopic

L—o

—H[S__ .2, ... S0l} (14 states is crucial for obtaining a well-defined depth, since by
judiciously redefining them one can give the depth any value
=lmH[S_ 1S Li2, - . So] (15  from 0 on up. To see this, remember that the depth is the
L—e conditional entropy of a sequence of states. If there is only
. . one state, the depth vanishes. If we make spurious macro-
=H[S_ ;+1|S_L+2]=H[S_4|9] (16) scopic distinctions—e.g., acting as though one state was re-
ally n degenerate, equiprobable states—we add a contribu-

:ﬁw (17)  tion to the dive that is proportional to lag And, we can

keep doing this until the depth is as large as we likE
where the next-to-last step follows from time-translation in-discussion in Ref[8] leading up to the example on page
variance. 191).
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The states of whichever dynamical system underlies the
observed process are, at least, unambiguous candidates for
use in the calculation of depth, but have an unfortunate habit
of being unknown, redundant, or excessively fine grained.
Lloyd and Pagels considered this problem by implication,
discussing why, in some particular cases, certain choices of
state are better than others. They explain, for instance, on
page 191 of Ref[8] how an unfortunate choice of measure-
ments can make even systems in thermodynamic equilibrium
quite deep. But they neither presented a procedure for pick-
ing sets of states nor gave general criteria for ranking pos- 13
sible alternative selections. This lack has not been remedied
by follow-up work on thermodynamic depth, though com- FIG. 1. A simple Markov chain that generates random
mentary at that time by Landauéﬂ_g]’ p. 303 raised related sequencesBBAC - - -—with finite dive (v =109,3) and so infinite
concerns. total depth O, —| _..®).

Assuming one wants to use thermodynamic depth to mea-
sure complexity, Occam’s raz$20] advises us to pick the ={A,B,C}, each of which can go to any other, including
simplest representation we can—in this case, whichever sétself, with equal probability; see Fig. 1. Here, according to
lection of states gives the smallest depth; cf. R&F. p. 193. the prescription of Lloyd and Pagel®, =Llog,3, the total
But this can always be trivially achieved by lumping every- depth is infinite, and the dive is exactly equal to the entropy
thing into one state, as just noted, which gives a vanishingate of the observable sequences, 'ue=.,hf}=logz?> bits per
depth. More confusingly there are even cases, as we'll seesiep. The sequences generated are completely random, but
bit later, where such lumping is entirely appropriate. neither the depth nor dive vanish.

Nor can the problem of state choice be reduced to that of Next, we hide the internal statesfrom observation, but
coarse graining the space of observables; as done if&ef. at each time step a measuring instrument emits one of two
pp. 194 and 195 and elsewhere, for example in Rgfs]  observable symbolse A={0,1}, as in Fig. 2. In this way
and[22]. While this space can be readily represented by ave recover a simple version of the micromacroscopic dis-
finite alphabet, as done above—indeed, digital measuring deinction of Ref.[8]. The transition matrices(” are, in this
vices so represent it without even asking permission—thease,
problem is that the connection between what we measure and

the underlying process is often obscure to the point of total 12 0 O
darkness.(The definitions of “measurement” for Hamil-

_ _ ; To_{ 0 12 0 23)
tonian and quantum mechanical systems in [R&fshed no -
light on this point) It is certainly not desirable to conflate a 0 0 12
process’s complexity with the complexity of whatever appa-
ratus connects the process to the variables we happen to hayxgad
seized upon as handles.

One helpful step in developing any measure of complex- 0 12 0
ity is that it be calculated on simple illustrative examples that

' TW= 0 0 1/2 2

can be thoroughly and unambiguously analyzed. We now - : (24)

proceed to do this for a series of examples—all of them 1720 0
based on Markov chains, if only to guarantee that nothing

especially tricky or esoteric is at issue. In fact, we can inter-That is, each state either loops back on itself, emitting
pret each example as a type of one-dimensional spin-1 sta-0, or goes to the next state in the chain, emitsrgl, with
tistical mechanical system; cf. R¢23]. (We emphasize that - equal probability. The dive, i.e., the entropy ratg of the

our results in other sections are not restricted to this class fpservables. is =1 bit per step. The entropy ratgf of the
Markov processek.

