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Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations
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We consider [y flights subject to external force fields. This anomalous transport process is described by
two approaches, a Langevin equation withvizenoise and the corresponding generalized Fokker-Planck
equation containing a fractional derivative in space. The cases of free flights, constant force, and linear
Hookean force are analyzed in detail, and we corroborate our findings with results from numerical simulations.
We discuss the non-Gibbsian character of the stationary solution for the case of the Hookean force, i.e., the
deviation from Boltzmann equilibrium for long times. The possible connection to Tsatji$tatistics is
studied.[S1063-651%99)09903-1
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[. INTRODUCTION equationg 19,20, generalized Langevin and Fokker-Planck

equations(FPES [21-25, and generalized thermostatistics

In recent years there has been growing interest in anom#26,27]. Common to all these approaches is the violation of
lous diffusion in various fields of physics and related sci-the central limit theorem of probability theof28,29, and

ences. In one dimension anomalous diffusion is charactethis is achieved either by correlations or by long-tailed sta-

ized by a mean square displacement of the form tistics. Levy statisticg[28,29 is an example of the latter, and
has been used extensively to model both enhanced and dis-
((Ax)?)=2Dt?, (1)  persive diffusior[3,18,30. The two most fundamental prop-

erties of the Ley distributions are the stability under addi-
deviating from the linear dependence on time found fortion, following from the generalized central limit theorem
Brownian motion[1-3]. The generalized diffusion constant valid for Levy distributions, and the asymptotic power-law
has the dimensiofiD]=cn? sec ”. decay. These features are responsible for the anomalous
Subdiffusive transport (€ y<<1) is encountered in a di- character of the diffusion processes we have in mind.
versity of systems, including the charge carrier transport in A fractional Fokker-Planck equatiofFFPE describing
amorphous semiconductdr, 5], NMR diffusometry on per- anomalous transport close to thermal equilibrium was pre-
colation structuref6], and the motion of a bead in a polymer sented recently25]. Since it describes subdiffusion in the
network [7]. On fractal structures in general, subdiffusion force-free case, it involves a strong, i.e., slowly decaying,
prevails due to the occurrence of holes of all length scalesnemory. In the present paper, we focus on FFPEs which are
[2]. Examples of enhanced diffusion/t 1) include tracer connected with Ley flights, and are based on the following
particles in vortex arrays in a rotating floM@], layered ve- Langevin equation for the coordinakét) [21,22:
locity fields[9], and Richardson diffusiofiL0].
Levy flights are used to model a variety of processes such d F(x)
as bulk mediated surface diffusidal] and applications in at (V=m0 )
porous glasses and eye len§&g], transport in micelle sys-
tems or heterogeneous rodkk3], special problems in reac- Here,mis the mass of the diffusing particle, anddenotes a
tion dynamics[14], single molecule spectroscop$5], and friction coefficient.F(x) is the external force field. For sim-
even the flight of an albatro$46). plicity we shall work in one dimension, with obvious modi-
Among the different frameworks for describing anoma-fications in the general case. The noigd) is the source of
lous diffusion are fractional Brownian motidd7], the con-  the anomalous behavior. We assum(g) to be uncorrelated
tinuous time random walk scherfw, 18], fractional diffusion  at different times, and to obey g statistic§ 31]. In Fourier
space we thus define the characteristic funcfigk) of the
noise variable
:Electronic address: sune@ifa.au.dk
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where 0<u<2. The probability density functiofPDF
p(n) has an asymptotic power-law behavior according to
p(7)~|n| "1 * [28,29,32. Here and in the following, we
denote the Fourier transform of a function by using the ex-
plicit dependence on the wave numlberand analogously
for the Laplace transform of adependent function. For the
special caseu=2 in Eq. (3), i.e., for a Gaussian noise, we
are led back to the Brownian case. In this cag® i8 the
variance of the PDF, but even in the general case the param-
eterD characterizes the width of the PDF in some sense.
The Langevin equation, E€R), is a stochastic differential
equation. Often it is more convenient to work with the de-
terministic equation for the distribution function, the FPE
[33,34]. For the power-law noisey(t) defined through Eq.
(3), we are led to the following FFPR21,22:

FIG. 1. Typical Lay flight for the Levy index u=1.4. The
clustering is obvious. Each cluster is statistically self-similar to the
unmagnified picture. The fractal dimension of the flightdis= u

