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A system ofN classical particles in a two-dimensional periodic cell interacting via a long-range attractive
potential is studied numerically and theoretically. For low energy density collapsed phase is identified,
while in the high energy limit the particles are homogeneously distributed. A phase transition from the
collapsed to the homogeneous state occurs at critical ergfgyA theoretical analysis within the canonical
ensemble identifies such a transition as first order. But microcanonical simulations reveal a negative specific
heat regime nedd . This suggests that the transition belongs to the universality class previously identified by
Hertel and Thirringf/Ann. Phys.(N.Y.) 63, 520 (1970] for gravitational lattice gas models. The dynamical
behavior of the system is strongly affected by this transition: bélgvanomalous diffusion is observed, while
for U>U_. the motion of the particles is almost ballistic. In the collapsed phase, finiéfects act like a
“deterministic” noise source of variano@(1/N), that restores normal diffusion on a time scale that diverges
with N. As a consequence, the asymptotic diffusion coefficient will also diverge algebraicallyNnathd
superdiffusion will be observable at any time in the lift-o. A Lyapunov analysis reveals that faf
>U, the maximal exponenk decreases proportionally td~* and vanishes in the mean-field limit. For
sufficiently small energy, in spite of a clear nonergodicity of the system, a common scaling-dal¥/? is
observed for various different initial conditions. In the intermediate energy range, where anomalous diffusion
is observed, a strong intermittency is found. This intermittent behavior is related to two different dynamical
mechanisms of chaotizatio[§1063-651X99)10303-9
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[. INTRODUCTION systems, but the features of this thermodynamical transition
are expected to be independent of the space dimensionality
Theoretical 1] and computational studi¢®,3] have been [1].

devoted in the last decades to the study of thermodynamical More recently it has been shown that cluster formation in
properties ofN-body gravitational Hamiltonian models. One Simple 1DN-body models with long-range attractive interac-
of the main results is the identification of a phase transitiorfion [9,10] is similar to theJeans instability 11] occurring in
from a collapsing phaséCP) observed at low energy to a grawtatmna_d systemE_lZ]. In particular, foIIow_mg this anal-
homogeneous phagelP) at high energy. In the CP a fraction 99Y Inagaki and KonisHil2] were ablg to denye the correct
of the particles form a single cluster floating in a homoge-C'itical temperature for the declustering transit[d3].

neous background of almost free particles. Above a critical Prellmlnaryhlndlcaftflonts sugg'estllng tr}‘.f’ltl Cl(L;Sterm.g pr:le—
energyU. the cluster disappears and all the particles mov omena can have €flects on singie particie dynamics have

o . o been reported fofi) a system of fully and nearest-neighbor
almost freely. In the transition region, the specific h(_aaF becoupled symplectic maps with attractive interactiad]; (i)

o X o : NSt tomic cluster$15]; and (iii) turbulent vortice§16,17).
bility has been widely studied in astrophysics, where it is All these systems exhibit a clustered phase associated to

known as thegravothermal catastrophp4—7]. A negative 5 anomalous diffusion law. The anomalous transport is re-
specific heat regime seems to be thermodynamically iNCONxeq to the single particle dynamics that intermittently
sistent. But this paradox is solved once the non-equivalencgnows a sequence of localized and almost ballistic behaviors,
of canonical and microcanonical ensembles in the neighbolzgrresponding to the trapping and untrapping in the cluster,
hood of such phase transition is demonstrdte@]. These respectively.
results have been sucessfully confirmed by numerical inves- Anomalous diffusion has been revealed in dissipative and
tigations of self-gravitating nonsingular 2D systems withHamiltonian models[18,19 as well as in experiments
short range interactiof2,3] and by the study of a system of [16,17). The first investigated example of anomalous behav-
particles confined on the surface of a sphere with variabléng systems was a one dimensional chaotic map proposed by
radius[6]. The reported analyses were usually focused on 2Geisel and co-workerf20] that was introduced to describe
enhanced diffusion in Josephson junctid@d]. More re-
cently, anomalous diffusion was also studied in the context
*URL: http://torcini.de.unifi.it~torcini. Electronic address: of fluid dynamics and solid state physics both experimentally
torcini@fi.infn.it [16,17,22 and theoretically{18,19,23. However, the con-
TElectronic address: antoni@mpipks-dresden.mpg.de servative models usually studied concern the motion of a
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single particle that evolves in a fixed two-dimensional peri- This article is organized in the following way. In Sec. Il,
odic potential[18,24—-27 or the dynamics of low dimen- we present the Hamiltonian model we focus on. In Sec. lll,
sional symplectic maps. Only few studies have been devotede report a thermodynamical description of the model within
to extended models witN>1 [14,28,29. the canonical ensemble. Equilibrium values of the mean-field
The main purpose addressed in this paper is to establishaie derived and the existence of a phase transition from a
link between equilibrium results, transport properties and filomogeneous to a collapsed phase is shown. Section IV is
nite N-effects for N-body Hamiltonian models with long- devoted to numerical description of dynamical properties. In
range attractive interaction. In order to examine in detailParticular, we will concentrate on the diffusion of single par-
these points we consider a simplified 2D “self-gravitating” ficles and on the influence of finiti-effects. The chaotic
toy model, where the dynamics of each particle can be writbehavior of the model is discussed in Sec. V in a broad
ten in terms of mean-field quantities that are self-consistentignergy range. Finally, in Sec. VI the reported results are
defined through the coordinates of all the particles. Therefor&riefly discussed.
each particle is moving in a nonautonomous self-consistent

potential depending on mean-field quantities. As time Il. THE MODEL
evolves, these mean-fields fluctuate with typical time scale of '
order O(1) and with amplitude of orde®©(1/yN). Their In the present paper we study the static and dynamical

introduction in our approach allows to implement a very ef-properties of arN-body system enclosed in a 2D periodic
ficient code and therefore to examine systems with a higleell, with a classical long-range interparticle potential. The
number of particles =4 000- 10 000) for long time peri- dynamics of each particle is ruled by the Hamiltonian:

ods ¢~1x10°-1x10').

We observe a declustering transition, analogous to the one N
studied by Hertel and Thirring, and, in correspondence of the H= E
CP, anomalous diffusion is detected. Above the transition i=1
point also the dynamical behavior changes and the particles  _ .y .y
move almost freely. COSX; = X})COKYi —¥j)]

In the CP, the shape of our self-consistent single particle =K+V, (1)
potential resembles to that of the so-called egg-crate poten-
tial. Several studies were devoted to the motion of a Smgk?/vhere &.y) el—malx]—mal, (. and §i.p;,)

partlcl_e I an autonomous_egg-crate potential, i.e., When.thgre the two couples of conjugate variables. The particles are
potential represents a fixed Iandscape_ for_ the partICI%\ssumed to be identical and to have unitary midgsesp.V)
[18,19,24-27. In particular, anomalous diffusion was ob- oy, kinetic(resp. potentialenergy. The reference energy is

served and .SUCh behawor was gxplamed as dye 10 rapping, hsen in such a way that the energy of the system vanishes
and untrapping of the particle orbit in a self-similar hlerarchywhen all the particles have the same positiaf=0) and

of cylindrical cantori[18]. As a result the trajectory of the zero velocity K =0). The presence of the third term in the

particle on the 2D surface is similar o a\!yew_alk. This otential energy is essential in order to ensure an interaction
suggests that anomalous transport, present in our modeﬁ . ;
etween the two couples of conjugate variables.

should be explained by IS|m|Iar mechanisms. - The considered interparticle potential belongs to the fol-
Due to the self-consistent nature of the potential in theI : T S
owing class of 2D periodic potentials:

model we consider herein, finitd-effects induce a time fluc-
tuation in the potential seen by each particle and essentially
act as a noise source of typical intensi?y1/\/N). Environ- N _

mental fluctuations are known to restore normal diffusion on VZZl Vs(ri),  with

long time scales when added to a dynamical systems exhib-

iting anomalous diffusio30,31]. Indeed, this is what hap-

pens also in our model, apart that now the fluctuations are 13

intrinsically related to its deterministic dynamics and not to Vs(r)= mzl o c(k)[1-cogk-(r—rp]l, (2

an external bath. In the mean-field limit the fluctuations dis- 177 0<kiss

appear and anomalous diffusion is present at any time. . ]

The study of the degree of chaoticity reveals that the Syswheres is a parameter that determines the number of har-
tem (for low energy is highly nonergodic and, despite the monics included in the Fourier expansion 6f r=(Xx,y)
fact that thermodynamical properties seem not to depend oandk=(n,,n,) is the wave-vector, witm, andn, two in-
initial conditions, the dynamical indicatofs.g., the maximal tegersc(k) =c(—k) is a real valued function of the modulus
Lyapunov exponentare heavily affected from the initial of k, that fixes the coupling strength of the harmokid-or
state of the system. Despite this nonergodicity, the low enmodel (1), ¢(k)=1/k? and s=2. For the same choice of
ergy dependence of the maximal Lyapunov shows a commo@(k), but in the limits—c, a 2D self-gravitating Newtonian
scaling law for all the considered initial conditions. In the potential Vw(r)OCEi'\Llloglr—rjl is recovered, once a re-
intermediate energy range, two distinct chaotic mechanismscaled timet/ /N is considered. It should also be noticed that
are identified in our model and give rise to intermittency ininteractions of the type Idg among particles arises also in
the dynamical evolution. For high energy the system bepoint vortices model for 2D turbulend®2]. Therefore we
comes integrable in the mean-field limit and the Lyapunovexpect the simplified modell) to share some common be-
vanishes as an inverse power lawNf havior with point vortices systems.