The hidden Markov models we analyze contain a set of
“internal” states, belonging to a finite alphah&t which are
not directly observable. At each time step, there is some
probability of moving from the current state to any other,
while “emitting” an observable symbol drawn from another
alphabetd. We denote the probability of going from internal
statei to internal statg while emitting the measurement
values asTi(f). These models thus generate a pair of linked
stochastic processes, one over the internal states and the
other over the observable values, and only the latter is di-
rectly detectable. Nonhidden Markov models are those g, 2. A simple hidden Markov model that generates strings
where these two processes are one and the same: whereit finite dive (¢ =h-'=1 bit per stepand infinite long-run depth.
=X and Ti(js)=0 unlesss=j. The edge notatios|p denotes that a transition is to be taken with

Consider first a nonhidden system of three statesA probability p, emitting measurement valige

0los
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explain. (Refs. [17] and [25] discuss this curious phenom-
enon. A detailed mathematical analysis is found in Ref.
[24].)

This example illustrates the measurement dependency of
both randomness and complexity. In contrast with the binary
instrument just used, if the logistic map is observed with a
generating partition, for which infinita-b sequences are in
correspondence with the microscopic statgs[0,1], there
is only a single internal state. In this case, the internal state

FIG. 3. A hidden Markov model of the logistic map symbolic €ntropy ratehff is zero and the entropy rate of the observed
dynamics observed with a nongenerating partition. symbol sequences r$;f= 1 bit per symbol. It turns out that

this is the correct description of the logistic map dynamics;
internal states is also 1 bit per step, since, given the currersiee Ref[26] for an elementary exposition.
state, there are two possible, equiprobable successors. More- Readers will have already noticed, and been troubled by,
over, while the system is a quite adequate source of randomhe fact that all our examples are simple sources of random
sequences, macroscopic stags.A, as well as the three strings, but have steep dives. According to the definition,
hidden states, continue to deepen at the rate of 1 bit per stefhey are deep, complex processes, despite the explicit state-

Note that by inserting additional states betwéeandB,  ment of Lloyd and Pagels that depth is small or vanishes for
which are equally likely to either loop back to themselves onrandom processes.
s=0 or go to the next state in the chainsn 1, it is easy to
go from Fig. 2 to “Rube Goldberg” automata. These are
representations with elaborated sets of states with exactly the
same observable process and propeiies, with the same On the one hand, what these examples make clear is that
Pr(...S.1,5,S1,...), where s;€{0,1}), but with in- we generally will not find macroscopic states appropriate to
creasing internal-state structure. Thus, there are inherent armeasuring a process’s statistical complexity just by translat-
biguities in using inappropriately baroque sets of states whefhg observablegvia coarse graininginto a finite alphabet.
describing the structural properties of a process; ambiguitie®n the other hand, especially in experimental work, we often
that must be addressed somehow. have no source of information other than the sequence of

Finally, consider the symbolic dynamics of the logistic finite-precision discrete-valued observables. There is a fun-
map of the unit intervalx, ;=f(x;) =4x,(1—x,). Here the  damental difficulty here. Moreover, part of the attraction of
microscopic state space is continuokss X=[0,1], but we  thermodynamic depth, compared tsay Kolmogorov-

VI. CAUSAL STATES AND e-MACHINES

observe x, with a binary-valued instrumentd={"a" Chaitin complexity[9,10] and logical depth27], was its
~[0,x),“b” ~[x,1]}, wherex is the largest preimage of claimed calculability from empirical data.
1/2. Whenx, e [0,X) the instrument emits=a and when There is at least one release from these ambiguities: it is