9 g (F(X)W(x,t) [3.21.
EW(X,I)— T ax —’}/m

+DVAW(x,t). (4

W(k,t)=ePtK* ®)
Here, D denotes the generalized diffusion coefficient with _ o -
the dimensionD]=cm* sec’ . The Riesz fractional de- demanding the sharp initial conditior{0)=0, correspond-
rivative in Eq. (4) is defined through its Fourier transform ing to W(x,0)=(x) or W(k,0)=1. Comparing to Eq(3)

(35,36 we recognize the characteristic function of thevy elistri-
bution, and we thus find in real space the stable lgw
di
vre- [ Sk ®) X
(2m) W(x,t)=(Dt) " ¥kL, Y
in d dimensions. Note that in the FFPE E4) the first order
differential operator acting upon the force term is not af- T Hi x| [(1,1u),(1,1/2)
fected by the introduction of the hg distribution Eq.(3), T X2 (DO¥# [ (1,),(1,1/2)

see Ref[37] where a unifying derivation of FFPEs from a
generalized master equation is discussed.

In the following we will consider the FFPE E) for the
three cases of the free flight=0, the constant forcé& (x)
=F,, and the Hookean fordé(x) = —\X, comparing to the
Brownian case as we go along. We will discuss the differ
ences from the subdiffusive FFPE of REI5], where a frac-
tional operator in time is encountered and the spatial part of
the standard FPE remains unchanged, as well as the possible W(X,t)~ A (10)
connection to Tsallis'yy statistics. Numerical simulations |x|1H#
corroborate our theoretical findings. We then exemplify the
method of solution for the Langevin equation, E8), fora  for |x|*/[Dt]>1, and thus we encounter a divergence of the
linear force with an additional drift term. Before drawing the mean square displacement at all timgs?(t))=. This is
conclusions, we give some remarks on the simulations. Somieatuitively clear due to the occurrence of arbitrarily long
additional calculations on the nature of the correlation funcjumps in the Ley flight, see Fig. 1.

In Eq. (9), we have expressed the \nedistribution exactly

in terms of Fox'sH functions[38,39. This result, Eq(9), is
expected, due to the stable law nature of the underlyingy Le
distribution. The asymptotic behavior of the propagator
"W(x,t) can be derived from Eq9) and reads

tions are presented in the Appendix. Mathematically, the divergence is evident from E&). by
] using the properties of the characteristic functigr”(t))
Il. FREE LE VY FLIGHT =i"d"W(k,t)/dK"| .

_ o In order to extract the scaling form implied by E®)
In this case we have to solve the anomalous diffusionyperationally, one could enclose the “walker” in an imagi-
equation nary growing box(see Sec. Vit

(‘7 mn
EW(X,t):DV'U'W(X,t) (6) (Xz(t)>|_~ fl‘ztll/ dXXZW(X,t)NtZI’u. (11)
L tYe

Fourier transforming Eq(6) and utilizing the definition of ] ) .
the fractional Riesz operator, E¢f), we have This has been implemented numerically, and, as can be seen

from Fig. 2, where we have a straight line on a log-log plot
d of (x2(t)), as a function oft, for a fixed u, the expected
5t Wik,t) = —D[k|*W(k1), (7)  power-law index 2& according to Eq(11) is found.
This scaling result{x?(t)), ~t?* is not to be confused
with the solution with the mean square displacemént(t))= [dxx*W(Xx,t)
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<x2(t)>_(arb. urits)

= for the Levy flight, resulting from Eq.(10). However,
for u>1, the squared absolute mean

converges, and is proportional ¢g*(t)), from Eq.(11), see
the discussion in Ref40]. Figure 3 shows this proportion-
ality for u=1.5[41].

In Fig. 4, we graph the curve 2/as a function ofu for a
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FIG. 2. Function{x?(t)), from Eq. (11) versus time withu
=1 in a log-log plot. The slope of the straight line is 1.990
+0.028, which is to be compared to the expected value=22.
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FIG. 4. Graph of the slope 2/according to Eq(11) as a func-
tion of the Levy index u. Note the bend aju=2 marking the
transition to normal diffusion.

The properties of free lwy flights could also be obtained
directly from Eq.(2) employing the method of characteristic
functions. This view also allows us to extract the distribution
of speeds, which turns out to bé\nedistributed. From this
likewise follows the mean kinetic energy, and we have for a
finite massm of the walker in the casp <2

2
(12)

(3mu?)=oco. (14)

[II. CONSTANT FORCE: DRIFT AND ACCELERATION

variety of values for the Ly index ., and we obtain excel-

lent agreement with Eq11).