N

2 2
pi,x+pivy 1
TJFmIE] [3—cogx;—X;)—cogy;—Y;)
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The interparticle potential appearing in Ed) is essen-
tially the Fourier expansion of .(r) limited to its first three
terms. The corresponding equations of motion for the coor-
dinatesx; are

M R .
%=~ g2 [sin0x =x)) + sinix =) cogyi =yl (3)

and, due to the symmetry of E(L), the equations of motion
for y are obtained exchanging—y.

Previous investigation of modél) [33] has revealed that
at low energyU=H/N the particles, due to attractive cou-
pling, are organized in a unique collective struct(oieister FIG. 1. Instantaneous single particle poteniigk,y) together
with U-dependent spatial extension. This clustered phas@ith its contour plot for U=1.00 and £.Y)
(CP) survives up to a critical energy.~2. AboveU, a  e[-57/2,57/2]2. M;=M,=0.8249, P,=P,=0.6929, and
phase transition occurs to a homogeneous plidsg This  ¢,=0=4,.
transition will be discussed in more detail in the next section._ ) , ) »
Here, we will limit to evidence collective behaviors in the field potentialV; determined by the instantaneous positions

i ; : of all the other particles of the system.
system by rewriting mode(1) in terms of the following . o . .
mean-field variables: Since V is invariant under the transformationx

——X, Yy« —yandx«y, it turns out that in the mean-field
limit (N—oo with constantU=H/N), M;=M,=M and
P,=P,=P. Moreover, in this limit and assuming,= ¢,
=0, the 1-particle potential is similar to the egg-crate poten-
. . tial studied in referencedl 8,24—-21. In Fig. 1 the shape of
M= ({cogy))n .(sin(y))n)=M2(COS ¢2),SIN 42)), V; at a given time forU=1.00 andN=40gO is shown.pThe
(5) potential is periodic along the two spatial directions and in
_ . each elementary cell it has 4 maximdé,(=3+2M—P), 4
P1=((cogx+y))n (sinN(x+Yy))n)=P1(cog i), sin(¢1)), saddle points Vs=3+P) and a minimum Y,=3—-2M
(6) —P). The depth of the potential well isv(—V,,) and the
. ) center of the cluster will coincide with the position of the
Po=((cogx—Y))n {SIN(X—Y))n) = P2(cog 42),SiN(142)), potential’s minimum. In the limitU—0M and P—1 and
() thereforeVy—4Vs—3 andV,—0. In this limiting situa-

) ) tion all the particles are trapped in the potential well they
where( )y denotes the average over all the particles in thecreate. For increasing, the kinetic contribution becomes
system; ¢, (resp.y,) andM, (resp.P,) are the argument more relevant and the number of clustered particles reduces.
and the modulus of the mean-field vects (resp.P,) with This implies that also the values M, P and of the well
z=1,2. The moduliM, and P, are maximal and equal to 1 depth decrease. Fot=U_, the particles are no more clus-
when all the particles have the same position and their valugered and in the limilN—< the single particle potential be-
decreases when the spatial distribution of the particles excomes flatvy,=V,=V,,=3 and time independent.
tends. For an homogeneous distribution, due to fiNitef- However, due to finitd effects, the instantaneous mean-
fects and according to the central limit theoremM,~P, field variables fluctuate with typical time 1 within the statis-
~0O(1/YN) for z=1,2. Therefore, the quantitied, andP, tical band range~1/\/N. This implies that in the CP the
can be thought as order parameters characterizing the degrsi@gle particle will move in a fluctuating potential landscape.
of clustering of the systerf4,10Q. As a consequence, the system admits a time pulsating sepa-

By reexpressing the equation of moti¢8) for both coor-  ratrix that sweeps a phase space domain proportional to
dinatesx andy in terms of the mean-field variabléd, and  1/\/N in the neighborhood of the average position of the
P,, one straighforwardly shows that the time evolution of separatrix.

M= ((cog X))y, (SiN(X))n) =M 1(cog ¢1),SiN($1)), @

each particld is ruled by the following single particle non-  Due to the shape df; , we can qualitatively distinguish at
autonomous Hamiltonian: each time three subgroups of particles: the low energy
) ) trapped particlesLEP) oscillating in the self-consistent well
Py.i T Py.i of the potential(with energyh;~V,,), the intermediate en-
hi=———"+|3=M; 08X~ ¢1) ~M; cOdy; ~ 7) ergy particleIEP) evolving in the stochastic sea neighbor-

ing the separatrix {j=Vg) and the high energy particles
1 1 (HEP) moving almost freely If;>V,,). Obviously, as time
~ 5 Prcosxi Y~ i) — 5 P2 COSXimYi— ) evolves each particle can pass from one subgroup to another.

=Ki+Vi, (8) IIl. THERMODYNAMICAL ASPECTS

whereK; andV; are the 1-particle kinetic and potential en- A. Canonical prediction for the equilibrium properties

ergy, respectively. For more details on the derivation of Eq. The problem of finding the thermodynamical potentials of
(8) see Appendix A. Hence, each particle moves in a meanmodel (1) in the canonical ensemble is resolved starting as
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usual from the partition functioZ(N,B), where 8 is the 10
inverse temperature. For Hamiltonigh), the partition func-
tion factorizes inZ(N,8)=Z¢ X Z,,, where 8 |
N 2 2 N
pX i + py i N N 277
= — —_— 7 = | — 6 I
Zx fRZN exp( ,821 5| d'pdpy=| 5 _
) n

is the kinetic part obtained assuming a Maxwell-Boltzmann
distribution for the momenta. The potential contributiBy 2t
is evaluated by considering the expression of the potevtial
in terms of mean-field variabléd , andP,. As already men- 0 . ‘ ‘ .
tioned, in the mean-field limit due to the symmetries/ofve 0 2 4 6 8 10
haveM,;=M,=M andP,;=P,=P. Consequentlyy can be p

reexpressed as a quadratic formMrandP and the resulting

expression foZ, reads[10] FIG. 2. 8 dependence afy, (full line) andup (dashed ling For

Be€[1.81,2] there are two coexisting minima: one at the origin

— (Uy ,Up)=(0,0) and a second one for whichc@p<Uy, .
d™x dy, (10

N 2 2
Zyx SZNex /32(2M +P?)
B=2, a saddle-node bifurcation occurs at the origin

Fuy ,up) =(0,0) (corresponding to the HPwhere a second
minimum appears. This can be shown with a Taylor expan-
sion of G in the neighborhood of the origin

whereS stands for the unit circle and where the constant par
of V is omitted. We can evaluate the integral in Ef0) by
using the Hubbard-Stratonovich trick:

exp(cAZ)ocf exp(—u3+2ycua-A)d2u,, (12

- G 2(1 1)+2(1 1) log(4?) +1

where A is a two component real vector amda positive (B:Un - Up) Uiy B 2] "Plp 4 og(4m)+In B

constant. Following10,34], we substitute expressiofil) (14

into Eq. (10) with (A=M,c=8N) and (A=P,c=BN/2)

and perform the rescaling/28/Nu,,—u,, for w=M,P.