« [)A( 1] it emitss=b. This “nongenerating” partition oft found in the use otausql statesas the_y are concgei\{ed of by
teL% . 9 gp o computational mechaniesan extension of statistical me-
leads to the ttlree hlddenAs'Eates that are coarse grainings Hanics that explicitly accounts for a process’s structure
X1 A~[0,1-x), B~[1-x,x), and C~[x,1]. Recalling 16 23. From the viewpoint of an observer, the idea is that
that we can calculate the invariant distribution t(the o trajectories leave one in the same causal state if they
resulting stochastic finite-state model of the symbolic dy-leave one equally knowledgeable as to the future. More for-
nhamics process is shown in Fig. (Bee Refs[17] and[24]  mally, a causal stat§ is an equivalence class over histories

forngr?r;rllss(i:tlijoS:I%lt? ifc?slsfgrx?hr?sp)li.ocess are s of observed states, such that all the sequences in the causal
P state give the same conditional distribution for the semi-

00 O infinite futures:
Tk = 0 0 1/2 25 _ - -, o
0 0 o @9 €(9)={8'|¥$ Pri§s)=Pr39)}. (27)
and The causal-state equivalence classes form a partition of the
1/2 1/2 0 set S of all histories; see Fig. 4. Thus definee(s) is a
(a) 0 12 0 function from a history§ to a set of histories, which are the
™= : (26)  causal states;, i=0,1,2,3.... Wedenote the sefS;} of
12 12 0 all causal states bsg. It is convenient sometimes to have a

function taking one from a histor§§ to the labeli of its
The entropy ratehff, measured over the states, is 1 bit perequivalence class and, in a slight abuse of notation, we will
step, but the diva;=h;l (of the observablgsis lower. v also call thise(s).
~0.811 bits per step. The states, in other words, are actually Since we needomechoice of state if we are to apply
worse—less predictable, deeper, and more demanding afepth at all, and if we are not to consign it to the growing
memory(in a sense made precise presentiyhan the sur- collection of subjective complexity measurese Ref[4]),
face phenomenésequences oved) they are supposed to we might as well select a process’s causal states. What is
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S P 1172 0|12
4
@ FIG. 6. Thee-machine for the hidden Markov model of Fig. 2.

The internal entropy ralhff and the statistical complexi, again
vanish since there is a single causal state.

Causal-state equivalence-classing guarantees that the
e-machine is as small as it can be and still be an accurate
predictor of future observed sequences; see Sec. VII B be-
low. This makese-machines for both highly ordered and
highly random sequences very simple: a high degree of ran-
domness means that many distinct sequences of observables
leave one equally uncertain about the future and, conse-
quently, those sequences all leave the system in the same
notable, though, is that, while causal states were not dec@usal state. In this way orgerivesthe desired “boundary
signed with this end in mind, they minimize dive. conditions” for statistical complexity measures—Ilow bot_h

The representation of a process consisting of the caus#r ordered and for random processes—from the underlying
states and their transitions is known aseamachine In the  Principle of optimal prediction; that is, from E¢7).
simplest setting, ae-machine is a Markov chain over a finite ~ 1h€se properties of causal states suffice to rescue the
number of causal states and so can be compactly describ€@MmPplexity analysis of the examples from the confusions of
by a labeled transition matrif{¥, notationally similar to the last section. The firs(Fig. 1) corresponds to an
that for the examples above. This matrix can be Calculate(i'maChlne with a single causal stafg that returns to itself
(analytically or empirically from the distribution of ob- ©" thr(_ae separate, equally qobable symhdis {A,B,C}
served sequences, a procedure cadledachinereconstruc- (€€ Fig. 3 The entropy ratér; of the observed sequences
tion. is (as alwayg preserved under the change of representation

