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Equilibrium and dynamical properties of two-dimensional N-body systems
with long-range attractive interactions
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A system ofN classical particles in a two-dimensional periodic cell interacting via a long-range attractive
potential is studied numerically and theoretically. For low energy densityU a collapsed phase is identified,
while in the high energy limit the particles are homogeneously distributed. A phase transition from the
collapsed to the homogeneous state occurs at critical energyUc . A theoretical analysis within the canonical
ensemble identifies such a transition as first order. But microcanonical simulations reveal a negative specific
heat regime nearUc . This suggests that the transition belongs to the universality class previously identified by
Hertel and Thirring@Ann. Phys.~N.Y.! 63, 520 ~1970!# for gravitational lattice gas models. The dynamical
behavior of the system is strongly affected by this transition: belowUc anomalous diffusion is observed, while
for U.Uc the motion of the particles is almost ballistic. In the collapsed phase, finiteN effects act like a
‘‘deterministic’’ noise source of varianceO(1/N), that restores normal diffusion on a time scale that diverges
with N. As a consequence, the asymptotic diffusion coefficient will also diverge algebraically withN and
superdiffusion will be observable at any time in the limitN→`. A Lyapunov analysis reveals that forU
.Uc the maximal exponentl decreases proportionally toN21/3 and vanishes in the mean-field limit. For
sufficiently small energy, in spite of a clear nonergodicity of the system, a common scaling lawl}U1/2 is
observed for various different initial conditions. In the intermediate energy range, where anomalous diffusion
is observed, a strong intermittency is found. This intermittent behavior is related to two different dynamical
mechanisms of chaotization.@S1063-651X~99!10303-9#

PACS number~s!: 05.40.2a, 05.45.Jn, 05.70.Fh, 64.60.Cn
ic
e
io
a
n
e

ica
v

be
st
i

o
n

bo

e
ith
f
b
2

tion
ality

in
c-

t

e-
ave

or

d to
re-

tly
iors,
ter,

nd

av-
d by
e

ext
lly

f a

:

I. INTRODUCTION

Theoretical@1# and computational studies@2,3# have been
devoted in the last decades to the study of thermodynam
properties ofN-body gravitational Hamiltonian models. On
of the main results is the identification of a phase transit
from a collapsing phase~CP! observed at low energy to
homogeneous phase~HP! at high energy. In the CP a fractio
of the particles form a single cluster floating in a homog
neous background of almost free particles. Above a crit
energyUc the cluster disappears and all the particles mo
almost freely. In the transition region, the specific heat
comes negative in the microcanonical ensemble. This in
bility has been widely studied in astrophysics, where it
known as thegravothermal catastrophe@4–7#. A negative
specific heat regime seems to be thermodynamically inc
sistent. But this paradox is solved once the non-equivale
of canonical and microcanonical ensembles in the neigh
hood of such phase transition is demonstrated@1,8#. These
results have been sucessfully confirmed by numerical inv
tigations of self-gravitating nonsingular 2D systems w
short range interaction@2,3# and by the study of a system o
particles confined on the surface of a sphere with varia
radius@6#. The reported analyses were usually focused on
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systems, but the features of this thermodynamical transi
are expected to be independent of the space dimension
@1#.

More recently it has been shown that cluster formation
simple 1DN-body models with long-range attractive intera
tion @9,10# is similar to theJeans instability@11# occurring in
gravitational systems@12#. In particular, following this anal-
ogy Inagaki and Konishi@12# were able to derive the correc
critical temperature for the declustering transition@13#.

Preliminary indications suggesting that clustering ph
nomena can have effects on single particle dynamics h
been reported for~i! a system of fully and nearest-neighb
coupled symplectic maps with attractive interaction@14#; ~ii !
atomic clusters@15#; and ~iii ! turbulent vortices@16,17#.

All these systems exhibit a clustered phase associate
an anomalous diffusion law. The anomalous transport is
lated to the single particle dynamics that intermitten
shows a sequence of localized and almost ballistic behav
corresponding to the trapping and untrapping in the clus
respectively.

Anomalous diffusion has been revealed in dissipative a
Hamiltonian models@18,19# as well as in experiments
@16,17#. The first investigated example of anomalous beh
ing systems was a one dimensional chaotic map propose
Geisel and co-workers@20# that was introduced to describ
enhanced diffusion in Josephson junctions@21#. More re-
cently, anomalous diffusion was also studied in the cont
of fluid dynamics and solid state physics both experimenta
@16,17,22# and theoretically@18,19,23#. However, the con-
servative models usually studied concern the motion o
2746 ©1999 The American Physical Society
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single particle that evolves in a fixed two-dimensional pe
odic potential@18,24–27# or the dynamics of low dimen
sional symplectic maps. Only few studies have been devo
to extended models withN@1 @14,28,29#.

The main purpose addressed in this paper is to establ
link between equilibrium results, transport properties and
nite N-effects for N-body Hamiltonian models with long
range attractive interaction. In order to examine in de
these points we consider a simplified 2D ‘‘self-gravitating
toy model, where the dynamics of each particle can be w
ten in terms of mean-field quantities that are self-consiste
defined through the coordinates of all the particles. There
each particle is moving in a nonautonomous self-consis
potential depending on mean-field quantities. As tim
evolves, these mean-fields fluctuate with typical time scal
order O(1) and with amplitude of orderO(1/AN). Their
introduction in our approach allows to implement a very
ficient code and therefore to examine systems with a h
number of particles (N.4 000210 000) for long time peri-
ods (t;13106-13107).

We observe a declustering transition, analogous to the
studied by Hertel and Thirring, and, in correspondence of
CP, anomalous diffusion is detected. Above the transit
point also the dynamical behavior changes and the parti
move almost freely.

In the CP, the shape of our self-consistent single part
potential resembles to that of the so-called egg-crate po
tial. Several studies were devoted to the motion of a sin
particle in an autonomous egg-crate potential, i.e., when
potential represents a fixed landscape for the part
@18,19,24–27#. In particular, anomalous diffusion was ob
served and such behavior was explained as due to trap
and untrapping of the particle orbit in a self-similar hierarc
of cylindrical cantori@18#. As a result the trajectory of the
particle on the 2D surface is similar to a Le´vy walk. This
suggests that anomalous transport, present in our mo
should be explained by similar mechanisms.

Due to the self-consistent nature of the potential in
model we consider herein, finiteN-effects induce a time fluc
tuation in the potential seen by each particle and essent
act as a noise source of typical intensityO(1/AN). Environ-
mental fluctuations are known to restore normal diffusion
long time scales when added to a dynamical systems ex
iting anomalous diffusion@30,31#. Indeed, this is what hap
pens also in our model, apart that now the fluctuations
intrinsically related to its deterministic dynamics and not
an external bath. In the mean-field limit the fluctuations d
appear and anomalous diffusion is present at any time.

The study of the degree of chaoticity reveals that the s
tem ~for low energy! is highly nonergodic and, despite th
fact that thermodynamical properties seem not to depend
initial conditions, the dynamical indicators~e.g., the maximal
Lyapunov exponent! are heavily affected from the initia
state of the system. Despite this nonergodicity, the low
ergy dependence of the maximal Lyapunov shows a comm
scaling law for all the considered initial conditions. In th
intermediate energy range, two distinct chaotic mechani
are identified in our model and give rise to intermittency
the dynamical evolution. For high energy the system
comes integrable in the mean-field limit and the Lyapun
vanishes as an inverse power law ofN.
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This article is organized in the following way. In Sec. I
we present the Hamiltonian model we focus on. In Sec.
we report a thermodynamical description of the model with
the canonical ensemble. Equilibrium values of the mean-fi
are derived and the existence of a phase transition fro
homogeneous to a collapsed phase is shown. Section I
devoted to numerical description of dynamical properties
particular, we will concentrate on the diffusion of single pa
ticles and on the influence of finiteN-effects. The chaotic
behavior of the model is discussed in Sec. V in a bro
energy range. Finally, in Sec. VI the reported results
briefly discussed.

II. THE MODEL

In the present paper we study the static and dynam
properties of anN-body system enclosed in a 2D period
cell, with a classical long-range interparticle potential. T
dynamics of each particle is ruled by the Hamiltonian:

H5(
i 51

N pi ,x
2 1pi ,y

2

2
1

1

2N(
i , j

N

@32cos~xi2xj !2cos~yi2yj !

2cos~xi2xj !cos~yi2yj !#

5K1V, ~1!

where (xi ,yi)P] 2p,p] 3] 2p,p], (xi ,pi ,x) and (yi ,pi ,y)
are the two couples of conjugate variables. The particles
assumed to be identical and to have unitary mass.K ~resp.V)
is the kinetic~resp. potential! energy. The reference energy
chosen in such a way that the energy of the system vani
when all the particles have the same position (V50) and
zero velocity (K50). The presence of the third term in th
potential energy is essential in order to ensure an interac
between the two couples of conjugate variables.