Then expressing,,= (u,, cosé,,,u,sinéb,) in polar coordi-
nates, we obtain

From the above equation, one can observe thapfeR the

origin is a saddle poin(t is a local maximum if8>4) while

for B<2 the origin is a local minimum. The upper inset of

Fig. 2 shows the details of the temperature domain where

,Umup exp(—NG)duydfydupdbp, both minima coexist. When decreasiBg a second bifurca-
(12) tion occurs for8=1.81 and the minimum corresponding to

the broken symmetry disappears while the one at the origin

where G=(u%+u2)/B—logR+log B is a strictly positive  persists.

real valued function independentNf The main contribution The mean-field variable@}), (5), (6) and(7) can be esti-

to Z in the limit N— o can be evaluated with the saddle point mated from their joint characteristic function:

method, and reduces to the estimation of the minimum of the

function G. The minimum value will not depend ofy, and

Z=2ZXZy> f
(RXS)

0, becaus® is maximal with respect to these two variables WV (ay,op)= (MM IpP)), (15)
for (6y ,0p)=(0,0) for anyuy andup. Its expression thus
reduces to
where the averagé) runs over the corresponding Gibbs
Rm(Um ,Up)= MaxR(uy ,Up, by ,0p) ensemble. The quantitias,, and op can be considered as
O . p external fields whileM andP are the equivalent of magne-
P tizations or polarization vectors. The functigh5) can be
:27rf lo(uy+ \/Eup cogs)) explicitly computed and its first momenta are the moduli of
0 the mean-field variables:
X exp(uy cogs))ds, (13
wherelq is the zero order modified Bessel function. Finally, M= ﬂ
the minimum ofG=G(8,uy ,Up) is obtained numerically  doy
using expressiofil3) and a Raphson-Newton scheme. Jhe
dependence of the solutiongyf ,up) for which G is mini- _ 2m % j dscogs)|
mal is reported in Fig. 2. At largg (low temperaturgthe R(Uy,Up) IS 0

minimum is located far away from the origin and corre- o o
sponds to the CP, i.e., to the broken symmetry phase. When X (Up+ V2up cogs))exd uy cogs)], (16
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ing U, kinetic effects increase, the size of the cluster thus
grows and consequentlil and P decrease. For 16U

< 2.0 the analytical values are not reported, because in this
energy range it is impossible to estimate them with a canoni-
cal approach. This simply reflects the first order nature of the
transition. ForU>2.0, M=P=0 because the system is no
more exhibiting a clustered phase.

However, within a canonical ensemble it is more appro-
priate to analyzeM andP as a function of the temperature
T=p"1. Both M and P decrease withil and vanish when
T>T.~0.55. Their dependence frorif{— T) ! is shown in
Fig. 3(b). Close to the critical temperature bolh and P
exhibit a jump indicating a first order transition between CP
and HP.

Thermodynamic potentials can be straighforwardly ob-
tained from the partition function:

1.0
. 1 G(BIUM IUP)
F=—Ilm|——=logZ|=——7—,
08 | N_,w( Ng Y ) B
A~ A(BF)  9G(B,uy Uy
* o6 | U (B ): (B,up P), 18)
= B B
oal ® whereF =F () is the Helmholtz free energy and the spe-
el cific (or interna) energy. In order to find the stable configu-
ration of the system we should look for the absolute mini-
02 ‘ ‘ ‘ mum of F. The inverse temperature dependence of the
1o T 1919)_1 1000 10000 minimum of F is reported in Fig. &). In the limit 3—0 the

FIG. 3. In(a), the canonical estimation & andP (solid curve

free energy will have a minimum at the originug,up)
=(0,0) and the HP will be observed, while in the lingt

together with their time averaged values obtained from microca-——o the minimum will be located at QUP<UM and the
nonical simulationgsymbolg are shown. The measurements havesystem will be in the CP. In the rangée[1.81,2.Q, F

been obtained witthN=4000(a part a few point witiN=10% and
averaged over a total integration time ranging1.2x10° to t

displays two coexisting minima, that we denote, with
straightforward notation, aByp and F-p. However forg

=2.4x 10° with a time stepdt=0.3. In(b) are reported the canoni- > B.=1.84 the CP is observed, becausgr<Fp, while

cal estimation foM and P as a function of T,—T) ! in a log-

linear plot. NeitheM nor P have usual critical exponent.

Rm(UM 1UP)

X (Uy+ v2up cogs))exd uy cogs)],

X Ldscos(s)ll

7

for B<B. the HP prevails sinc€-p>Fyp. At 8=, the
two minima are equivalentHc-p=Fyp), this is a further
indication that the transition is of first order.

p— ﬂ Figure 4b) represents the temperatufeas a function of
dop the internal energy. For small energied)~T/2 (i.e., there

is a virial) and the particles are all trapped in a single cluster.
2w ForU>U.~2, the system is itdP andT is also increasing

linearly with U. This indicates that the system behaves like a
free particle gas. These two regimes correspond to the two
integrable limits of mode(1).

In the intermediate energy range, the tendency of the sys-
tem to collapse is balanced by the kinetic energy &ansino

where functionR, was introduced in Eq13), |, is the first : g
order modified Bessel function. From these expressions it i§0re proportional tdJ. For 1.6<U<2, the amount of ki-

easv to check that wheri(ﬂ U) coincide with the origin netic energy is such that a significant fraction of particles
theXM —P=0. This allows u's ?0 identify such solutiongwi’th escape from the cluster. The system is then characterized by

== the presence of two coexisting phases: the first is supported
the HP. While if (Uy,up) is located away from (0,0) the py the fraction of LEP that are trapped in the well of the
solution corresponds to the CP. A detailed derivation of EQsgg|f.consistent potential and the second is due to the HEP

(16) and(17) can be found in Appendix B. that have large kinetic energy and thus behave almost freely.
More specifically,M andP can be considered as two or-

der parameters that describe the spatial extension of the clus-
ter in the &,y) plane(i.e., the degree of clustering of the
system. The analytical estimation fdvl andP are plotted in In the present section, the thermodynamical properties of
Fig. 3(a) (solid line) as functions olJ. ForU—0, M andP model (1) will be considered, while the dynamical ones will
tend to 1 as expected for a fully ordered phase. For increade the subject of the two following sections.

B. Microcanonical results: Numerical findings
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2 ‘ ‘ ‘ : In the simulations, the particles are initially clustered in
one single point and with a “water-bag’” distribution for the
@ T velocities. Other initial conditions, for example, with par-
ticles uniformly distributed over the periodic cell and with
-2 4 , I Maxwellian velocity distribution have been tested. But as far
/ as thermodynamical properties were concerned no significa-
] tive differences have been observed in the asymptotic prop-
erties of Eq.(1). In order to avoid transient effects, the re-
ported thermodynamical and dynamical quantities have been
measured starting from initial “relaxed” states resulting

r from sufficiently long preliminary simulations. Moreover,
-1.75 : ) -

1.8 1.9 2.0 the averages have been typically performed over total inte-
‘ . gration timest=1¢F.
B We define the measured temperattre following the

equipartition theorem, through the time averaged specific ki-

' ' ' netic energyl =(K(t)/N);. The MD-estimation of M), and
(P), are shown in Fig. &. In Fig. 4b), the measured
U-dependence of is reported. Both figures indicate that the
numerical findings are in good agreement with the canonical
predictions, apart in the interval kx8J<U_, where canoni-
cal estimate are not available. In this energy rajegdarged
in the inset of Fig. &)] we observe a decrease Biwith U.
This indicates that the specific heat will be negative for en-
ergies slightly belowd.. The existence of such a negative
specific heat regime in proximity of the “declustering” tran-

@
05 sition for gravitational potential was predicted in 1971 by
®) Hertel and Thirrind 1]. These authors studied a simple clas-