In the caseu=2 we see from Eq(8) and the results of
the simulations in Fig. 4 that the usual Brownian behavior is
recovered. Especially, we obtain the mean square displace- at

ment

<x(t)>, <[x[>2 (arb. units)

-8.4

For a constant forc&(x)=F,, the FFPE Eq(4) reads

J
—W(X +DVH#W(x,t).

d (FOW(x,t) 15

’t):_ﬁ ym

Returning to the Fourier domain, we recover the equation
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FIG. 3. Log-log plot of (x2(t)), versus time from Eq(11)
(lower curve, compared to the squared absolute mépt)|)?
from Eq. (12) (upper curvg for w=1.5. The fitted slopes are
1.363+0.013 and 1.36#0.035, respectively, which is in good
agreement with the theoretical value 4/3.

Ge()=20t. 43 i W(k,t ik Fo D|k “)W k,t 16
E(!)__I,y_m_|| (1)1 ()
+ oust which for the propagator, i.eW(k,t) with the initial condi-
+. D2 tion W(k,0)=1, yields
e Fit2 o
W(k,t)= iK— 4 DK 1
(k)=exp ~tlikom Ol an
P - This is the same Ly distribution as calculated for the free
LT e Lévy flight in Eq. (8), but at the translated coordinate
WD =Wo| x— -2 ¢ 18
| e (X,t)=Wpy| x ym't) (18
. . . . . . . HereW, refers to the distribution of the free ig flight. The
47 48 49 § 51 52 53 54 55 displacement of the coordinate is due to the balancing of the

TIME {arb. units}

friction against the imposed constant force, ipmv="F,
in the Galilei transformed systeri—x— Fyt/[ ym]. Clearly,
the analytical form for the solution inspace is still given by
Eq. (9), but now for the translated coordinate. Thusvye
flights in a constant force field described by E@5) are
similar to (anomalous diffusion in a constant velocity field
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[42,43. The reason we go directly to the steady state de- IV. LINEAR FORCE AND NON-GIBBSIAN
scribed byymv=F, is due to the omission of the inertial STATIONARY SOLUTION

term in the Langevin equation, E¢2). By including this : : . e
term it can be shown that we obtain a transient contribution, arlgcltgse (;C:r?ebgf troardlr:ee(ljr%nBz:\OVrrglr?r?orrlri]c?tloorj[etnht(iaaldgfnudg?k?us
Thus the diffusion in a force field is only equivalent to dif- P PP P

fusion in a constant velocity field for large times, according["i;&a“g:‘,H a&ofgu"m;r; dtlﬁ;[glbeUtEHbr\;vL:m (;s:rlirllaltjeti o\rllainsa?r?s
to the discussion in Ref42], see below. In fact the same o P Y q

situation is encountered even for the standard diffusion—Glbbs or Boltzmann distribution, also obtainable from maxi-

advection picturd42—44. For long waiting periods in the mizing the Gibbs entropy under the constraints of norm and

random walk picture for the subdiffusive model, the externalgsﬁjrgizecﬁpasnesrvgrtoir;{ Zh;};ﬁ;ga?crty é?eilt?&éﬁjm'l:lg? E‘; e
force can only act upon the walker, when it is released fro P P ' y

a trap, which leads to the sublinear dependefde))st” rT]‘Iights we shall see that a stationary solution does exist, how-

found in Ref.[42], wherey denotes the power-law index of ever, It poSsessam fini_tg \{ariar_wce. _This deyiation from the
the broad Wéiting’; time distribution. The Poissonian waitingG'bbS_Bo!tzmann equilibrium implies that .@ _fI|ghts do
time distribution, on the other hand which is typical for the not describe systems close to thermal equilibrium.