The considered interparticle potential belongs to the f
lowing class of 2D periodic potentials:

V5(
i 51

N

Vs~r i !, with

Vs~r !5
1

4N(
j 51

N

(
0,k2<s

c~k!†12cos@k•~r2r j !#‡, ~2!

wheres is a parameter that determines the number of h
monics included in the Fourier expansion ofV, r5(x,y)
and k5(nx ,ny) is the wave-vector, withnx and ny two in-
tegers.c(k)5c(2k) is a real valued function of the modulu
of k, that fixes the coupling strength of the harmonick. For
model ~1!, c(k)51/k2 and s52. For the same choice o
c(k), but in the limits→`, a 2D self-gravitating Newtonian
potential V`(r )}( i 51

N logur2r j u is recovered, once a re
scaled timet/AN is considered. It should also be noticed th
interactions of the type loguru among particles arises also i
point vortices model for 2D turbulence@32#. Therefore we
expect the simplified model~1! to share some common be
havior with point vortices systems.
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The interparticle potential appearing in Eq.~1! is essen-
tially the Fourier expansion ofV`(r ) limited to its first three
terms. The corresponding equations of motion for the co
dinatesxi are

ẍi52
1

N(
j 51

N

@sin~xi2xj !1sin~xi2xj !cos~yi2yj !# ~3!

and, due to the symmetry of Eq.~1!, the equations of motion
for y are obtained exchangingx↔y.

Previous investigation of model~1! @33# has revealed tha
at low energyU5H/N the particles, due to attractive cou
pling, are organized in a unique collective structure~cluster!
with U-dependent spatial extension. This clustered ph
~CP! survives up to a critical energyUc'2. Above Uc a
phase transition occurs to a homogeneous phase~HP!. This
transition will be discussed in more detail in the next secti
Here, we will limit to evidence collective behaviors in th
system by rewriting model~1! in terms of the following
mean-field variables:

M15„^cos~x!&N ,^sin~x!&N…5M1„cos~f1!,sin~f1!…,
~4!

M25„^cos~y!&N ,^sin~y!&N…5M2„cos~f2!,sin~f2!…,
~5!

P15„^cos~x1y!&N ,^sin~x1y!&N…5P1„cos~c1!,sin~c1!…,
~6!

P25„^cos~x2y!&N ,^sin~x2y!&N…5P2„cos~c2!,sin~c2!…,
~7!

where^ &N denotes the average over all the particles in
system;fz ~resp.cz) and Mz ~resp.Pz) are the argumen
and the modulus of the mean-field vectorsM z ~resp.Pz) with
z51,2. The moduliMz and Pz are maximal and equal to
when all the particles have the same position and their va
decreases when the spatial distribution of the particles
tends. For an homogeneous distribution, due to finiteN ef-
fects and according to the central limit theorem,Mz'Pz

'O(1/AN) for z51,2. Therefore, the quantitiesMz and Pz
can be thought as order parameters characterizing the de
of clustering of the system@14,10#.

By reexpressing the equation of motion~3! for both coor-
dinatesx andy in terms of the mean-field variablesM z and
Pz , one straighforwardly shows that the time evolution
each particlei is ruled by the following single particle non
autonomous Hamiltonian:

hi5
px,i

2 1py,i
2

2
1F32M1 cos~xi2f1!2M2 cos~yi2f2!

2
1

2
P1 cos~xi1yi2c1!2

1

2
P2 cos~xi2yi2c2!G

5Ki1Vi , ~8!

whereKi andVi are the 1-particle kinetic and potential e
ergy, respectively. For more details on the derivation of E
~8! see Appendix A. Hence, each particle moves in a me
r-

se

.

e

e
x-

ree

f

.
n-

field potentialVi determined by the instantaneous positio
of all the other particles of the system.

Since V is invariant under the transformationsx
↔2x, y↔2y andx↔y, it turns out that in the mean-field
limit ( N→` with constantU5H/N), M15M25M and
P15P25P. Moreover, in this limit and assumingfz5cz
50, the 1-particle potential is similar to the egg-crate pote
tial studied in references@18,24–27#. In Fig. 1 the shape of
Vi at a given time forU51.00 andN54000 is shown. The
potential is periodic along the two spatial directions and
each elementary cell it has 4 maxima (VM5312M2P), 4
saddle points (Vs531P) and a minimum (Vm5322M
2P). The depth of the potential well is (Vs2Vm) and the
center of the cluster will coincide with the position of th
potential’s minimum. In the limitU→0,M and P→1 and
thereforeVM→4,Vs→3 andVm→0. In this limiting situa-
tion all the particles are trapped in the potential well th
create. For increasingU, the kinetic contribution become
more relevant and the number of clustered particles redu
This implies that also the values ofM , P and of the well
depth decrease. ForU>Uc , the particles are no more clus
tered and in the limitN→` the single particle potential be
comes flatVM5Vs5Vm53 and time independent.

However, due to finiteN effects, the instantaneous mea
field variables fluctuate with typical time 1 within the stati
tical band range;1/AN. This implies that in the CP the
single particle will move in a fluctuating potential landscap
As a consequence, the system admits a time pulsating s
ratrix that sweeps a phase space domain proportiona
1/AN in the neighborhood of the average position of t
separatrix.

Due to the shape ofVi , we can qualitatively distinguish a
each time three subgroups of particles: the low ene
trapped particles~LEP! oscillating in the self-consistent we
of the potential~with energyhi;Vm), the intermediate en-
ergy particles~IEP! evolving in the stochastic sea neighbo
ing the separatrix (hi.VS) and the high energy particle
~HEP! moving almost freely (hi@VM). Obviously, as time
evolves each particle can pass from one subgroup to ano

III. THERMODYNAMICAL ASPECTS

A. Canonical prediction for the equilibrium properties

The problem of finding the thermodynamical potentials
model ~1! in the canonical ensemble is resolved starting

FIG. 1. Instantaneous single particle potentialV(x,y) together
with its contour plot for U51.00 and (x,y)
P@25p/2,5p/2#2. M15M250.8249, P15P250.6929, and
fz505cz .
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usual from the partition functionZ(N,b), whereb is the
inverse temperature. For Hamiltonian~1!, the partition func-
tion factorizes inZ(N,b)5ZK3ZV , where

ZK5E
R2N

expS 2b(
i 51

N px,i
2 1py,i

2

2 D dNpxd
Npy5S 2p

b D N

~9!

is the kinetic part obtained assuming a Maxwell-Boltzma
distribution for the momenta. The potential contributionZV
is evaluated by considering the expression of the potentiV
in terms of mean-field variablesM z andPz . As already men-
tioned, in the mean-field limit due to the symmetries ofV we
haveM15M25M andP15P25P. Consequently,V can be
reexpressed as a quadratic form inM andP and the resulting
expression forZV reads@10#

ZV}E
S2N

expFb N

2
~2M21P2!GdNx dNy, ~10!

whereSstands for the unit circle and where the constant p
of V is omitted. We can evaluate the integral in Eq.~10! by
using the Hubbard-Stratonovich trick:

exp~cA2!}E
R2

exp~2uA
212AcuA•A!d2uA , ~11!

where A is a two component real vector andc a positive
constant. Following@10,34#, we substitute expression~11!
into Eq. ~10! with (A5M ,c5bN) and (A5P,c5bN/2)
and perform the rescalingA2b/Nuw→uw for w5M ,P.
Then expressinguw5(uw cosuw ,uw sinuw) in polar coordi-
nates, we obtain

Z5ZK3ZV}E
~R3S!2

uMuP exp~2NG!duMduMduPduP ,

~12!

where G5(uM
2 1uP

2 )/b2 logR1 logb is a strictly positive
real valued function independent ofN. The main contribution
to Z in the limit N→` can be evaluated with the saddle po
method, and reduces to the estimation of the minimum of
function G. The minimum value will not depend onuM and
uP , becauseR is maximal with respect to these two variabl
for (uM ,uP)5(0,0) for anyuM anduP . Its expression thus
reduces to

Rm~uM ,uP!5 max
uM ,uP

R~uM ,uP ,uM ,uP!