sical cell model and noticed the nonequivalence of canonical

. . s and microcanonical ensembles in this region. These predic-

00 0 1 2 3 tions have been successively confirmed by numerical find-
U ings for short ranged nonsingular attractive poteriiZ8|.
Negative specific heat regimes are forbidden within the
FIG. 4. In (8 we plot the minimum value of the free energy Gipb's canonical ensemble, because physically unstable, and
fupgtlon F as a function ofg. In the coex!s.tlng.rangé has two  thus they are bridged by a constant temperature (timat in
minima which _take the same value at critical inverse temperaturg) - case iST,~0.54). This picture is similar to the Maxwell
Bc~1.84(see inset (b) Temperature as a function of the specific o,nq4ction for the van der Waals isotherms in the liquid-
energyU. The Fhe.oret'cal pr?d'cuons Opta'ned within the Cano.n'calvapor coexisting region. This prohibition does not hold in the
ensemble are indicated by lines. The circles correspond to microca- . . s - .
nonical numerical results. The inset is an enlargement of the tranr_nlcrocanonlcal ensemble an'd the physical Impllcatlon .Of this
sition region: the full curvesgrespectively dashedefer to the ab- IS fgndamental in astrop_hySICS where negative specific heat
solute (respectively relativeminimum of F(T). regimes have be_en StUdle.d for several decadis
Within the microcanonical context, the phenomenon of
negative specific heat can be understood following a heuris-
In order to obtain microcanonical results, standard motic argumenf{1]. As shown in Fig. 8) approaching the tran-
lecular dynamic§MD) simulations of mode(1) have been sition the values oM and P decay very fast. This suggests
performed within a NVE ensemblg5]. The equations of that a very limited increase d yields a significant reduc-
motion are integrated starting from their formulation in termstion of the number of LEP and thus a strong increase of the
of the single particle Hamiltoniah; (1), where the depen- potential energy. Total energy being conserved, this excess
dence of the dynamics of each particle from mean-field variof potential energy has to be compensated by a loss of ki-
ables is made explicit. This approach turns out to be quiteetic energy, as a result the system will become cddlgr
efficient from a computational point of view, because the From our numerical investigations it turns out that for any
CPU time increases only linearly witk (and not proportion- U the average thermodynamical quantiti@amely, T, M
ally to N2 as usual This allows us to perform simulations of andP) are independent from (for 100<N<10000), apart
the model(1) for high numbers of particleup to N=10% at the critical energy. Indeed, Bt=U,, a clear decrease of
and for quite long integration timéup to t=5x10’). As M is observed from a value 0.198 k=200 to 0.063 atN
integration scheme we have adopted a recently developed 10 000 indicating that the system is approaching the(&P
4th order simplectic algorithrf86]: with an integration time  similar behavior is observed fd?). This is confirmed from
step dt=0.3 relative energy fluctuationdAU/U remains the fact that also the temperature tends to the corresponding
smaller than 108 for any consideredN andU. Tests with a  HP value T=U—3/2) for increasingN: T varies from
much smaller time stefnamely,dt=0.05) have been per- 0.55 atN=200 to 0.51 alN=10000. This effect is probably
formed, revealing no appreciable changes in the thermodydue to the strong fluctuations in the single particle potential
namical and dynamical properties of the system. V; due to finiteN-effects, that become dramatic at the tran-
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sition. For smallN-values a clustered situation seems to be
favorite, while in the mean-field limit the HP is finally re-
covered. -10
IV. DYNAMICAL PROPERTIES &
A. Dynamical transition and transport properties %
Once examined the microcanonical thermodynamical re- = -60
sults, we now concentrate on the description of the transport
properties of(1). In the CP each particle of our system
moves in a single particle potentid]=V;(t) (8) that is simi-
lar to the egg-crate potentidgbee Fig. 1[18,24—27. The
study of single particle motion in egg-crate fixed potential —110_50 0 50 100 150
was originally motivated in the context of adatoms diffusion X()/2m)
over a rigid surfac§22]. For a single particle moving in such
fixed potential the self dynamics is known to be anomalously 200
diffusive when the particle is channeling, i.e., when its en-
ergy lies betweerV,, and Vg [18,24—-27. This anomalous 150 |
behavior is due to the competition of laminar and localized
phases. Indeed, channeling particles intermittently show an 100 |
almost ballistic motion along the channels of the potential E
interrupted by localized sequences, where the particles =< 50|
bounces back and forth on the maxima of the potential. 1
Usually anomalous diffusion has been studied in systems 0
with very few degrees of freedofi9,18. Only few attempts
have been made to considierbody dynamics withN>1 -50 |
[14,28,29. One of the reasons for this is that the theoretical 105 . ‘
analysis of dynamical properties of high dimensional Hamil- ~100 L .M s 1
tonian systems is particularly complicated and not fully un- 0.0 1.0 . 20 30
derstood. Moreover, accurate simulations of such systems for t/10

N>1 and over Io_ng t_lme Int(_arvals, hecessary t_o understand FIG. 5. Typical orbit of an initially IEP in thex,y) plane(a) for
the asymptotic diffusive regime, are quite difficult to per- U=1.00 andN=4000. In this representation, the 2D torus on

form. . . . . .. which the dynamics takes place is unfolded and represented as an
In this section we first focus on the numerical descriptionjxfinite plane constituted of an infinite number of juxtaposed el-

of the transport properties of E¢l) and we will try to give  ementary periodic cell of sizexd1. In the inset an enlargement of
some indications relative to the basic dynamical mechanismge trajectory in the indicated box is reported. (5 we plot the
governing single particle transport. To this aim, we considekorresponding time evolution of coordinatét) and the enlarge-
the time dependence of the mean square displacememient corresponding to the sequence in the inseg)of
(MSQD), that usually reads as
(r2(1)) =t (19 constant in time. Therefore a partic_le initially of type IEP can
' become a LEP or a HEP, giving rise to a much more com-
plicated dynamical behavior, that cannot be simply described
where the averagé) is performed over different time ori- in terms of the localization time distribution. However, if one
gins and over all the particles of the system. The transport isonsiders an initially IEP and follows its trajectory for some
said to be anomalous when# 1: namely, it is subdiffuse if time it displays features quite similar to the so-calledne
0<a<1, superdiffusive if Ka<2 and ballistic fora=2  walks[19] (see Fig. . These kinds of trajectories were usu-
[18,19,23. The usual Einstein diffusion law corresponds toally identified when anomalous diffusion occurs. Therefore,
a=1 and in 2D can be written g3%(t))=4Dt, whereD is  we believe that also for modél) anomalous diffusion will
the self-diffusion coefficient. We consider in this papBr, be observable.
anda as the basic relevant observables for the description of As we already mentioned, finifd-effects play a determi-
transport. nant role in the dynamics. Due to self-consistency, they are
More refined diagnostics might be considered, for ex-esponsible for the fluctuations in time of the mean-field
ample the probability distribution of the time intervals within quantitiesM, , andP, ,. The potential experienced by each
which the trajectory of the particle remains trapped. The latparticle thus fluctuates in time and particles having an energy
ter was explicitly computed both for simple maps and for aclose toV have the possibility to be trapped in the potential
single particle moving in a fixed egg-crate potential land-well as well as to escape from it. This implies that the local-
scape and shown to exhibit a power-law decayization phenomena illustrated in Fig. 5 are not only due to
[18,19,24,37,3B responsible for the anomalous diffusion bounces of the particle on the maxima of the potential, but
[24,25. In the limit N— o we expect to find similar indica- also to trapping in the potential well itself due to separatrix
tions also for mode(1) once the IEP’s dynamics is consid- crossing.
ered. But for finiteN, the energy of each particle will not be ~ We have argued from simple considerations that diffusion
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FIG. 7. Coefficienta (triangles, time averaged depth of the
potential well Vy,—V,, (diamond$ and of the channel¥,,—V,
~05 | log,(Z) ] (circles of the single particle potential as a functiondf The full
line corresponds to the canonical prediction. The measurements of
a have been obtained witN=4000 (a part a few point withN
=10 and averaged over a total integration time rangingl.2
X 10P to t=2.4x 10° with a time stepdt=0.3.

It is reasonable to expect that this enhanced diffusive be-
havior with an energy dependent exponent is linked to the
fraction of channeling particles. The number of such par-
4 ticles is related to the depth of the potential welamely, to
log,,(t) Vy—Vy) and to the energy width of the channels,

_ . <0. 1 -
FIG. 6. Time dependence of the mean square displacement Vs. At very low energyU<0.3, all the particles are es

(r?(t)) in a log-log representation fdd =1.1 andN=4000. The Senti_a”y _trap_ped in the p(_)ten'FiaI well and T‘O”e is_channeling:

numerical results correspond to the solid line. The segments are tH& d!ffu3|on IS Qbserved in this case. For increasing energy a
estimated slopes dfrX(t)) whent<r andt>7. In (b) the loga-  fraction of particles(due to the decrease &fy—Vy,) will

rithm of the VACF is displayed as a function of Idgfor U escape from the well and some of them get enough energy to
=1.74; in such a case the estimatedsalue is 1.59. The reported move along the channels: anomalous diffusion is then evi-

slope is 2- @=0.41. denced. The increase in the value of the exporeistdue to

should be anomalous in CP. This is indeed the case, as co'hrle fact that also the channels widify — Vs grows withU

firmed from direct evaluation of the MSQD in a quite ex- (see Fig. 7. Ho_vveve_r, forU apprO'_’lehlnch the number of
tended energy interval. An example of this is reported in FigUntrapped particles increases noticeably, but now the channel
6(a) for U=1.1 andN=4000. The diffusion is anomalous width vanishes abruptly. This implies that a significant frac-
for times smaller than a crossover timebeyond which the tion of particles will move freelywith energy>V\). These
Einstein’s diffusion law is recovere@?(t))=4Dt. A simi-  mechanisms lead naturally to ballistic motion for-U.,

lar behavior for the MSQD was previously observed for awhere the potentiaV/; is now almost constant apart fluctua-
system ofN simplectic(globally and locally coupled maps tions of orderO(1/y/N).