. ' . For the Hookean forcé (x) = — A X, corresponding to the
Levy flyer, leads to the same behavior, Eg1) below (for harmonic potential/(x) = 1Ax?, the FFPE Eq(4) becomes
1<u<2), as known from the Brownian case, due to the P 200 q
very short waiting periods in between jumps. The long-tailed a9l \
nature of the Ley flight, however, makes all higher mo- —W(x,t)=—(—xW(x,t)
ments infinite. Both effects lead to an accelerated time de- Jt x| ym
pendence of the motion. Including the inertial term in the
Langevin equation, Eq(2), changes the solution for short
times according to

+DVAW(X). (22

In Fourier space, the conjugate equation reads

Jd N 0
J— = — — k— — 12
G Wik == kS Wik DIK|“W(k,t), (23

1-e "

F t
x(t)=—0(t— +f dsp(s)(1—e "=,
my 0 which can be easily solved by making a transformation of

(19 variables(applying the method of characteristics

At times much greater than the characteristic timie?, we ymD|k|#
have W(k,t)=exr{—ﬂ—)\[1—e‘”"”7m] . (29
F t o . . o . .
x(t):—0t+f dsp(s), (20) Ih!s is still a Levy dlstrlbutlon)\,t/ (?nnly with a different
my 0 width” D—(ymD/u\)(1—e #*Y™ and the exact so-

lution in real space can again be obtained from &.by

which follows from the behavior of the Laplace transform of inserting the time-dependent width. For2 we recover the
the convolution integral in the second summand of @§): Brownian results, but in the general cage<2 a different
[7(uw)/u][1—u/(u+y)]~n(u)/u in the limit u<y. Thus situation arises. We always reach a stationary distribution
the effect of the inertial term is negligible for timésnuch
greater thany L. ymD|k|*

If the first moment exists, that is, fordlu<2, we find Wsi(k) =exp — Tan
from Eq.(17)

, (25

but with a diverging mean square. The exact stationary solu-
tion in x space can be given in terms of Fo¥sfunctions:

- lé{|x|“,u)\ (1,D),(1u/2)

Ws0=151H24 Dom | (1), (1el2)

(x(t))= m’ (21)

. (20

Only for =2 do we have a finite second moment, and the
mean square displacement becomésx(t) —(x(t))]%)
=2Dt, in agreement with Eqg13) and(18). leading to the asymptotic power-law behavidWg(x)

For the standard FPE as well as for the subdiffusive FFPE-D ym/(u\|x|1*#).
introduced in25], one finds the generalized Einstein relation A numerical result for a simulation of a’kg flight in a
[25,45,44 <x(t))FO=Fo(xz(t)>0/(2kBT), relating the first harmonic potential is shown in Fig. 5. The slope is in good
moment in the presence of the forEg to the second mo- agreement with the theoretical prediction.
ment in the absence of the force. For thery.dlight model We pause to mention that we could have derived the so-
defined in Eq(15), only in the Brownian limitw=2 is this  lution, Eq. (24), also by means of a separation ansatz, i.e.,
relation satisfied, provided we choose the proper amplitud@ssuming a particular solution of the forriV,(x,t)
of the noise, i.e., take it to be thermal nois®  =Ta()¢n(X), as was discussed in Ref25,42. Thus we
=kgT/[ym]. Generally since we have a diverging meanarrive at the ordinary differential equations
square displacement, the generalized Einstein relation does d
not hold, and we have a violation of the classical fluctuation- _
dissipation theorem. gt (V=" AaT(, 273
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25 ' ' ' ' ' ' ' same stable law as in E{R6). Also it can be seen that only

sof ° + ous . in the Brownian casg.=2 do we recover the Boltzmann

N " ] distribution W(x)=e M12keTl - Thus Boltzmann equilib-

ol i rium with a finite variance is not reached, in spite of the fact
R that the system is isolated and time independent in respect to
’ T h | the ensemble. This can Ipdysicallyunderstood as a conse-
§ sof ‘ 1 quence of the diverging mean kinetic energy of the freeylLe
;; ssf 1 flight. In this case we have
- d

st ] gt (O=—r O+ yn). 31

7.0 - =

sl If we take the noise to be white according to E8) with

" wn=2, we get from Eq(31) that in the stationary state
50 . . . . . .