52pE
0

2p

I 0„uM1A2uP cos~s!…

3exp„uM cos~s!…ds, ~13!

whereI 0 is the zero order modified Bessel function. Final
the minimum ofG5G(b,uM ,uP) is obtained numerically
using expression~13! and a Raphson-Newton scheme. Theb

dependence of the solutions (ūM ,ūP) for which G is mini-
mal is reported in Fig. 2. At largeb ~low temperature! the
minimum is located far away from the origin and corr
sponds to the CP, i.e., to the broken symmetry phase. W
n

rt

e

en

b52, a saddle-node bifurcation occurs at the orig
(ūM ,ūP)5(0,0) ~corresponding to the HP!, where a second
minimum appears. This can be shown with a Taylor exp
sion of G in the neighborhood of the origin

G~b,uM ,up!'uM
2 S 1

b
2

1

2D1uP
2 S 1

b
2

1

4D2 log~4p2!1 ln b.

~14!

From the above equation, one can observe that forb.2 the
origin is a saddle point~it is a local maximum ifb.4) while
for b,2 the origin is a local minimum. The upper inset
Fig. 2 shows the details of the temperature domain wh
both minima coexist. When decreasingb, a second bifurca-
tion occurs forb51.81 and the minimum corresponding
the broken symmetry disappears while the one at the or
persists.

The mean-field variables~4!, ~5!, ~6! and ~7! can be esti-
mated from their joint characteristic function:

C~sM,sP!5^e~sM•M1sP–P!&. ~15!

where the averagê & runs over the corresponding Gibb
ensemble. The quantitiessM and sP can be considered a
external fields whileM andP are the equivalent of magne
tizations or polarization vectors. The function~15! can be
explicitly computed and its first momenta are the moduli
the mean-field variables:

M5
]C

]sM

5
2p

Rm~ ūM ,ūP!
3E

S
dscos~s!I 0

3„ūM1A2ūP cos~s!…exp@ ūM cos~s!#, ~16!

FIG. 2. b dependence ofūM ~full line! andūP ~dashed line!. For
bP@1.81,2# there are two coexisting minima: one at the orig

(ūM ,ūP)5(0,0) and a second one for which 0,ūP,ūM .
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P5
]C

]sP

5
2p

Rm~ ūM ,ūP!
3E

S
dscos~s!I 1

3„ūM1A2ūP cos~s!…exp@ ūM cos~s!#, ~17!

where functionRm was introduced in Eq.~13!, I 1 is the first
order modified Bessel function. From these expressions
easy to check that when (ūM ,ūP) coincide with the origin,
thenM5P50. This allows us to identify such solution wit
the HP. While if (ūM ,ūP) is located away from (0,0) the
solution corresponds to the CP. A detailed derivation of E
~16! and ~17! can be found in Appendix B.

More specifically,M andP can be considered as two o
der parameters that describe the spatial extension of the
ter in the (x,y) plane ~i.e., the degree of clustering of th
system!. The analytical estimation forM andP are plotted in
Fig. 3~a! ~solid line! as functions ofU. For U→0, M andP
tend to 1 as expected for a fully ordered phase. For incr

FIG. 3. In ~a!, the canonical estimation ofM andP ~solid curve!
together with their time averaged values obtained from micro
nonical simulations~symbols! are shown. The measurements ha
been obtained withN54000~a part a few point withN5104) and
averaged over a total integration time rangingt51.23106 to t
52.43106 with a time stepdt50.3. In ~b! are reported the canoni
cal estimation forM and P as a function of (Tc2T)21 in a log-
linear plot. NeitherM nor P have usual critical exponent.
is

s.

s-

s-

ing U, kinetic effects increase, the size of the cluster th
grows and consequentlyM and P decrease. For 1.6,U
,2.0 the analytical values are not reported, because in
energy range it is impossible to estimate them with a cano
cal approach. This simply reflects the first order nature of
transition. ForU.2.0, M5P50 because the system is n
more exhibiting a clustered phase.

However, within a canonical ensemble it is more app
priate to analyzeM and P as a function of the temperatur
T5b21. Both M and P decrease withT and vanish when
T.Tc;0.55. Their dependence from (Tc2T)21 is shown in
Fig. 3~b!. Close to the critical temperature bothM and P
exhibit a jump indicating a first order transition between C
and HP.

Thermodynamic potentials can be straighforwardly o
tained from the partition function:

F52 lim
N→`

S 1

Nb
log ZD5

G~b,ūM ,ūP!

b
,

U5
]~bF !

]b
5

]G~b,ūM ,ūP!

]b
, ~18!

whereF5F(b) is the Helmholtz free energy andU the spe-
cific ~or internal! energy. In order to find the stable configu
ration of the system we should look for the absolute mi
mum of F. The inverse temperature dependence of
minimum ofF is reported in Fig. 4~a!. In the limit b→0 the
free energy will have a minimum at the origin (ūM ,ūP)
5(0,0) and the HP will be observed, while in the limitb

→` the minimum will be located at 0,ūP,ūM and the
system will be in the CP. In the rangebP@1.81,2.0#, F
displays two coexisting minima, that we denote, w
straightforward notation, asFHP and FCP . However forb
.bc51.84 the CP is observed, becauseFCP,FHP , while
for b,bc the HP prevails sinceFCP.FHP . At b5bc the
two minima are equivalent (FCP5FHP), this is a further
indication that the transition is of first order.

Figure 4~b! represents the temperatureT as a function of
the internal energyU. For small energies,U'T/2 ~i.e., there
is a virial! and the particles are all trapped in a single clust
For U.Uc'2, the system is inHP andT is also increasing
linearly with U. This indicates that the system behaves like
free particle gas. These two regimes correspond to the
integrable limits of model~1!.

In the intermediate energy range, the tendency of the s
tem to collapse is balanced by the kinetic energy andT is no
more proportional toU. For 1.6,U,2, the amount of ki-
netic energy is such that a significant fraction of partic
escape from the cluster. The system is then characterize
the presence of two coexisting phases: the first is suppo
by the fraction of LEP that are trapped in the well of th
self-consistent potential and the second is due to the H
that have large kinetic energy and thus behave almost fre

B. Microcanonical results: Numerical findings

In the present section, the thermodynamical properties
model~1! will be considered, while the dynamical ones w
be the subject of the two following sections.

-
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In order to obtain microcanonical results, standard m
lecular dynamics~MD! simulations of model~1! have been
performed within a NVE ensemble@35#. The equations of
motion are integrated starting from their formulation in term
of the single particle Hamiltonianhi ~1!, where the depen
dence of the dynamics of each particle from mean-field v
ables is made explicit. This approach turns out to be q
efficient from a computational point of view, because t
CPU time increases only linearly withN ~and not proportion-
ally to N2 as usual!. This allows us to perform simulations o
the model~1! for high numbers of particles~up to N5104)
and for quite long integration time~up to t553107). As
integration scheme we have adopted a recently develo
4th order simplectic algorithm@36#: with an integration time
step dt50.3 relative energy fluctuationsDU/U remains
smaller than 1028 for any consideredN andU. Tests with a
much smaller time step~namely,dt50.05) have been per
formed, revealing no appreciable changes in the thermo
namical and dynamical properties of the system.

FIG. 4. In ~a! we plot the minimum value of the free energ
function F as a function ofb. In the coexisting rangeF has two
minima which take the same value at critical inverse tempera
bc'1.84 ~see inset!. ~b! Temperature as a function of the speci
energyU. The theoretical predictions obtained within the canoni
ensemble are indicated by lines. The circles correspond to micr
nonical numerical results. The inset is an enlargement of the t
sition region: the full curves~respectively dashed! refer to the ab-
solute~respectively relative! minimum of F(T).
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In the simulations, the particles are initially clustered
one single point and with a ‘‘water-bag’’ distribution for th
velocities. Other initial conditions, for example, with pa
ticles uniformly distributed over the periodic cell and wi
Maxwellian velocity distribution have been tested. But as
as thermodynamical properties were concerned no signifi
tive differences have been observed in the asymptotic p
erties of Eq.~1!. In order to avoid transient effects, the r
ported thermodynamical and dynamical quantities have b
measured starting from initial ‘‘relaxed’’ states resultin
from sufficiently long preliminary simulations. Moreove
the averages have been typically performed over total in
gration timest.106.

We define the measured temperatureT, following the
equipartition theorem, through the time averaged specific
netic energyT5^K(t)/N& t . The MD-estimation of̂ M & t and
^P& t are shown in Fig. 3~a!. In Fig. 4~b!, the measured
U-dependence ofT is reported. Both figures indicate that th
numerical findings are in good agreement with the canon
predictions, apart in the interval 1.6,U,Uc , where canoni-
cal estimate are not available. In this energy range@enlarged
in the inset of Fig. 4~b!# we observe a decrease ofT with U.
This indicates that the specific heat will be negative for e
ergies slightly belowUc . The existence of such a negativ
specific heat regime in proximity of the ‘‘declustering’’ tran
sition for gravitational potential was predicted in 1971
Hertel and Thirring@1#. These authors studied a simple cla
sical cell model and noticed the nonequivalence of canon
and microcanonical ensembles in this region. These pre
tions have been successively confirmed by numerical fi
ings for short ranged nonsingular attractive potential@2,3#.
Negative specific heat regimes are forbidden within
Gibb’s canonical ensemble, because physically unstable,
thus they are bridged by a constant temperature line~that in
our case isTc'0.54). This picture is similar to the Maxwe
construction for the van der Waals isotherms in the liqu
vapor coexisting region. This prohibition does not hold in t
microcanonical ensemble and the physical implication of t
is fundamental in astrophysics where negative specific h
regimes have been studied for several decades@4,7#.