An emachine lets us calculate the probability of different 0 causal states, but the entropy rap of the causal state
sequences of observables. It also leads to an invariant proBrocess itself, i.e., the now-redefined diveis, like the sta-
ability distribution Pr(S) over the causal states. The resulting tistical complexity, zero. _
complexity measure for a process is #tatistical complexity A similar fate awaits our second examjgfég. 2). Under
C, that is defined simply as the Shannon entropy of thafausal-state equivalence-classing, the three alleged states
distribution [16]: C,=H[S]. C, measures the average cqllapse_lnto one, yielding an |dg§I com—to;smg machine
amount of historical information stored in the current stateWith a single state and two transitiorisee Fig. 6. Here
Our results in Sec. VII are not, however, restricted to caseddain the statistical complexity and the new dive vanish. De-
where thee-machine is finite Markovian, merely to ones fining depth in terms of a process’s causal states leads us, in
where there is a probability measure over the causal state0th examples, to recover the intuitively correct no_tlon that

A process’s thermodynamic depth, and thus its dive, aréhese sources of purely random_ sequences are ne|thgr s_,truc-
defined with reference to its macroscopic states, whatever wirally complex nor store much information about their his-
take those to be. Due to the ambiguities that follow from atOory- _ . - o
prosaic interpretation of depth’s definition we propose to re- In our final exampleFig. 3), the future conditional distri-
define depth, and by implication the dive, solely in terms ofPution of observables depends only on how long it has been
a process’s causal states. The first result of taking the “macSince the last, leading to a countable infinity of causal
roscopic” states to be the causal states is that the dive is tidfates(see Fig. J. It turns out that the new dive and the
entropy rate of thee-machine’s internal-state process: statlstlcal complexny can be analytically calculated; one
Ehff' whereX=S. The second result is that by E4.8) v findsv~0.677 867 bits per measurement abg~2.711 47

<C,. Infact,v<C,, if there is any mutual information in
the observed sequenc8sby Eq.(106) in Ref.[23].

A|1/3 B|1/3

iad

C|1/3 FIG. 7. Thee-machine for the hidden Markov model of Fig. 3
has a countable infinity of causal states. The internal entropy rate
FIG. 5. Thee-machine for the unhidden Markov model of Fig. hff and statistical complexitZ,, are both positive, indicating that
1. The internal entropy ratb;f and the statistical complexitg,, this is an intrinsically more complex process than the other two
vanish since there is a single causal state. examples.

FIG. 4. A schematic representation of partitioning the Seff
all histories into causal state%. Within each causal state all the
individual historiess have the same conditional distribution Bjg)
for future observables. Note that tiSeneed not form compact sets;
we have simply drawn them that way here for clarity.




PRE 59 THERMODYNAMIC DEPTH OF CAUSAL STATES 281

shallower dive than the causal states. We will prove these in
order.

A. Nothing forecasts better than ane-machine

Call the sequence of observables up to the presentfﬁime
the random variable that is the next observaBleand the
random variable that is the whole sequence of future observ-

ablesS. Recall that the functior: S— S returns the causal
state thee-machine is in after observinS and define the

FIG. 8. An alternative seftR;} of states that partitio overlaid function n'S,H’R' .s.lmllarly for the R-statei. We measure
on the causal state&The R, are delineated by dashed lineghe  the forecasting ability of a set of states HYS|R] [28], the
collection of all such alternative partitions form Occam’s “pool.” Uncertainty that remains in the future observables once we
Note again that th&®; need not be compact. know the current state. That is, the better the set of states is

at forecasting—the more prescient it is—the smaller this un-
bits of historical memory are stored by the prodgisg24. It~ certainty. From Eq(27) it follows that
is a more complex process than the other two examples. . o

One of the desired properties of thermodynamic depth Pr(S|e(S))=Pr(S]S), (28
was that it accounted for the history of the “assembly pro-
cess” ([8], pp. 187—189 angassin. We should emphasize and SO
that by definition causal states account for a form of histori-

cal memory, though in an importantly different way. Causal H[Sle(S)]=H[SS]. (29
states measure the amount of historical information stored in ) )
as Since, for any random variablésandY and functionf,
ystem.
HLY[f(X)]=H[Y[X], (30