L
-8.0 -7.5 -7.0 -6.5 -6.0 55 -5.0 -4.5 -4.0
y {arb. units) ,y

D
2\ _ _
, vY=Dye(Ey,) = —F. 32
FIG. 5. Histogram for the stationary solutioig of a Levy (v 7 {Ein) 2 32

flight in a harmonic potential versus|, as a plot of lW(y) ver- ) o

susy, wherey=In(x) denotes the natural logarithm of the position YWhen the external harmonic potential is turned otferagth

of the flyer, see Sec. VI. The data were produced for aylindex  Scale is introduced by the comparisoE)~(Epp

w=1.4. The fit indicated by the dashed line reveals a slope of = 3\{x%). This means tha¢x?)~mDy/\. In fact, solving

—1.408+0.108, which thus shows a good agreement with the theEq. (2) in the Brownian case with the harmonic potential, we

oretical prediction— . obtain exactly(x?)=mDy/\, in accordance with the equi-
partition theorem. Similar considerations remain valid for the
subdiffusive FFPE from Ref[42], which thus describes

+DV#en(x)=0, (27 anomalous systems close to thermal equilibrium. However,
in the Levy case we have

\ d| A

n@n(X) + & ,y_mX‘Pn(X)
with the eigenvalua,,. The complete solution is then given
by the sumW(x,t)=X,_,W,(x,t). For the time behavior (Ein) =2, (33
we find the usual exponentially decaying modds(t)

; . ; and therefore the length scale which appears when the po-
=e Mt and for the spatial eigenfunction we have 9 vl PP W P

tential is introduced is also diverging. Consequently the

guestion arises whether other statistics could predict the
equilibrium distribution in the present context. Here we con-

sider the recently proposed Tsaltientropy[26], according

to which the generalized entropy

on(K) = CylK[Mnymhe K i, (28)

The eigenvalues are given by,= (\/ym)un, and the com-
plete solution in wave number space is given by

W(K,t)=e™ Dymlk#/[uA] i(Dﬂ)n|k|Mneun>\t/[ym]_ 1—f p%(x,v)dxdv
' A=o NI\ uA Sq[p(X,v)]= (34)
qg—1
(29)

The sum converges to E(24), and can be transformed back is introduced along with the generalized constrai(gee

to real space by use of the Fox functions: 46])
W(X t)zi i DLm nl A/[ym] = un\t/[ym] f p(x,v)dxdv=1, (359

VA an | X
XH%Q{ ] (M 2] f p9(x,0) E(x,0)dxdo = U. (35b)
ADym T (L), (Lul2)

(30) Forg—1, S, recovers the usual Boltzmann entropy. Here
v is the velocity of the particle ané(x,v) is its energy.

In comparison to Risken’s result for the Fokker-Planck equaThus Eq.(35b) is a generalized constraint of conservation of
tion in a harmonic potential in the Brownian cdS8], also  energy along with the usual norm conservation, B53.
referred to as the Ornstein-Uhlenbeck process, the eigenvalfarying Eq.(34) subject to these constraints by introducing
ues in the solution, Eq(30), for =2 take on only even Lagrange multipliers, one obtains the stationary distribution
numbers. This is due to our consideration of the start in the
origin, so that all the uneven Hermite polynomials occurring
in the solution given in Ref(33] vanish:H,,,;(0)=0. We
note that the Fox functions in E30) can be considered as
generalized Hermite polynomials. Clearly, the stationary sointegrating over all velocities to obtain the distribution of
lution corresponding ta =0 obtained from Eq(30) is the  positions alone yields

B 1(1-q)
Pq(X,0)~ 1—(1—q)§[)\x2+mu2] . (36
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, 37)

(3—q)/(2—-2q) 10
pq(X)~(1—(l—q)§7\X2)

08
compare to Ref.[27]. Matching this expression to the

asymptotic behavior of the stationary solution of the FFPE, z
Eq. (25), we obtain g osf
g
4—-2q b
e (38 5ot

The relationship Eq(38) implies thatq can range in the / o

interval (1,2). Equatior38) is at variance with the relation 07 - Tmeol tevaker |
1=(3—0sed/(Arree— 1) found in the case of the free g
flight [27,30, where the allowed range igfees (5/3,3).
Note that theq-u relation does not involve the potential
strength\. Thus, the Tsallis index] makes a jump for a
given Levy index u, when the potential is switched off, ir- FIG. 6. The linear time affecting the free walk@fashed ling
respectively of how slowly, e.g., quasistatically, the limit compared to the effective time sensed by the random walker in the
—0 is performed. Moreover, away from the asymptotic re_hgrmonic potential, as a function of the laboratory time. For the
gime, the solution predicted by the entropy E8#) does not Levy flight in thg potential, .the .restoring Hookean fqrce §Iows
agree with the solution found in Eq25) in the stationary down the spreading of the diffusion, and eventually brings it to a

state. Thus we conclude that the Tsallis entropy is not thdalt
tial described by the generalized Fokker-Planck equation, y AN
1+4/1-—]. (42
my