Within the microcanonical context, the phenomenon
negative specific heat can be understood following a heu
tic argument@1#. As shown in Fig. 3~a! approaching the tran
sition the values ofM andP decay very fast. This sugges
that a very limited increase ofU yields a significant reduc-
tion of the number of LEP and thus a strong increase of
potential energy. Total energy being conserved, this exc
of potential energy has to be compensated by a loss of
netic energy, as a result the system will become cooler@1#.

From our numerical investigations it turns out that for a
U the average thermodynamical quantities~namely,T, M
andP) are independent fromN ~for 100<N<10 000), apart
at the critical energy. Indeed, atU5Uc , a clear decrease o
M is observed from a value 0.198 atN5200 to 0.063 atN
510 000 indicating that the system is approaching the HP~a
similar behavior is observed forP). This is confirmed from
the fact that also the temperature tends to the correspon
HP value (T5U23/2) for increasingN: T varies from
0.55 atN5200 to 0.51 atN510 000. This effect is probably
due to the strong fluctuations in the single particle poten
Vi due to finiteN-effects, that become dramatic at the tra
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sition. For smallN-values a clustered situation seems to
favorite, while in the mean-field limit the HP is finally re
covered.

IV. DYNAMICAL PROPERTIES

A. Dynamical transition and transport properties

Once examined the microcanonical thermodynamical
sults, we now concentrate on the description of the trans
properties of~1!. In the CP each particle of our syste
moves in a single particle potentialVi5Vi(t) ~8! that is simi-
lar to the egg-crate potential~see Fig. 1! @18,24–27#. The
study of single particle motion in egg-crate fixed potent
was originally motivated in the context of adatoms diffusi
over a rigid surface@22#. For a single particle moving in suc
fixed potential the self dynamics is known to be anomalou
diffusive when the particle is channeling, i.e., when its e
ergy lies betweenVM and Vs @18,24–27#. This anomalous
behavior is due to the competition of laminar and localiz
phases. Indeed, channeling particles intermittently show
almost ballistic motion along the channels of the poten
interrupted by localized sequences, where the parti
bounces back and forth on the maxima of the potential.

Usually anomalous diffusion has been studied in syste
with very few degrees of freedom@19,18#. Only few attempts
have been made to considerN-body dynamics withN@1
@14,28,29#. One of the reasons for this is that the theoreti
analysis of dynamical properties of high dimensional Ham
tonian systems is particularly complicated and not fully u
derstood. Moreover, accurate simulations of such system
N@1 and over long time intervals, necessary to underst
the asymptotic diffusive regime, are quite difficult to pe
form.

In this section we first focus on the numerical descript
of the transport properties of Eq.~1! and we will try to give
some indications relative to the basic dynamical mechani
governing single particle transport. To this aim, we consi
the time dependence of the mean square displacem
~MSQD!, that usually reads as

^r 2~ t !&}ta, ~19!

where the averagê& is performed over different time ori
gins and over all the particles of the system. The transpo
said to be anomalous whenaÞ1: namely, it is subdiffuse if
0,a,1, superdiffusive if 1,a,2 and ballistic fora52
@18,19,23#. The usual Einstein diffusion law corresponds
a51 and in 2D can be written as^r 2(t)&54Dt, whereD is
the self-diffusion coefficient. We consider in this paper,D
anda as the basic relevant observables for the descriptio
transport.

More refined diagnostics might be considered, for e
ample the probability distribution of the time intervals with
which the trajectory of the particle remains trapped. The
ter was explicitly computed both for simple maps and fo
single particle moving in a fixed egg-crate potential lan
scape and shown to exhibit a power-law dec
@18,19,24,37,38# responsible for the anomalous diffusio
@24,25#. In the limit N→` we expect to find similar indica
tions also for model~1! once the IEP’s dynamics is consid
ered. But for finiteN, the energy of each particle will not b
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constant in time. Therefore a particle initially of type IEP c
become a LEP or a HEP, giving rise to a much more co
plicated dynamical behavior, that cannot be simply descri
in terms of the localization time distribution. However, if on
considers an initially IEP and follows its trajectory for som
time it displays features quite similar to the so-called Le´vy
walks @19# ~see Fig. 5!. These kinds of trajectories were us
ally identified when anomalous diffusion occurs. Therefo
we believe that also for model~1! anomalous diffusion will
be observable.

As we already mentioned, finiteN-effects play a determi-
nant role in the dynamics. Due to self-consistency, they
responsible for the fluctuations in time of the mean-fie
quantitiesM1,2 andP1,2. The potential experienced by eac
particle thus fluctuates in time and particles having an ene
close toVs have the possibility to be trapped in the potent
well as well as to escape from it. This implies that the loc
ization phenomena illustrated in Fig. 5 are not only due
bounces of the particle on the maxima of the potential,
also to trapping in the potential well itself due to separat
crossing.

We have argued from simple considerations that diffus

FIG. 5. Typical orbit of an initially IEP in the (x,y) plane~a! for
U51.00 andN54000. In this representation, the 2D torus o
which the dynamics takes place is unfolded and represented a
infinite plane constituted of an infinite number of juxtaposed
ementary periodic cell of size 131. In the inset an enlargement o
the trajectory in the indicated box is reported. In~b! we plot the
corresponding time evolution of coordinatex(t) and the enlarge-
ment corresponding to the sequence in the inset of~a!.
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should be anomalous in CP. This is indeed the case, as
firmed from direct evaluation of the MSQD in a quite e
tended energy interval. An example of this is reported in F
6~a! for U51.1 andN54 000. The diffusion is anomalou
for times smaller than a crossover timet beyond which the
Einstein’s diffusion law is recovered̂r 2(t)&54Dt. A simi-
lar behavior for the MSQD was previously observed for
system ofN simplectic~globally and locally! coupled maps
@28,29#, but with a subdiffusive~i.e., with a,1) short time
dynamics.

The direct study of the velocity autocorrelation functio
~VACF! Z(t) confirms the general features seen for t
MSQD in the CP: namely, on timest,tv the VACF is char-
acterized by a long-time tail that decays asta22. This power-
law decay is fully consistent with the corresponding one
served for the MSQD@23#. For times longer thantv , the
VACF decreases exponentially as usually expected
Brownian motion@see Fig. 6~b!#. It is therefore reasonable t
expect thatt}tv .

The energy dependence of thea-values is illustrated in
Fig. 7. It shows up clearly that the thermodynamical ph
transition from CP to HP is associated to a dynamical tr
sition from superdiffusion~with 1.3,a,1.9 for 0.4<U
,2.0) to ballistic motion~with a.2 for U>Uc). In the CP
regime, we observe an increase ofa from 1.360.1 to 1.9
60.1, that is due to the modification of the shape of
single particle potential.

FIG. 6. Time dependence of the mean square displacem
^r 2(t)& in a log-log representation forU51.1 andN54000. The
numerical results correspond to the solid line. The segments ar
estimated slopes of̂r 2(t)& when t,t and t.t. In ~b! the loga-
rithm of the VACF is displayed as a function of log(t) for U
51.74; in such a case the estimateda value is 1.59. The reported
slope is 22a50.41.
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It is reasonable to expect that this enhanced diffusive
havior with an energy dependent exponent is linked to
fraction of channeling particles. The number of such p
ticles is related to the depth of the potential well~namely, to
VM2Vm) and to the energy width of the channelsVM

2Vs . At very low energyU,0.3, all the particles are es
sentially trapped in the potential well and none is channeli
no diffusion is observed in this case. For increasing energ
fraction of particles~due to the decrease ofVM2Vm) will
escape from the well and some of them get enough energ
move along the channels: anomalous diffusion is then e
denced. The increase in the value of the exponenta is due to
the fact that also the channels widthVM2Vs grows withU
~see Fig. 7!. However, forU approachingUc the number of
untrapped particles increases noticeably, but now the cha
width vanishes abruptly. This implies that a significant fra
tion of particles will move freely~with energy.VM). These
mechanisms lead naturally to ballistic motion forU.Uc ,
where the potentialVi is now almost constant apart fluctua
tions of orderO(1/AN).