[28,29, but with a subdiffusivei.e., with «<1) short time The fact that in the asymptotic limit{ ) normal dif-
dynam|c§. . . . fusion is recovered constitutes a typical signature of a noisy
The direct study of the velocity autocorrelation function dynamics[30,31,39. In order to avoid artifacts due to nu-
f\)/sAgg)inZt(r% ég_]f:g'rﬁeg]eor?(;&eéi tfet?]tgr\?zcsgfsnc;cgr_themerical noise in the implementation of the integration

: ' v scheme for the modg(l), we took care to maximize the

acterized by a long-time tail that decaystés®. This power- numerical precision. Therefore, the transition from anoma-
law decay is fully consistent with the corresponding one ob- P S P i o
served for the MSQU23]. For times longer thar, , the lous to asymptotic ordinary diffusion is attributed to a “de-

VACF decreases exponentially as usually expected foferministic source (_)f hoise,” that is intri_nsic of our system

Brownian motior{see Fig. €)]. It is therefore reasonable to and_due to finite size effects, as we will show in the next

expect thatroct, . section.
The energy dependence of thevalues is illustrated in

Fig. 7. It shows up clearly that the thermodynamical phase

transition from CP to HP is associated to a dynamical tran-

sition from superdiffusion(with 1.3<a<1.9 for 0.4<U In this section, we consider finithl effects in order to

< 2.0) to ballistic motionwith =2 forU=U_). Inthe CP  understand the asymptotic time dependence of the MSQD

regime, we observe an increase @ffrom 1.3+0.1 to 1.9  outlined in the previous section. As a matter of fact, for finite

+0.1, that is due to the modification of the shape of theN, due to the crossing from anomalous to normal diffusion

single particle potential. on long times, a standard diffusion coefficidhtcan be al-

B. Finite N effects
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FIG. 8. Crossover timer as a function ofN for U=1.48 N

(circles and U=2 (diamond$. The values ofr have been esti-

mated when the local logarithmic slope of the MSQD decreases FIG. 9. Logarithm of the diffusion coefficief as a function of
below a threshold valug=1.1. The solid line is the best linear fit |og(N) for U= 1.48(diamond$ andU = 2.00(circles. Straight lines

to the data. Its slope is 0.99.08 (respectively 0.96:0.06) for  correspond to linear fitting to the numerical data; the slopes are
U=1.48 (respectivelyU =2.00). 0.7+0.1 and 1.@0.1 forU=1.48 andU =2.00, respectively.

ways defined in the limit— . Therefore we will focus our ~These fluctuations become weaker for increadingnd thus
analysis on thl-dependence db and of the crossover time Naturally yield an increasing value of o
. The idea of a dynamical noise source due to fiMités
A deterministic anomalously diffusing dynamical systems@lSO confirmed by the analysis Bf that also turns out to be
submitted to weak environmental white noise shows a tran@n increasing function dfi. Some data are reported in Fig. 9
sition from anomalous diffusion to standard diffusion on suf-for U= 1.48 andU=2.00. In particular, considering systems
ficiently long time scale§30]. The crossover time for this ~ With 100sN<10000 we findD=N” with y=0.7+0.1 and
transition is explicitly computed30] and turns out to in- 1.0+0.1 forU=1.48 and 2.00, respectively. These numeri-
crease as an inverse power law of the noise amplitude, whefl evidences suggest that
short time behavior is superdiffusive. In this conteRt,is
shown to be algebraically dependentof31]. DoV ™7, (21)
Starting from this knowledge, we can understand the na-
ture of the mechanism that generates asymptotic standarshere) is the variance of the white noise applied on the
diffusion in model(1). In order to give an unambiguous defi- system. For mode(1), we haveVx1/N. Being 7 propor-
nition of 7, we consider the local slope of ¥r¢(t))) as a tional to N, from Eq. (20) we expect the following scaling
function of In(t). The crossover time is determined when law:
this slope becomes smaller than a threshold valueThe
diffusion coefficientD can be related te, assuming that y=a—1. (22)
«t, (as already mentiongdBy the definition of the diffusion
coefficient we havd « [{Z(t)dt. Assuming that, is suffi- ~ Assuming fora their asymptotic values, we obtain from the
ciently long, the following relationship is then straightfor- relation(22) the following y-values:=0.64 forU=1.48 and
wardly found =0.9 for U=2.00. In view of the finiteN limitations, we
consider these results as consistent with the numerical re-
Docret, (200 sults. A relation analogous to E(21) was previously found
in [40] for the eddy diffusivity associated to a three dimen-
) o ] ) o _sional noisy velocity field[41]. Moreover, the authors of
This resultis in agreement with thgore’ugal prgdlctlons anq iRef. [40] have shown that Eq(22) holds also for their
sucessfully confirmed by numerical simulations of noisymodel. Due to the complete different nature of the two sys-

maps[31]. tem, we expect that Eq$21) and (22) should have some
In Flg 8 we report théN dependence of for m= 1.1 and more genera| field of app“cab”r[y
for the two energied) =1.48 andJ=2.0. In both cases, we | the context of high dimensional Hamiltonian systems,

find that 7cN. Moreover, this dependence is not related toprevious results showed that the crossover time to normal
the chosen value for the threshqld We have indeed veri-  diffusion is inversely proportional to the diffusion coefficient
fied that foru=1.2 no qualitative difference could be de- when short time behavior is subdiffusij28,29. The cross-
tected. The interpretation of the dependence of the cross- over to standard diffusion is then interpreted as a conse-
over time is straightforward if we consider finiteeffects as  quence of the destruction of the self-similar structure of the
a source of noise in our model and with a typical amplitudestability islands in phase space. We believe that the
of order 1A/N. This last assumption is justified by the fact asymptotic normal diffusive behavior that we observe has
that the microscopic dynamics of the particles generate stahe same origin as ifi28]. But let us discuss more in detail
chastic fluctuationsO(1/y/N) in the values ofM and P.  the dynamical mechanisms that are present in our case.
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FIG. 10. Typical orbits of HEP, IEP, and LERrst row) together with the time dependence of coordindtg (second rowand the time

dependent energy; (third row) of each orbit. The first column refers to HEP, the second to IEP and the third to LEP. Note the difference

of scale in graphs of the first and second liNe= 4000 andJ = 1.00 andt<<30000. In figure IER), the straight line is the average energy
(Vs)~3.694 of the separatrix and the dashed one the average ep\éygy=3.958 of the maximal value of the potential.

We find a dependence of the-values onN that is not
negligible at least foN<3000. ForN>3000 however, a
saturation to asymptotic values is finally achievesd clearly

shown in Fig. 11

tends to trap the trajectories of IEP into the potential well.
To better illustrate the different dynamical behaviors oc-
curing in the present system, let us focus on the dynamics of

three typical particles, namely an initially HEP, IEP and
For finite N, due to the self-consistent character of modelLEP. We register for each of them the time evolution@f

(1), the single particle potential fluctuates in time with typi- their orbit in the &,y) plane,(b) their coordinatex(t) and(c)
cal amplitudeO(1/y/N). The values of the saddle points thus the single particle energdy: as defined in Eq8). The results

also fluctuate in time and naturally generate a time pulsatingre shown in Fig. 10 where the first column corresponds to
separatrix sweeping a phase space domain of widtiEP, the second to IEP and the third to LEP. For each par-
O(l/m). Hence, a particle with energy close Y, can ticle (a), (b) and(c) are plotted in the first, second and third
cross the separatrix and stochastically experience trappeadw, respectively. Visual inspection of HE# and IERa)

and channeling motions. We showed that transport is anomahows a quiet similar behavior and an enlargement of these
lous in CP and relies on the channeling particles that exhibitrajectories would yield a picture similar to the one already
localized motion when they bounce back and forth on thereported in the inset of Fig.(8. However, Fig. 10-IEm)
maxima of the potential. But, for finit&l, the pulsations of indicates that initially IEP experiences long time localized
the separatrix induce a second localization mechanism, th&equences that are not present for the HEP. Figure 1GIEP
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207 ‘ ‘ any particle with initial energy smaller that ®5<1.85.

o Which for U=1.00 represent approximately 75% of all the

sl . ] particles.

’ ’," The above observations confirm the fact that anomalous

4 diffusion is only due to the small fraction of particles that

________ S e evolve inside the channels of the potential. The trapped par-
o ticles, indeed, due to their extremely slow motion, contribute

g‘/" negligibly to the average MSQD. But the slow drift of the

4

»

1.6 1

14 ¢ oU~=148 . clustered particles, corresponding to a drift of the potential

seen by a single patrticle, inhibits flights on very long times.