VIl. OPTIMAL SHALLOWNESS OF e-MACHINES

Working with the e-machine representation forces one to't follows that

distinguish betweerfl) sequences over coarse-grained ob-

servablesA, (2) sequences over causal statSs and (3) H[S 7(5)1=H[S|S] (39
seqguences over transitions, the labeled queg,s):Ti(jS) L
>0}. There is a many-to-one relation between edge se- =H[Ye(9)] (32

guences and causal-state sequences and also between edge

sequences and observable sequences. But, as we saw wigl so

we defined the causal states as equivalence classe@#g. _ R

there is a function that takes a history to a causal state: H[S|R]=H[S|S]. (33
namely,e:éﬁs. One consequence is that one can specify _

all of the relevant historical information by noting which of 1hus, no alternative seR of states sees the future better
the causal states the process is in, rather than recountingtB@n the causal states.

possibly infinite amount of information from the histoé/ r'v;rl]svg? 2; ;(t)gtc:avﬁh\;vteismg! p?édailcgsfa Zléetrhtehgaﬁzg]lestc;ft:smg e
that led to the current state. That is, causal states provide 4 P T

compression of a process’s history. we refer to states ifR if and only if H[S|R]=H[S|S].

These distinctions and the historical compression are
good motivations for deciding which type of state to use for B. Nothing as prescient as ane-machine is simpler
a process. But these alone are not enough, so let us consider A o n
alternatives to causal states, namely, anothefsef states, Suppose we have a s® of states for whichH[S[R]
call themR-states, that are determinable from observed se=H[S|S]. Then, because the causal states are equivalence
quences and that, like causal states, partiiprsee Fig. 8. classes with respect to future conditional probabilities, the
We assume that these rivals to teenachine are, like the 7RR-states must be refinements of these classes. That is, rather
e-machine itself, restricted to using only the past history ofthan the situation depicted in Fig. 8, we have the

observables in their predictions, without any other hints.  R-partitioning shown in Fig. 9. Otherwise at least R,

As one ranges over alternative choices of state—considered as a set, would have to include histories that be-
swimming around in Occam’s pool of possible |onged to at least two distinct causal states. Such mixing of
partitions—we will show that the-machine has a threefold causal states can only increase the uncertainty about the fu-

optimality: (i) no set of R-states is more informative about ture sequenc of observables. That is, for evefy; there is
future observables than the causal states; of those choices o{ A ' ’ 4 .
states that are as predictive as the causal states, norﬁﬁa)has"’}Si such thatR;C S; and so every causal state is a union of
a smaller statistical complexity ndiii) a smaller entropy R-States.

rate over the internal states. We conclude that none of the The result is that the causal state is a function of the

alternatives, if used to calculate the depth, would give us &-state:S=g(R). Thus,
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the same predictive power as thenachine, i.e., alternatives
for which H[S/S]=H[S|R], then we have H[SS]
=H[S|R]. On the one hand,

H[R',S|R]=H[SIR]+H[R'|S,R] (37)

=H[SR] (38)

=H[SS] (39

FIG. 9. Any alternative partition that is as prescient as the causal =H[S’ ’Sl S] (40)
states must be a refinement of the causal-state partition. That is, —H[S'|S]+H[SIS".S]. (41)

eachfzi must be a(possibly improper subset of some; . Other-

wise, at least onék; would have to contain parts of at least two QOn the other hand,
causal states. And so using trﬁs to predict the future observables

leads to more uncertainty abo8tthan using the causal states. H[7A€’,S| R]=H[R' |7A€]+ H[S|7A2’ R, (42

HLS]=H[g(R)]<H[R]. (34 aswellso

ButH[S]is C,, the statistical complexity of themachine, HIR'|R]+H[SIR' RI=H[S'|S]+H[S[S".S], (43

whereas H[ﬁ] is the statistical complexity of the g,

n7-machine—the set dR states and their transitions. Thus, of
the optimally predictive alternative representations the H[7A2'|7A2]— H[S'|S]=H[S|S’,S]— H[s|fz’,fz], (49
e-machine is the smallest, as measuredy.