The fact that in the asymptotic limit (t→`) normal dif-
fusion is recovered constitutes a typical signature of a no
dynamics@30,31,39#. In order to avoid artifacts due to nu
merical noise in the implementation of the integrati
scheme for the model~1!, we took care to maximize the
numerical precision. Therefore, the transition from anom
lous to asymptotic ordinary diffusion is attributed to a ‘‘d
terministic source of noise,’’ that is intrinsic of our syste
and due to finite size effects, as we will show in the ne
section.

B. Finite N effects

In this section, we consider finiteN effects in order to
understand the asymptotic time dependence of the MS
outlined in the previous section. As a matter of fact, for fin
N, due to the crossing from anomalous to normal diffusi
on long times, a standard diffusion coefficientD can be al-

nt

he

FIG. 7. Coefficienta ~triangles!, time averaged depth of the
potential well VM2Vm ~diamonds! and of the channelsVM2Vs

~circles! of the single particle potential as a function ofU. The full
line corresponds to the canonical prediction. The measuremen
a have been obtained withN54000 ~a part a few point withN
5104) and averaged over a total integration time rangingt51.2
3106 to t52.43106 with a time stepdt50.3.
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ways defined in the limitt→`. Therefore we will focus our
analysis on theN-dependence ofD and of the crossover time
t.

A deterministic anomalously diffusing dynamical system
submitted to weak environmental white noise shows a tr
sition from anomalous diffusion to standard diffusion on s
ficiently long time scales@30#. The crossover timet for this
transition is explicitly computed@30# and turns out to in-
crease as an inverse power law of the noise amplitude, w
short time behavior is superdiffusive. In this context,D is
shown to be algebraically dependent oft @31#.

Starting from this knowledge, we can understand the
ture of the mechanism that generates asymptotic stan
diffusion in model~1!. In order to give an unambiguous defi
nition of t, we consider the local slope of ln(^r 2(t)&) as a
function of ln(t). The crossover timet is determined when
this slope becomes smaller than a threshold valuem. The
diffusion coefficientD can be related tot, assuming thatt
}tv ~as already mentioned!. By the definition of the diffusion
coefficient we haveD}*0

`Z(t)dt. Assuming thattv is suffi-
ciently long, the following relationship is then straightfo
wardly found

D}ta21. ~20!

This result is in agreement with theoretical predictions an
sucessfully confirmed by numerical simulations of no
maps@31#.

In Fig. 8 we report theN dependence oft for m51.1 and
for the two energies,U51.48 andU52.0. In both cases, we
find that t}N. Moreover, this dependence is not related
the chosen value for the thresholdm. We have indeed veri-
fied that for m51.2 no qualitative difference could be de
tected. The interpretation of theN dependence of the cross
over time is straightforward if we consider finiteN effects as
a source of noise in our model and with a typical amplitu
of order 1/AN. This last assumption is justified by the fa
that the microscopic dynamics of the particles generate
chastic fluctuationsO(1/AN) in the values ofM and P.

FIG. 8. Crossover timet as a function ofN for U51.48
~circles! and U52 ~diamonds!. The values oft have been esti-
mated when the local logarithmic slope of the MSQD decrea
below a threshold valuem51.1. The solid line is the best linear fi
to the data. Its slope is 0.9560.08 ~respectively 0.9660.06) for
U51.48 ~respectivelyU52.00).
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These fluctuations become weaker for increasingN and thus
naturally yield an increasing value oft.

The idea of a dynamical noise source due to finiteN is
also confirmed by the analysis ofD, that also turns out to be
an increasing function ofN. Some data are reported in Fig.
for U51.48 andU52.00. In particular, considering system
with 100<N<10 000 we findD}Ng with g50.760.1 and
1.060.1 for U51.48 and 2.00, respectively. These nume
cal evidences suggest that

D}V2g, ~21!

whereV is the variance of the white noise applied on t
system. For model~1!, we haveV}1/N. Being t propor-
tional to N, from Eq. ~20! we expect the following scaling
law:

g5a21. ~22!

Assuming fora their asymptotic values, we obtain from th
relation~22! the followingg-values:.0.64 forU51.48 and
.0.9 for U52.00. In view of the finiteN limitations, we
consider these results as consistent with the numerica
sults. A relation analogous to Eq.~21! was previously found
in @40# for the eddy diffusivity associated to a three dime
sional noisy velocity field@41#. Moreover, the authors o
Ref. @40# have shown that Eq.~22! holds also for their
model. Due to the complete different nature of the two s
tem, we expect that Eqs.~21! and ~22! should have some
more general field of applicability.

In the context of high dimensional Hamiltonian system
previous results showed that the crossover time to nor
diffusion is inversely proportional to the diffusion coefficie
when short time behavior is subdiffusive@28,29#. The cross-
over to standard diffusion is then interpreted as a con
quence of the destruction of the self-similar structure of
stability islands in phase space. We believe that
asymptotic normal diffusive behavior that we observe h
the same origin as in@28#. But let us discuss more in deta
the dynamical mechanisms that are present in our case.

s FIG. 9. Logarithm of the diffusion coefficientD as a function of
log(N) for U51.48~diamonds! andU52.00~circles!. Straight lines
correspond to linear fitting to the numerical data; the slopes
0.760.1 and 1.060.1 for U51.48 andU52.00, respectively.
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FIG. 10. Typical orbits of HEP, IEP, and LEP~first row! together with the time dependence of coordinatex(t) ~second row! and the time
dependent energyhi ~third row! of each orbit. The first column refers to HEP, the second to IEP and the third to LEP. Note the diffe
of scale in graphs of the first and second line.N54000 andU51.00 andt,30000. In figure IEP~c!, the straight line is the average energ
^Vs&'3.694 of the separatrix and the dashed one the average energy^VM&'3.958 of the maximal value of the potential.
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We find a dependence of thea-values onN that is not
negligible at least forN,3000. ForN.3000 however, a
saturation to asymptotic values is finally achieved~as clearly
shown in Fig. 11!.

For finite N, due to the self-consistent character of mod
~1!, the single particle potential fluctuates in time with typ
cal amplitudeO(1/AN). The values of the saddle points thu
also fluctuate in time and naturally generate a time pulsa
separatrix sweeping a phase space domain of w
O(1/AN). Hence, a particle with energy close toVs can
cross the separatrix and stochastically experience trap
and channeling motions. We showed that transport is ano
lous in CP and relies on the channeling particles that exh
localized motion when they bounce back and forth on
maxima of the potential. But, for finiteN, the pulsations of
the separatrix induce a second localization mechanism,
l

g
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ed
a-
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tends to trap the trajectories of IEP into the potential wel
To better illustrate the different dynamical behaviors o

curing in the present system, let us focus on the dynamic
three typical particles, namely an initially HEP, IEP an
LEP. We register for each of them the time evolution of~a!
their orbit in the (x,y) plane,~b! their coordinatex(t) and~c!
the single particle energyhi as defined in Eq.~8!. The results
are shown in Fig. 10 where the first column corresponds
HEP, the second to IEP and the third to LEP. For each p
ticle ~a!, ~b! and~c! are plotted in the first, second and thir
row, respectively. Visual inspection of HEP~a! and IEP~a!
shows a quiet similar behavior and an enlargement of th
trajectories would yield a picture similar to the one alrea
reported in the inset of Fig. 5~a!. However, Fig. 10-IEP~b!
indicates that initially IEP experiences long time localiz
sequences that are not present for the HEP. Figure 10-IEP~c!,
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showing the time dependence of the energy of IEP, cle
indicates that in the long lived localized regime correspo
ing to tP@10000,17000#, the particle is trapped since it
energyhi goes below the average energy of the separa
^Vs& ~indicated in this figure by a full line!.