This is because a channeling particle will not have a free

0 5000 10000 horizon in front of itself at any time, as it happens for a
N particle moving in a fixed potential frame.

The origin of the collective drifting motion of the clus-

and U =2.00 (circles. Dashed lines correspond to exponential fit- tered particles can be understood in the following way. let us

ting. The data have been obtained for a total integration time assume that at time=0 all the particles are trapped in the
—12x10F potential well, that the total momentum is zero and that at a

later timet>0 one particle escapes from the cluster. This

particle will carry out of the cluster a nonvanishing average
showing the time dependence of the energy of IEP, clearlynomentump, but as the total momentum should be con-
indicates that in the long lived localized regime correspondserved, the cluster will then start to move with an average
ing to te[10000,17000, the particle is trapped since its momentum—p/(N—1). Therefore, in the mean-field limit
energyh; goes below the average energy of the separatrithis effect will disappear and consequently we will observe
(V) (indicated in this figure by a full line anomalous diffusion at any tim{d2].

The localization within the potential well, due to separa- The two mechanisms outlined above, will have a cumula-
trix crossing, interrupts the sequence of correlated flights antive effect on the phase space topology of our system. Due to
localizations along the channels, and naturally inhibits superthe analogy with the egg-crate potential, in the mean-field
diffusion. This inhibiting effect of separatrix crossing is due limit the phase space of our model will exhibit a hierarchy of
to finite N and its consequences on the numerical value of th&ested self-similar stability island48,24—27. The monoto-
exponenty is illustrated in Fig. 11 for two values af. For ~ Nous increase of the value of with N reported in Fig. 11
givenU, this figure shows an increase of the order of 10% inlNtuitively suggests a similar continuous picture when con-
« when raisingN from 10 to 10". The exponenia then sidering the modlﬂ_catlons occurring in the phgse space to-
saturates to an almost constant value indicating that the eF—O.IOQy under continuous variation @l. In particular, for :
fect of trapping and untrapping by the fluctuating separatri inite N we expect that the_ phase space structures as;omated

bpIng 2 pping by the. g sep %o the smallest islands disappear up to a typical size that
decreases and finally becomes negligible for growihdn : . R
decreases for growindyl [43]. Being the self-similarity no
other words, a$\ grows, the phase space volume swept bymore complete in phase space, normal diffusion should be

the pulsating separatrix shrinks and finally vanishes in thgg qyered beyond a crossover time that grows for increasing
mean-field limitN—o. As a final remark, we should also

notice that the channeling particles can be “decorrelated”

not only by the trapping mechanism but also by an escaping

mechanism to higher energié®r h;>Vy,). But from nu- V. LYAPUNOV ANALYSIS

merical evidence we can conclude that this other mechanism In order to complete the description of modd)), we

is less relevant, at least on the time scale of our simulationsy, oigate in this section a fundamental indicator to charac-
_ Finite N-effects are responsible, besides for the fluctUayerize the dynamics of Hamiltonian models: the maximal
tions of the single particle potential, also for a second meChaLyapunov exponenk. Our analysis relies on numerical es-
hism generating “dynamical noise.” In order to explain it timation of \, performed considering the evolution in the
more in detail let us consider the LEP particle dynamics: aangent space of the model and applying a standard tech-
typical LEP-orbit is reported in Fig. 10. One observes essenjque introduced in Ref44].

tially two main aspects of its dynamicéi) the extremely Our model is integrable in the limit of low and high en-
slow motion of LEP with respect to IEP and HEEX. the ergy, therefore. —0 for U—0 andU— . In between these
scale$, (i) a drifting motion of LEP that resembles a two extrema we expect that a finite Lyapunov exponent will
Brownian motion. During all the simulation timet ( be observed similarly to what was recently found for 1D
=30000) the corresponding energy, plotted in Fig. 10-“self-gravitating” toy models[45—-47. Our data are re-
LEP(c), remains close to the average value of the potentiaported in Fig. 12 for three different types of initial condi-
minimum (V,)~0.654. This indicates that the particle re- tions: (A) the particles are initially clustered and the velocity
mains trapped during the entire simulation. Being for  distribution is Maxwellian;(B) the velocity distribution is
=1.0 the crossover time 18 7<10°, the previous result again Maxwellian but with a thermal velocity coinciding
suggests that such a trapped particle will eventually escapeith its canonical prediction and the particles are spatially
from the well on time scales much longer thanWe more-  organized in a single cluster in such a way that alsoMhe
over verified that this observation remains true for almosiand P-values coincide with their canonical predictiof€)

1.2

FIG. 11. Exponent as a function oN for U= 1.48(diamond$
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! tial becomes constant. Thus in this limit the system is inte-
grable.
A A M AC In the low energy limit(for U<0.01) a power law in-
~05 A N % crease of the type)2is clearly observable for all the three
o types of initial conditions. The data are reported in the inset
A of Fig. 12. A similar behavior was found for a 1D mean-field
A model[46]. This indicates that for fully coupled Hamiltonian
A% systems this property holds in general, independently of the
space dimensionality. In particular, f&t#—0 the particles
are all clustered, therefore we expect that the scahng
«U2 should be related to a “collective” chaotic mecha-
nism. Work is in progress in order to derive a theoretical
0oL &R _ u 1 explanation of such behavior.
10 10 10 10 10 Let us now try to understand which are the mechanisms
U underlying the observed behaviorsof Once the energy
FIG. 12. Maximal Lyapunov exponent as a functionlfin a is fixed for all thg three consit_jered initial conditions, after a
log-linear plot, for three different types of initial conditiorfior ~ '€asonable transient, we obtain exactly the same value for the
details see the textThe dashed line indicates the critical energy average temperaturé and magnetizationé and P and a
Uc . In the inset, |og)() versus IOQU) is reported at low energy. A common Maxwellian distribution for the velocities. How-
scalingh U2 is evident in the low energy limit for all the three ever, at low energiesl{<0.8) the measured averagede-
initial conditions. All the reported data correspondd\te 200 and ~ pend heavily on the initial conditions. This clearly indicates
to integration times X 10°<t<9x 1C°. the coexistence of several equivalent state, that can be con-
sidered as equilibrated within the examined time interval.
the particles are initially clustered with a water-bag velocityUsually we have averaged the maximal Lyapunov over a
distribution. time 1 000008:t<9000000 after an equilibration time
The initial condition (C) is the one commonly used ranging fromt=500 000 tat=20 000 00Qthis last value has
through the present paper, in particular for the study of transbeen used in particular for extremely low energig3bvi-
port in the system. As can be seen fom Fig. 2yrows for  ously, also if the considered time scales are considerably
increasingU up to a maximum value and then decreaseslong we cannot exclude that these states are metastable. It
Such maximuniat least forN=200) is located at an energy should be noticed that this kind of behavior is unexpected in
U=1.3—-1.4<U,. For U>U_, we observe a power law N-body Hamiltonian systems, because it is commonly be-
decrease ok with N. In particular, forU=23.0 we found a lieved that for sufficiently large values &f Arnold diffusion
power law exponent-0.31 (see Fig. 1Bin good agreement takes place and each orbit is allowed to visit the complete
with recent theoretical results obtained via a random matriphase space. But our data instead indicate that some “bar-
ces approach in Reff46] and with a Riemannian geometrical rier” in the phase space still survive even fdr=200. The
techniqug/47]. In both of these studies an exponent 1/3 haorigin of this lack of ergodicity is related to the long range
been found considering a model similar ) in 1D [10].  nature of the forces that induces a persistent memory of the
Moreover, also in true one dimensional gravitational modelsnitial conditions, as previously noticed by Prigogine and
\ vanishes as an inverse power lawhbas shown irf48,49  Severne[50] for gravitational plasmas. Recently, some nu-
(in those cases the exponent ranges from 1/5 to 1/4). In ounerical evidence of nonergodicity has been reported also for
model the vanishing of\ in the meanfield limit, foru 1D attractive potentials with power-law decf48,49. On
>U,, is connected to the fact that the single particle potenthe other hand, mass segregation and kinetic energy equipar-
tition has been recently demonstrated in a two component
10° , gravitational mode[51].
It is clear from Fig. 12 that, in the interv&) €[0,0.8],
A for initial conditions of type(B) A remains always smaller
than the corresponding exponents obtained with initial con-
ditions(A) and(C). The maximal differences are observed in
the energy range 02U < 0.8, where particles begin to es-
\ cape from the clustdthis for initial conditions(A) and(C)].
] ] Above U=0.9 the same Lyapunov is obtained for all types
of initial conditions. A typical feature of the initial condi-
tions (B), for U<0.8 is that all the particles are trapped in
the potential well. Instead when one or more particles escape
from the cluster y>0.9) also with this initial condition the
usual\ is obtained. We believe that two chaotic mechanisms
107 5 5 4 are present in the system: one felt from the particles moving
10 IIO\I 10 in the minimum of the potential and one from particles vis-
iting a region near to the separatrix. This second mechanism
FIG. 13. logh) versus logkl) for U=3.0>U,. The straight line  is known and is related to a chaotic belt present around the
is a linear fit to the data with slope 0.31. separatri52].
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3 4 3 6 FIG. 15. The maximal Lyapunov exponent averaged over short
v10 times ¢=300) is reported for an initial condition of tyd€) (solid
FIG. 14. Time evolution of the maximal Lyapunov exponent, of /i) together with the corresponding running averdgeg-dashed
the magnetizatioM and of the kinetic energi are reported for an  in€). The lower dot-dashed line corresponds to the running average
initial condition of type(B) for U=0.87 andN=200. ofo)\sfor 313 |n2|t(|)521)l condition(B). The energy for both cases i$
=0.5 andN=200.