An argument exactly parallel to the one in the precedingsince a causal state is a function of @rstate, the transition
subsection shows, when applied to the equally prescient abair (S',8) is a function of the transition pairR’,R), im-

ternatives, that plying that H[S|S’,S]=H[S|R',R]. Thus, the right-hand
H[§|7A3]= H[§|S] N H[§L|7A3]= H[§L|S], (35) side of Eq.(44) is non-negative and this implies that
for L=1,2,... (the opposite implication is not true, how- HIR'|RI=HLS"|S], (45)
evel. Thus, the causal states are also at least as informative ) A s . .
about the nextsingle observableSas any rival and, for that Which is the desired result; namety=v®. That is, nothing
matter, about any finite subseque@eof the future. How- that predicts as well as themachine has a smaller dive than

; . .. the emachine does.
ever, in the general case of the previous paragraphs it is

necessary to consider the whole semi-infinite future because,
potentially, coarser partitions can match these fihitpre-
dictive powers. If, for instance, two histories have the same |t gne prefers processes over static descriptions and dis-
distribution for S, but different distributions over the whole |ikes pretending every natural thing is a digital computer,
future, they belong to different causal states. Rsstate that  thermodynamic depth seemed to be an attractive complexity
combined those two causal states, however, would enjoy theieasure: “one of the remarkably few thrusts in this area that
same ability to predict and its »-machine would have a is not conspicuously vacuous,” in the words of Landauer
smaller statistical complexity. [19]. Since total depth most likely shares the incalculability,
though not the formal uncomputability, of Kolmogorov-

C. Nothing as prescient as ane-machine has a smaller dive ~ Chaitin complexity and logical depth, it is not, at face value,
, L S s physically significant. Dive, the rate at which depth in-

We will now show that the=machine’s dive {=h,) is  raases is both calculable and significant. We showed that
at least as small as that of any equally prescient alternativgyie is the reverse-time Shannon entropy rate of the stochas-
This also turns on the fact that sugistates are refinements tic process over the macroscopic states one takes the system
of the causal states. Themachine is deterministic in the to be in. With nothing else said or added, however, depth
sense of automata thedr®3]; that is, the present stafeand  typically measures historical randomness; as do
the next observabl€ together fix the next stai§’, and so  Kolmogorov-Chaitin complexity and the Shannon entropy

VIIl. CONCLUSION

H[S’|S,5]=0. Thus, we have rate.
, Unfortunately, Ref[8], which introduced depth, gave no
H[S|S]1=H[s",5|S]. (30 clue as to how macroscopic states are to be selected; though

A . . . . it strongly suggested this is simply a matter of coarse-
The R-machine, however, is not necessarily deterministic iNgraining the space of microscopic states8f, pp. 194-195.
this sense, but all entropies are non-negative, SQ\s we have shown, this approach produces manifestly am-
H[R'|S,R]=0. Since we are considering alternatives with biguous results.
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By way of fixing depth, we highlighted the key role of the have a smaller statistical complexity or a lower dive. Thus,
choice of macroscopic states. The causal states of computamachines are optimally shallow.
tional mechanics do not suffer from the defects and ill-
definedness that led to trouble with other sorts of states. The
procedure that identifies themg-machine reconstruction,
also gives us a way to calculate depth and dive. We removed We thank David Feldman and Deirdre des Jardins for
depth’s ambiguities and recovered its claimed features bwelpful discussions. We also appreciate comments on the
redefining it in terms of the causal states. manuscript by Dave Feldman, Jon Fetter, and Nigel Snoad.
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