The localization within the potential well, due to separ
trix crossing, interrupts the sequence of correlated flights
localizations along the channels, and naturally inhibits sup
diffusion. This inhibiting effect of separatrix crossing is du
to finite N and its consequences on the numerical value of
exponenta is illustrated in Fig. 11 for two values ofU. For
givenU, this figure shows an increase of the order of 10%
a when raisingN from 103 to 104. The exponenta then
saturates to an almost constant value indicating that the
fect of trapping and untrapping by the fluctuating separa
decreases and finally becomes negligible for growingN. In
other words, asN grows, the phase space volume swept
the pulsating separatrix shrinks and finally vanishes in
mean-field limitN→`. As a final remark, we should als
notice that the channeling particles can be ‘‘decorrelate
not only by the trapping mechanism but also by an escap
mechanism to higher energies~for hi.VM). But from nu-
merical evidence we can conclude that this other mechan
is less relevant, at least on the time scale of our simulatio

Finite N-effects are responsible, besides for the fluct
tions of the single particle potential, also for a second mec
nism generating ‘‘dynamical noise.’’ In order to explain
more in detail let us consider the LEP particle dynamics
typical LEP-orbit is reported in Fig. 10. One observes ess
tially two main aspects of its dynamics:~i! the extremely
slow motion of LEP with respect to IEP and HEP~cf. the
scales!; ~ii ! a drifting motion of LEP that resembles
Brownian motion. During all the simulation time (t
530 000) the corresponding energy, plotted in Fig. 1
LEP~c!, remains close to the average value of the poten
minimum ^Vm&'0.654. This indicates that the particle r
mains trapped during the entire simulation. Being forU
51.0 the crossover time 104,t,105, the previous result
suggests that such a trapped particle will eventually esc
from the well on time scales much longer thant. We more-
over verified that this observation remains true for alm

FIG. 11. Exponenta as a function ofN for U51.48~diamonds!
and U52.00 ~circles!. Dashed lines correspond to exponential fi
ting. The data have been obtained for a total integration timt
51.23106.
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any particle with initial energy smaller that 0.5Vs'1.85.
Which for U51.00 represent approximately 75% of all th
particles.

The above observations confirm the fact that anomal
diffusion is only due to the small fraction of particles th
evolve inside the channels of the potential. The trapped p
ticles, indeed, due to their extremely slow motion, contribu
negligibly to the average MSQD. But the slow drift of th
clustered particles, corresponding to a drift of the poten
seen by a single particle, inhibits flights on very long time
This is because a channeling particle will not have a f
horizon in front of itself at any time, as it happens for
particle moving in a fixed potential frame.

The origin of the collective drifting motion of the clus
tered particles can be understood in the following way: let
assume that at timet50 all the particles are trapped in th
potential well, that the total momentum is zero and that a
later time t.0 one particle escapes from the cluster. Th
particle will carry out of the cluster a nonvanishing avera
momentump, but as the total momentum should be co
served, the cluster will then start to move with an avera
momentum2p/(N21). Therefore, in the mean-field limi
this effect will disappear and consequently we will obser
anomalous diffusion at any time@42#.

The two mechanisms outlined above, will have a cumu
tive effect on the phase space topology of our system. Du
the analogy with the egg-crate potential, in the mean-fi
limit the phase space of our model will exhibit a hierarchy
nested self-similar stability islands@18,24–27#. The monoto-
nous increase of the value ofa with N reported in Fig. 11
intuitively suggests a similar continuous picture when co
sidering the modifications occurring in the phase space
pology under continuous variation ofN. In particular, for
finite N we expect that the phase space structures assoc
to the smallest islands disappear up to a typical size
decreases for growingN @43#. Being the self-similarity no
more complete in phase space, normal diffusion should
recovered beyond a crossover time that grows for increa
N.

V. LYAPUNOV ANALYSIS

In order to complete the description of model~1!, we
investigate in this section a fundamental indicator to char
terize the dynamics of Hamiltonian models: the maxim
Lyapunov exponentl. Our analysis relies on numerical e
timation of l, performed considering the evolution in th
tangent space of the model and applying a standard t
nique introduced in Ref.@44#.

Our model is integrable in the limit of low and high en
ergy, thereforel→0 for U→0 andU→`. In between these
two extrema we expect that a finite Lyapunov exponent w
be observed similarly to what was recently found for 1
‘‘self-gravitating’’ toy models @45–47#. Our data are re-
ported in Fig. 12 for three different types of initial cond
tions: ~A! the particles are initially clustered and the veloc
distribution is Maxwellian;~B! the velocity distribution is
again Maxwellian but with a thermal velocity coincidin
with its canonical prediction and the particles are spatia
organized in a single cluster in such a way that also theM-
and P-values coincide with their canonical prediction;~C!
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the particles are initially clustered with a water-bag veloc
distribution.

The initial condition ~C! is the one commonly use
through the present paper, in particular for the study of tra
port in the system. As can be seen fom Fig. 12,l grows for
increasingU up to a maximum value and then decreas
Such maximum~at least forN5200) is located at an energ
U.1.321.4,Uc . For U.Uc , we observe a power law
decrease ofl with N. In particular, forU53.0 we found a
power law exponent;0.31 ~see Fig. 13! in good agreemen
with recent theoretical results obtained via a random ma
ces approach in Ref.@46# and with a Riemannian geometric
technique@47#. In both of these studies an exponent 1/3 h
been found considering a model similar to~1! in 1D @10#.
Moreover, also in true one dimensional gravitational mod
l vanishes as an inverse power law ofN as shown in@48,49#
~in those cases the exponent ranges from 1/5 to 1/4). In
model the vanishing ofl in the meanfield limit, forU
.Uc , is connected to the fact that the single particle pot

FIG. 12. Maximal Lyapunov exponent as a function ofU in a
log-linear plot, for three different types of initial conditions~for
details see the text!. The dashed line indicates the critical ener
Uc . In the inset, log(l) versus log(U) is reported at low energy. A
scalingl}U1/2 is evident in the low energy limit for all the thre
initial conditions. All the reported data corresponds toN5200 and
to integration times 13106<t<93106.

FIG. 13. log(l) versus log(N) for U53.0.Uc . The straight line
is a linear fit to the data with slope 0.31.
s-

.

i-

s

ls

ur

-

tial becomes constant. Thus in this limit the system is in
grable.

In the low energy limit~for U,0.01) a power law in-
crease of the typeU1/2 is clearly observable for all the thre
types of initial conditions. The data are reported in the in
of Fig. 12. A similar behavior was found for a 1D mean-fie
model@46#. This indicates that for fully coupled Hamiltonia
systems this property holds in general, independently of
space dimensionality. In particular, forU→0 the particles
are all clustered, therefore we expect that the scalingl
}U1/2 should be related to a ‘‘collective’’ chaotic mecha
nism. Work is in progress in order to derive a theoretic
explanation of such behavior.

Let us now try to understand which are the mechanis
underlying the observed behaviors ofl. Once the energyU
is fixed for all the three considered initial conditions, afte
reasonable transient, we obtain exactly the same value fo
average temperatureT and magnetizationsM and P and a
common Maxwellian distribution for the velocities. How
ever, at low energies (U,0.8) the measured averagel de-
pend heavily on the initial conditions. This clearly indicat
the coexistence of several equivalent state, that can be
sidered as equilibrated within the examined time interv
Usually we have averaged the maximal Lyapunov ove
time 1 000 000,t,9 000 000 after an equilibration tim
ranging fromt5500 000 tot520 000 000~this last value has
been used in particular for extremely low energies!. Obvi-
ously, also if the considered time scales are considera
long we cannot exclude that these states are metastab
should be noticed that this kind of behavior is unexpected
N-body Hamiltonian systems, because it is commonly
lieved that for sufficiently large values ofN Arnold diffusion
takes place and each orbit is allowed to visit the compl
phase space. But our data instead indicate that some ‘‘
rier’’ in the phase space still survive even forN5200. The
origin of this lack of ergodicity is related to the long rang
nature of the forces that induces a persistent memory of
initial conditions, as previously noticed by Prigogine a
Severne@50# for gravitational plasmas. Recently, some n
merical evidence of nonergodicity has been reported also
1D attractive potentials with power-law decay@48,49#. On
the other hand, mass segregation and kinetic energy equ
tition has been recently demonstrated in a two compon
gravitational model@51#.

It is clear from Fig. 12 that, in the intervalUP@0,0.8#,
for initial conditions of type~B! l remains always smalle
than the corresponding exponents obtained with initial c
ditions~A! and~C!. The maximal differences are observed
the energy range 0.2,U,0.8, where particles begin to es
cape from the cluster@this for initial conditions~A! and~C!#.
Above U.0.9 the same Lyapunov is obtained for all typ
of initial conditions. A typical feature of the initial condi
tions ~B!, for U,0.8 is that all the particles are trapped
the potential well. Instead when one or more particles esc
from the cluster (U.0.9) also with this initial condition the
usuall is obtained. We believe that two chaotic mechanis
are present in the system: one felt from the particles mov
in the minimum of the potential and one from particles v
iting a region near to the separatrix. This second mechan
is known and is related to a chaotic belt present around
separatrix@52#.
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The first one should be due to the temporal erratic mot
of the minimum of the potential well. In order to clear
identify such mechanisms we have followed the trajectory
a system initially prepared with condition~B! for an energy
U50.87 andN5200. On short time all the particles ar
trapped and we measure an average valuel.0.13. At a later
time (t'2 000 000) one particle escapes from the cluster
l shows a jump to a value that is almost double~see Fig. 14!.
In Fig. 14 the magnetizationM and the kinetic energyK are
also reported. When the particle escapes from the clusteM
shows a clear decrease as well asK. This last effect is due to
the fact that the potential energyV is minimal when all the
particles are trapped, therefore if one escapesV increases and
due to energy conservationK decreases. This is the phenom
enon at the basis of the negative specific heat effect. F
the above arguments we can identify a strong chaos felt f
the particles approaching the separatrix and a minimal ch
associated to orbits trapped in the minimum of the poten
The presence of these 2 chaotic mechanisms together
the nonergodicity of the system explains the strong dep
dence of thel-values from the starting conditions.