The first one should be due to the temporal erratic motion ] )
of the minimum of the potential well. In order to clearly Hamiltonian system. Our main result is the occurrence of a
identify such mechanisms we have followed the trajectory ofhermodynamical phase transition associated to a dynamical
a system initially prepared with conditidi®) for an energy transition from anomalous to ballistic transport.
U=0.87 andN=200. On short time all the particles are Firstly, the statistical equilibrium description in the ca-
trapped and we measure an average vak®.13. At a later nonical ensemble has been reported. It revealed a first order
time (t~2 000 000) one particle escapes from the cluster an@hase transition bet'ween a collapsed phase, characterized by
\ shows a jump to a value that is almost doulsiee Fig. 13 the presence of a single cluster of particles, and an homoge-
In Fig. 14 the magnetizatioM and the kinetic energi{ are ~ Neous phase where particles are uniformly distributed. Close
also reported. When the particle escapes from the clddter to the transition, the presence of t\./vo.equivalent_minima in
shows a clear decrease as welkagThis last effect is due to  the Helmholtz free energy clearly indicate a regime where
the fact that the potential energyis minimal when all the ~the two phasesCP and HP coexist. Within the microca-
particles are trapped, therefore if one escapexreases and nonical ensemble, for energies closelip MD simulations:
due to energy conservatidhdecreases. This is the phenom- reveal a negative specmq heat regime. Referrlng.to previous
enon at the basis of the negative specific heat effect. Frofyork [1], we interpret this phenomenon as a signature of
the above arguments we can identify a strong chaos felt frorﬁorjequwalence between canonical and microcanonical sta-
the particles approaching the separatrix and a minimal chadistical ensembles. _ _
associated to orbits trapped in the minimum of the potential. Secondly, we have shown that in a broad interval of en-
The presence of these 2 chaotic mechanisms together wiif9ies 0.3<U<U, the transport in this system is anomalous.
the nonergodicity of the system explains the strong depeHﬂ the sense that the partlcles show a super—dﬁfuswe motion
dence of thex-values from the starting conditions. below a cross-over time and normal diffusion for longer

As a final point, we would like to notice that in the CP for times. Usually, normal diffusion is expected to occur in
low energy density the Lyapunov exponent averaged ovel-body systems due to the absence of long time correlations.
short times exhibits an intermittent behavior, when startingnstead in the present case the non-Markovian nature of the
conditions(A) or (C) are considered. In particular in Fig. 15 Process is clearly evidenced by the occurrence of/Lealks
the instantaneous is shown for condition of typeC) to- ~ and of power law decay for the VACF. In the CP, from
gether with its running averaged value and the correspondin@'mf_’le mean-flel_d conS|d_erat|ons one can conclude_ that each
averaged value for conditiofB). The intermittent behavior Particle evolves in a 2D time dependent egg-crate like poten-
can be explained as due to trapping and untrapping of thBa|; Channeling .part|cles are at the origin qf aqomalous dif-
IEP’s. As a matter of fact, for initial condition®) and en- fusion on short time scales. Since their motion is made up of
ergiesU<0.8 no diffusion at all is observetthe MSQD flights along the channels interrupted by localizations due to
saturates to a constant value for long tileghile for initial ~ Pouncing of the particles on the maxima of the potential. We
condition (C) [or (A)] a superdiffusive motion is observed have also shown that finittl effects generate a pulsating
for energies higher thad =0.3. This confirms that channel- Separatrix and give rise to a second localization mechanism
ing particles(i.e., IEP$ are affected by a stronger chaotic for the particle motion due to the trapping of the orbits in the

mechanism than the trapped orfeamely, the LEPs potential well. This phenomenon together with the slow drift
’ of the potential well is responsible for the suppression of

anomalous diffusion on long time scales.
These two finiteN-effects can be interpreted as a white
In the present article we have analyzed the equilibriunnoise source affecting the single particle dynamics. As a mat-
and dynamical properties of a 20-body “self-gravitating”  ter of fact these effects become weaker for increadings

VI. CONCLUSIONS
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confirmed by the linear dependendence of the crossover time 1 N
on N. The asymptotic' dynamics of the model then depends  x;=— NZ [sin(x; —X;) +sin(x; — xj)cogy;—y;) ],
on the order the two limithl — <« andt—« are taken. If we =1

first take the limitN—c and thent—co diffusion remains (A1)
anomalous for all time. Ohterwise standard diffusion is re-
covered for sufficiently long time. . 10 i )
The Lyapunov analysis shows clearly that even For Yi:_NZ [sin(y; —y;) +sin(y; —yj)cosx; = x;)],
. . .. j=1
=200 the phase space is not fully accessible and the visited (A2)

portion of the phase space depends on the initial conditions.
I 15 e unexpectd o g dmension, HamIIoNaNunere th frst equation conesponds to €, The cont
exclude .that on Ionéer time scales the system will visit the ution to the force of the ter=1 Is zero. S0 we can sgfely
entire phase space. Moreover, two different chaotic mech fun the sum over al '_[he par_t|c|es_. When_ reexpressing the
. S T T . roduct of trigonometric functions in the right hand side of
nisms have been identified: a minimal chaos associated to t?%
clustered particles and a strong chaos affecting the IEP par-
ticles. Anomalously diffusing particles have therefore an in-

N
termittent chaotic behavior. . 1
Xj=— N;l

gs.(Al1),(A2) as a sum, one straightforwardly obtains

1

We believe that the properties displayed by the maiel sm(xi—xj)+§{sm(xi—xj+yi—yj)
are quite general for gravitational systems. It is also our
claim that the inclusion of higher order Fourier harmonics in .
the potential will not qualitatively affect the results here pre- +sin(xi =X —yi Ty,
sented. This is indeed confirmed by a recent study by Ab-
dalla and Reza Rahimi Tabgs3] for the 2D full logarithmic
Newtonian potentiaV.,. Also in that case a transition at
finite T from a clustered to a homogeneous phase is shown t
be present. This constitutes in our opinion an interesting b
sis for the generalization of the present results to models th
mimic more realistically the gravitational interactiofeg.,
systems with true Newtonian potential in B[%4]. N

Due to the strict analogy of the model here studied with - E

(A3)

and a similar equation foy; by changingx—y. Then, we
xpand the sine functions in order to separate the terms that
nave as argument theparticle coordinatesx(,y;) from
pose which depend on tligarticle coordinates. The motion
equation then rewrites

point vortices model for 2D turbulend®&2] we expect that Xi=" N’
anomalous diffusion should also be observable for such

models. Preliminary indicationg55] seem to confirm our 1 .

claim and ask for more accurate investigations in such direc- T 3 {SINXi+Yi)cosx;+yj) —cogx; +y;)sin(x; +y;)
tion.

sin(x;)cog X;j) —cog x;) sin(X;)

+sin(X; — y;) COg X; —Yj) — CO X; — Y;) SiN(X; —Yj) } |.
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APPENDIX A
=My(cog ¢5),siN( 7)), (A6)

In this appendix we present the reduction technique of the
N-body HamiltonianH (1) to the single particle self- \ \
consistent and nonautonomous Hamiltonrargiven in Eq. 1 1 .