As a final point, we would like to notice that in the CP fo
low energy density the Lyapunov exponent averaged o
short times exhibits an intermittent behavior, when start
conditions~A! or ~C! are considered. In particular in Fig. 1
the instantaneousl is shown for condition of type~C! to-
gether with its running averaged value and the correspon
averaged value for condition~B!. The intermittent behavior
can be explained as due to trapping and untrapping of
IEP’s. As a matter of fact, for initial conditions~B! and en-
ergiesU,0.8 no diffusion at all is observed~the MSQD
saturates to a constant value for long times!, while for initial
condition ~C! @or ~A!# a superdiffusive motion is observe
for energies higher thanU50.3. This confirms that channe
ing particles~i.e., IEPs! are affected by a stronger chaot
mechanism than the trapped ones~namely, the LEPs!.

VI. CONCLUSIONS

In the present article we have analyzed the equilibri
and dynamical properties of a 2DN-body ‘‘self-gravitating’’

FIG. 14. Time evolution of the maximal Lyapunov exponent,
the magnetizationM and of the kinetic energyK are reported for an
initial condition of type~B! for U50.87 andN5200.
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Hamiltonian system. Our main result is the occurrence o
thermodynamical phase transition associated to a dynam
transition from anomalous to ballistic transport.

Firstly, the statistical equilibrium description in the c
nonical ensemble has been reported. It revealed a first o
phase transition between a collapsed phase, characterize
the presence of a single cluster of particles, and an homo
neous phase where particles are uniformly distributed. Cl
to the transition, the presence of two equivalent minima
the Helmholtz free energy clearly indicate a regime wh
the two phases~CP and HP! coexist. Within the microca-
nonical ensemble, for energies close toUc MD simulations
reveal a negative specific heat regime. Referring to previ
work @1#, we interpret this phenomenon as a signature
nonequivalence between canonical and microcanonical
tistical ensembles.

Secondly, we have shown that in a broad interval of e
ergies 0.3,U,Uc the transport in this system is anomalou
In the sense that the particles show a super-diffusive mo
below a cross-over time and normal diffusion for long
times. Usually, normal diffusion is expected to occur
N-body systems due to the absence of long time correlatio
Instead in the present case the non-Markovian nature of
process is clearly evidenced by the occurrence of Le´vy walks
and of power law decay for the VACF. In the CP, fro
simple mean-field considerations one can conclude that e
particle evolves in a 2D time dependent egg-crate like pot
tial. Channeling particles are at the origin of anomalous d
fusion on short time scales. Since their motion is made up
flights along the channels interrupted by localizations due
bouncing of the particles on the maxima of the potential. W
have also shown that finiteN effects generate a pulsatin
separatrix and give rise to a second localization mechan
for the particle motion due to the trapping of the orbits in t
potential well. This phenomenon together with the slow d
of the potential well is responsible for the suppression
anomalous diffusion on long time scales.

These two finiteN-effects can be interpreted as a whi
noise source affecting the single particle dynamics. As a m
ter of fact these effects become weaker for increasingN, as

FIG. 15. The maximal Lyapunov exponent averaged over sh
times (t5300) is reported for an initial condition of type~C! ~solid
line! together with the corresponding running average~long-dashed
line!. The lower dot-dashed line corresponds to the running aver
of l for an initial condition~B!. The energy for both cases isU
50.5 andN5200.



tim
nd

re

it
n

an
no
th
h
t

pa
in

ou
in

re
Ab

t
n
b
th

ith

uc

re

-
A
In

r a
In
e
ty
ed
B

al
nt
s

th

le

the
of

that

n

pa-

ed.
ro-

PRE 59 2759EQUILIBRIUM AND DYNAMICAL PROPERTIES OF . . .
confirmed by the linear dependendence of the crossover
on N. The asymptotic dynamics of the model then depe
on the order the two limitsN→` andt→` are taken. If we
first take the limitN→` and thent→` diffusion remains
anomalous for all time. Ohterwise standard diffusion is
covered for sufficiently long time.

The Lyapunov analysis shows clearly that even forN
5200 the phase space is not fully accessible and the vis
portion of the phase space depends on the initial conditio
This is quite unexpected in high dimensional Hamiltoni
systems. Obviously, relying on numerical data we can
exclude that on longer time scales the system will visit
entire phase space. Moreover, two different chaotic mec
nisms have been identified: a minimal chaos associated to
clustered particles and a strong chaos affecting the IEP
ticles. Anomalously diffusing particles have therefore an
termittent chaotic behavior.

We believe that the properties displayed by the model~1!
are quite general for gravitational systems. It is also
claim that the inclusion of higher order Fourier harmonics
the potential will not qualitatively affect the results here p
sented. This is indeed confirmed by a recent study by
dalla and Reza Rahimi Tabar@53# for the 2D full logarithmic
Newtonian potentialV` . Also in that case a transition a
finite T from a clustered to a homogeneous phase is show
be present. This constitutes in our opinion an interesting
sis for the generalization of the present results to models
mimic more realistically the gravitational interactions~e.g.,
systems with true Newtonian potential in 3D! @54#.

Due to the strict analogy of the model here studied w
point vortices model for 2D turbulence@32# we expect that
anomalous diffusion should also be observable for s
models. Preliminary indications@55# seem to confirm our
claim and ask for more accurate investigations in such di
tion.
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APPENDIX A

In this appendix we present the reduction technique of
N-body Hamiltonian H ~1! to the single particle self-
consistent and nonautonomous Hamiltonianhi given in Eq.
~8!. The starting point is the equation of motion of a partic
i. The time evolution of its coordinates (xi ,yi) derived from
Eq. ~1! is given by
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ẍi52
1

N(
j 51

N

@sin~xi2xj !1sin~xi2xj !cos~yi2yj !#,

~A1!

ÿi52
1

N(
j 51

N

@sin~yi2yj !1sin~yi2yj !cos~xi2xj !#,

~A2!

where the first equation corresponds to Eq.~3!. The contri-
bution to the force of the termj 5 i is zero. So we can safely
run the sum over all the particles. When reexpressing
product of trigonometric functions in the right hand side
Eqs.~A1!,~A2! as a sum, one straightforwardly obtains

ẍi52
1

N(
j 51

N Fsin~xi2xj !1
1

2
$sin~xi2xj1yi2yj !

1sin~xi2xj2yi1yj !%G , ~A3!

and a similar equation forÿi by changingx↔y. Then, we
expand the sine functions in order to separate the terms
have as argument thei-particle coordinates (xi ,yi) from
those which depend on thej-particle coordinates. The motio
equation then rewrites

ẍi52
1

N(
j 51

N Fsin~xi !cos~xj !2cos~xi !sin~xj !

1
1

2
$sin~xi1yi !cos~xj1yj !2cos~xi1yi !sin~xj1yj !

1sin~xi2yi !cos~xj2yj !2cos~xi2yi !sin~xj2yj !%G .
~A4!

The force is now splitted in 6 terms showing each a se
rated contribution for particlei. The summmation overj due
to the long range interaction can thus easily be perform
We use to this aim the four mean-field vectors already int
duced in Eqs.~4!, ~5!, ~6! and ~7! in the text:

M15S 1

N(
j 51

N

cos~xj !,
1

N(
j 51

N

sin~xj !D
5M1„cos~f1!,sin~f1!…, ~A5!

M25S 1

N(
j 51

N

cos~yj !,
1

N(
j 51

N

sin~yj !D
5M2„cos~f2!,sin~f2!…, ~A6!

P15S 1

N(
j 51

N

cos~xj1yj !,
1

N(
j 51

N

sin~xj1yj !D
5P1„cos~c1!,sin~c1!…, ~A7!
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P25S 1

N(
j 51

N

cos~xj2yj !,
1

N(
j 51

N

sin~xj2yj !D
5P2„cos~c2!,sin~c2!…, ~A8!

where the definition ofMz ,Pz ,fz ,cz for z51,2 is straight-
forward. When reexpressing Eq.~A4! in terms of these
mean-field quantities, one obtains the equation:

ẍi52FM1$sin~xi !cos~f1!2cos~xi !sin~f1!%

1
P1

2
$sin~xi1yi !cos~c1!2cos~xi1yi !sin~c1!%

1
P2

2
$sin~xi2yi !cos~c2!2cos~xi2yi !sin~c2!%G .