(8). The starting point is the equation of motion of a particle P = (N;l cogxj+Yj), N,—Z‘l sin(x; +y;)
i. The time evolution of its coordinates;(y;) derived from
Eq. (1) is given by =Py(cog ¢1),sin(¢1)), (A7)




2760 ALESSANDRO TORCINI AND MICKAEL ANTONI PRE 59

N 1 N of the particles in the unit cell. In the limfl—o, f(X,y)
P,= Nz cogXj—Yj), NE sin(x;— ;) has the same symmetries thdm the homogenous phase. In
=1 =1 the collapsed phase, however, translation invariance is bro-
= P,(coS 1), SiN 1)), (A8) ken, but 2 periodicity remains, and we can always shift

andy in order to have the center of the cluster in the position
where the definition oM, ,P,, ¢, ,#, for z=1,2 is straight-  (0,0). Hence, beside then2 periodicity, we also have the
forward. When reexpressing E¢A4) in terms of these following symmetries:
mean-field quantities, one obtains the equation:

f(y.,x)=f(x,y), (B1)
;(i:_[Ml{Sin(Xi)Cos(d’l)_COS(Xi)Sin(Qsl)} F(=xy) = F(X.y), B2
+%{sin(xi+yi)cos{ 1) —cogX; +y;)sin( i)} f(x,—y)=f(xy). (B3)

. The average value of an observabBléx,y) writes
+72{Sin(xi—yi)cowz)—cosxi—yi)sirl(wz)} :

(A(x,y)}zfzf(x,y)A(x,y)dx dy, (B4)
(A9) S
Then summing up the terms inside the curly brackets, thigvhere S°=]—, ] x]— ] is the unit torus and where
equation finally rewrites: () stands for the average ensemble. When taking into ac-
count the symmetry rules fdi(x,y), the following equalities
. ] P, . can be easily established:
Xi= = My Sin(Xi— ¢1) + —=sin(x+yi— ¢1)
P, <COS(X)>=f2f(x,y)cos(x)dx dy
+ 5 sin(Xi—yi— l/’z)}- (A10) S

Similarly, changingx<—y in Eq. (A4), yields the following - Jszf(x,y)cos(y)dx dy=(cosy)), (B

equation fory; :

(sin(x))= sz(x,y)sin(x)dx dy

. P
Yi= | Masinly;— o) + = sin(y; +x— )

- - | tocysiny)ax dy=(siny))=o. (86)
_?Sm(xi_)’i_‘/fz)}- (Al11)

Since functionf(x,y)sin(x) and f(x,y)sinfy) are antisym-
Note the difference in the sign of the last term of the forcemetric on the unit torus, the average sines are always van-
when compared to EqA10). Equations(A10) and (A1l)  ishing. Using the same arguments, one can also show that
can easily be shown to derive from the following single-

particle Hamiltoniar{analogous to Eq8)]: (cogx+Yy))= sz(x,y)cos(x)co_d(y)dx dy=(cogx—y)),

2 2
P.i T Py,i B7
=2 43— My costx; — dby) — M CogY,— 62) (87
P, P, <sin(><+y)>=f2f(x,y)sin(X)cos(y)dx dy
— 5 COSXiTYi— i) = 5 COSXi—Yi— ¢2) |, (Al2) s
= (sin(x—y))=0. (B8)
where (,;,py,;) are the canonical conjugated momenta of
(x;,y;) and where the constant 3 ensures the energy of parthus we can conclude that in the linht— o
ticle i to be zero in the fundamental state.
M1=(cogx))=M=(cody))=M,, (B9)

APPENDIX B
P.i=(cogx=xy))=P=(cogy=x))=P, (B10)

In this appendix we present the computation of the joint
characteristic functior{15) of the mean-field variables and by definition of M and P. Hence, based on symmetry argu-
the evaluation of their first momenta. ments we have shown, without loss of generality, that in the

In order to simplify the calculations, it is useful to first largeN limit we can always set one component of the mean-
focus on the symmetries of Hamiltoniah) and in particular  field vectors to zero and that
of the potentialV. The latter is symmetric under the trans-
formationsx—y, x— —x andy— —y and invariant under M;=M=(M,0)=M, and P,=P=(P,0)=P,
traslation.V reflects the symmetry of the distributidiix,y) (B11)
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by definition of vectoraVl and P. These equalities indicate the minimum of the functionG, reached for (,,,up)

that, in the ||m|tN—>°C, two scalargvl andP are sufficient to = (UM ,UP)_ Once performed the resca"ng in ECB]_5)
enerate the four mean-field vectors. For the calculation of o . ;

'?he first momenta of the mean-fields vectdisand P it is PINU;—U,, for z=M,P, yields

thus sufficient to consider the momenta of their modwNus 4 w3 +ud

andP. The latter are the coefficient of the Taylor series of ¥ (aoy ,0p)=Zy  exg —N

the joint characteristic function

T(Uy ,Up, oy, Tp),

(B16)
\I,(O'M,O'p):<eXF((TMM+(TPP)>, (812) where
whereo, andop are two scalars that play the role of exter- (Ut Up 0y 2 0p)
nal applied fields and where we used the symmetries of Un:Up,Tw TP
model (1) to setM =(M,0) andP=(P,0). As we focus on N oM op —
the average of quantities that are independent of the mo- ZJZNd xd%y expN| M+ 1 P+2uyM
menta of the particles, the kinetic patf of the partition
function [see Eq.(9) in the tex{ plays no role for the esti-
mation of theW-value. Thus we have to compute +V2upP | |. (B17)

The calculation of the charateristic function now requires a
proper estimation of. In Eq. (B17) the final result does not
depend on whether we usg,;M, or oM, because of the
4 ﬂ(ZMZJr Pz)} (B13) symmetries. Similarly foopP where eitheiP, or P, can be

2 ' considered. We choseyM; andopP; in the following.
) ) ) ) However, as the integration runs oveandy, it is impor-
where the notatiors?N is straightforward, the following ex- tant here to reconsider E(B14). Up to now we used the last

W(oy,0xy) ZZQlJ'SZNdNXdNy ex;{ oyM +apP

pression for the potential energy has been used: equality appearing in this equation. Hence we would be
N 1 N tempted forM (resp.P) to use eitheM, (resp.P;) or M,
V=— — M§+ M§+ _(pi+ pg) = —(2M?2+P?) (resp.P,). But, because of the integration oveandy, it is
2 2 2 (B14) worth to use here the expression Wfas a function of

My, M,, Py andP, and thus to write the productsyM

and where the constaniN32 has been omitted for simplicity. andupP as
Using the Hubbard-Stratonovich transformation, defined in _

N N
Eq. (11), yield — 1= u
g. (11), yields UMMZEUM(M1+M2):%(;1 COS(Xj)'f'jZl COSYj));

\v(oM,aP):zglf 2fZNoluMdupole dNy S(uy — Uy) (B18)
r2Js
_ — 1
X 8(up—up)exp —uZ —ud)exg oyM + opP UpP=Up (P1+P;)
+2BNuyM + V2BNUpP], (B15) o/ N N
=——| > cogx;+yj)+ > cogxi—y;) |.
whereuy, andup are two integration variables and whese ZN(j21 K5y 121 a yj))

stands for the unit circle. The product &Dirac functions is (B19)
due to the saddle point technique used for the estimation of

the partition functiorz,, [see Eq(12) and below. The inte- When using these expressions, the funcflooan be ex-
grand in Eq(B15) has to be considered in correspondence ofpressed as

N N
Un %) > cos(xj)+UMlzl cos{y,—)}

j=1

T(UM ,UP,O'M ,(Tp):f dNX dNy exr{
2N

ol

- N — N
u u
-4 2) >, codxj+y))+ —PZl cos{xj—yj)]

2 INA 22
=(D(UM !UPIO-M va-P))Nr (BZO)
whereD is
- — Om — Op Op | .
D(uM,up,aM,ap)=dex dyexp{ Uy -+ | 08X ex;{ uM+\/Epcos(x)Jchos(x))cos(y)—Wsm(x)sm(y)}.

(B21)
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After integration ovely one gets

R — — OMm
D(uM,up,ox,oxy)=2wJdeex;{ UM+W cogx)
X1 \/(UMJr\/ﬁpcos(x))erZ(UMJr\/ﬁpcos(x))%cos(x)ﬂLO(N2) , (B22)

wherel , is the zero-th order modified Bessel function. Faf,(,op) = (0,0) we retrieve the maximum of functith(UM ,Up)
given in Eq.(13) in the text.
Starting from Eq.(B15) and after some elementary algebra, one finds the expression of the characteristic function:

D(UM ,Up yOMm ,O'p) N
\I,(O'M,(Tp): — — . (823)
R(um ,Up)
By definition of ¥ the momenta of the mean fields are given by
ov A (B24)
(90'M (0,0 aa'p (0,0
From these one finally obtains Eq4.6) and (17).
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