~A9!

Then summing up the terms inside the curly brackets,
equation finally rewrites:

ẍi52FM1 sin~xi2f1!1
P1

2
sin~xi1yi2c1!

1
P2

2
sin~xi2yi2c2!G . ~A10!

Similarly, changingx↔y in Eq. ~A4!, yields the following
equation forÿi :

ÿi52FM2 sin~yi2f2!1
P1

2
sin~yi1xi2c1!

2
P2

2
sin~xi2yi2c2!G . ~A11!

Note the difference in the sign of the last term of the for
when compared to Eq.~A10!. Equations~A10! and ~A11!
can easily be shown to derive from the following sing
particle Hamiltonian@analogous to Eq.~8!#:

hi5
px,i

2 1py,i
2

2
1F32M1 cos~xi2f1!2M2 cos~yi2f2!

2
P1

2
cos~xi1yi2c1!2

P2

2
cos~xi2yi2c2!G , ~A12!

where (px,i ,py,i) are the canonical conjugated momenta
(xi ,yi) and where the constant 3 ensures the energy of
ticle i to be zero in the fundamental state.

APPENDIX B

In this appendix we present the computation of the jo
characteristic function~15! of the mean-field variables an
the evaluation of their first momenta.

In order to simplify the calculations, it is useful to firs
focus on the symmetries of Hamiltonian~1! and in particular
of the potentialV. The latter is symmetric under the tran
formationsx↔y, x→2x and y→2y and invariant under
traslation.V reflects the symmetry of the distributionf (x,y)
is

f
r-

t

of the particles in the unit cell. In the limitN→`, f (x,y)
has the same symmetries thanV in the homogenous phase. I
the collapsed phase, however, translation invariance is
ken, but 2p periodicity remains, and we can always shiftx
andy in order to have the center of the cluster in the posit
(0,0). Hence, beside the 2p periodicity, we also have the
following symmetries:

f ~y,x!5 f ~x,y!, ~B1!

f ~2x,y!5 f ~x,y!, ~B2!

f ~x,2y!5 f ~x,y!. ~B3!

The average value of an observableA(x,y) writes

^A~x,y!&5E
S2

f ~x,y!A~x,y!dx dy, ~B4!

whereS25] 2p,p] 3] 2p,p] is the unit torus and where
^ & stands for the average ensemble. When taking into
count the symmetry rules forf (x,y), the following equalities
can be easily established:

^cos~x!&5E
S2

f ~x,y!cos~x!dx dy

5E
S2

f ~x,y!cos~y!dx dy5^cos~y!&, ~B5!

^sin~x!&5E
S2

f ~x,y!sin~x!dx dy

5E
S2

f ~x,y!sin~y!dx dy5^sin~y!&50. ~B6!

Since function f (x,y)sin(x) and f (x,y)sin(y) are antisym-
metric on the unit torus, the average sines are always v
ishing. Using the same arguments, one can also show th

^cos~x1y!&5E
S2

f ~x,y!cos~x!cos~y!dx dy5^cos~x2y!&,

~B7!

^sin~x1y!&5E
S2

f ~x,y!sin~x!cos~y!dx dy

5^sin~x2y!&50. ~B8!

Thus we can conclude that in the limitN→`

M15^cos~x!&5M5^cos~y!&5M2 , ~B9!

P15^cos~x6y!&5P5^cos~y6x!&5P2 ~B10!

by definition ofM andP. Hence, based on symmetry arg
ments we have shown, without loss of generality, that in
largeN limit we can always set one component of the mea
field vectors to zero and that

M15M5~M ,0!5M2 and P15P5~P,0!5P2
~B11!
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by definition of vectorsM and P. These equalities indicat
that, in the limitN→`, two scalarsM andP are sufficient to
generate the four mean-field vectors. For the calculation
the first momenta of the mean-fields vectorsM and P it is
thus sufficient to consider the momenta of their modulusM
and P. The latter are the coefficient of the Taylor series
the joint characteristic function

C~sM ,sP!5^exp~sMM1sPP!&, ~B12!

wheresM andsP are two scalars that play the role of exte
nal applied fields and where we used the symmetries
model ~1! to setM5(M ,0) andP5(P,0). As we focus on
the average of quantities that are independent of the
menta of the particles, the kinetic partZK of the partition
function @see Eq.~9! in the text# plays no role for the esti-
mation of theC-value. Thus we have to compute

C~sx ,sxy!5ZV
21E

S2N
dNxdNy expFsMM1sPP

1
bN

2
~2M21P2!G , ~B13!

where the notationS2N is straightforward, the following ex-
pression for the potential energy has been used:

V52
N

2 S M1
21M2

21
1

2
~P1

21P2
2! D5

N

2
~2M21P2!

~B14!

and where the constant 3N/2 has been omitted for simplicity
Using the Hubbard-Stratonovich transformation, defined
Eq. ~11!, yields

C~sM ,sP!5ZV
21E

R2
E

S2N
duM duP dNx dNyd~uM2ūM !

3d~uP2ūP!exp~2uM
2 2uP

2 !exp@sMM1sPP

12AbNuMM1A2bNuPP#, ~B15!

whereuM anduP are two integration variables and whereS
stands for the unit circle. The product ofd-Dirac functions is
due to the saddle point technique used for the estimatio
the partition functionZV @see Eq.~12! and below#. The inte-
grand in Eq.~B15! has to be considered in correspondence
of

f

of

o-

n

of

f

the minimum of the functionG, reached for (uM ,uP)
5(ūM ,ūP). Once performed the rescaling in Eq.~B15!
Ab/Nūz→ūz , for z5M ,P, yields

C~sM ,sP!5ZV
21 expF2N

ūM
2 1ūP

2

b
GT~ ūM ,ūP ,sM ,sP!,

~B16!

where

T~ ūM ,ūP ,sM ,sP!

5E
S2N

dNxdNy expFNS sM

N
M1

sP

N
P12ūMM

1A2ūPPD G . ~B17!

The calculation of the charateristic function now requires
proper estimation ofT. In Eq. ~B17! the final result does no
depend on whether we usesMM1 or sMM2 because of the
symmetries. Similarly forsPP where eitherP1 or P2 can be
considered. We chosesMM1 andsPP1 in the following.

However, as the integration runs overx andy, it is impor-
tant here to reconsider Eq.~B14!. Up to now we used the las
equality appearing in this equation. Hence we would
tempted forM ~resp.P) to use eitherM1 ~resp.P1) or M2
~resp.P2). But, because of the integration overx andy, it is
worth to use here the expression ofV as a function of
M1 , M2 , P1 and P2 and thus to write the productsūMM

and ūPP as

ūMM5
1

2
ūM~M11M2!5

ūM

2NS (
j 51

N

cos~xj !1(
j 51

N

cos~yj !D ,

~B18!

ūPP5
1

2
ūP ~P11P2!

5
ūP

2NS (
j 51

N

cos~xj1yj !1(
j 51

N

cos~xj2yj !D .

~B19!

When using these expressions, the functionT can be ex-
pressed as
T~ ūM ,ūP ,sM ,sP!5E
S2N

dNx dNy expF S ūM1
sM

N D (
j 51

N

cos~xj !1ūM(
j 51

N

cos~yj !G
3expF S ūP

A2
1

sP

N D (
j 51

N

cos~xj1yj !1
ūP

A2
(
j 51

N

cos~xj2yj !G
5„D~ ūM ,ūP ,sM ,sP!…N, ~B20!

whereD is

D~ ūM ,ūP ,sM ,sP!5E
S2

dx dyexpF S ūM1
sM

N D cos~x!GexpF S ūM1A2ūPcos~x!1
sP

N
cos~x! D cos~y!2

sP

N
sin~x!sin~y!G .

~B21!
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After integration overy one gets

D~ ūM ,ūP ,sx ,sxy!52pE
S
dx expF S ūM1

sM

N D cos~x!G
3I 0SA„ūM1A2ūP cos~x!…212„ūM1A2ūP cos~x!…

sP

N
cos~x!1O~N22! D , ~B22!

whereI 0 is the zero-th order modified Bessel function. For (sM ,sP)5(0,0) we retrieve the maximum of functionRm(ūM ,ūP)
given in Eq.~13! in the text.

Starting from Eq.~B15! and after some elementary algebra, one finds the expression of the characteristic function

C~sM ,sP!5S D~ ūM ,ūP ,sM ,sP!

R~ ūM ,ūP!
D N

. ~B23!

By definition of C the momenta of the mean fields are given by

M5
]C

]sM
U

~0,0!

, P5
]C

]sP
U

~0,0!

. ~B24!

From these one finally obtains Eqs.~16! and ~17!.
c
d
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