0 1 1 1 1

TIME (arb. units)

appropriate framework for lwy flights in a harmonic poten-
Eq. (4). This form of a generalized entropy does not give rise =5
to the solution in Eq(25). Recently it has also been shown
that Tsallisq entropy is one out of an entire family of gen-
eralized entropies with similar propertigd7], so that it Considering only the case of large overdamping, i,
would have been rather surprising if this special case of en>4\/m, the two time scales separate into a fast and a slow
tropy had led to the complete description according to thedecaying modes;—y~! and 74— ym/\, with 7<7g. It
Lévy flight model. Finally, the FFPE Ed4) being linear is can be easily shown that neglecting the fast mode for times
not compatible with the nonextensive nature of Tsallis enlong compared tor; corresponds to neglecting the inertial
tropy [26]; compare with the nonlinear diffusion equation term in the original Langevin equation. Thus we have an
derived from Tsallis entropy in Ref48]. effective separation into three different regimes, and being in
By comparing the distribution of the particle in the har- the second withr;<t<<rg, the approach to the stationary
monic potentiaW(x,t) with that of the free flighWWg(x,t), state is not influenced by the omission of the inertial term.
we obtain the correspondence

V. SOLUTION OF THE LANGEVIN EQUATION
WX, 1) = Wo(X, teg), (39) Q

All of the above results could have been reached equally

where we define well directly from the Langevin equation, E@). To illus-
trate this, we solve this equation for aweflight in a con-
_ MY stant force field in addition to a linear force(x) = —AXx
te=—(1—e€ ). (40 . ) . .
M\ +F, corresponding, for instance, to a harmonic potential

and a superimposed gravity field. However, it could also
Thus the distribution of the particle position in a harmonic correspond to many harmonic oscillators placed at different
potential can be obtained from the distribution in the freepositions, i.e.,
Levy flight case at an earlier, “effective” timeg;. This

comparison illustrates the slowing down of the particle in the N N N
harmonic potential, where the restoring force is centered to- F(X)=2, —Ni(X—X)=— ( DUON X+ AX;
wards the origin. It characterizes in a precise way the ap- i=1 i=1 i=1

proach to stationarity, which is graphed in Fig. 6. Further-

more, this approach is seen to take longer the smallés;

the quickest relaxation occurs in the Brownian case?2. ] o
We conclude this section by some remarks about the ind he solution of Eq(2) is given by

ertial term encountered for the Hookean force. There are two

time scaleqdecay timepinvolved in this case:

= —\x+Fy. (43

t , F
x(t)ze*“’[m‘]j dt’eM ’[Vm]<77(t’)+—0 . (49
0 ym

4N
75541—\u___» (4) o o
2 mvy The distribution can then be found using the identity
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p(x,t)=(S8(x—x(1)))

dk ;
= f (2—77)<exp[|k[x— x(D)1}1)

dk ikx
ije p(k,t). (45

Using the solution Eq(44) to obtain, for the characteristic

function p(k,t),

p(k,t)= < exp( - ie’“’[ym]kftdt’e“"”m]
0

! FO
n(t )+7_mD>

we have after discretizing the integral

X

(463

p(k,t)=e KFo/n(1-e M0
t
><< 1T exq—ie-Mt-t'WmlAkn(t')]> (46b)
t'=0
or

p(k t):e—ikFO/)\(l—e’M/”m])

t

X [] (exd —ie M=VDmAKy(t')]).
t'=0

(460

Using the definition of ey noise from Eq.(3), we obtain

p(k t):e—ikFO/x(l—e*“’[le)

t
X H exp(— De"‘”‘(t’t’)/[’m]Aﬂ K|“).
t'=0

(460

Reintroducing the integrals and using the same renormaliz

tion DA#~1 D as in passing from Eq2) to Eq. (4), we
finally have

p(k t):e—ikFO/x(l—e‘“’Uml)

]]W

X exr{ —Dym[1—e #\Iym . (47
N

For A =0, we recover the constant force result, ELy). For
Fo=0 we get Eq(24). The free Ley flight result Wy(x,t)
according to Eq.(8) is likewise reproduced wher=F,

=0. In fact, by comparing to Eq8) we have the correspon-

dence

X— ?[1_e—)\t/[7m]]'

Wi ko (X, 1) =W

Y - Aym]
xyli-e 1]. (48)
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In the presence of the harmonic potential we can no longer
simply make a Galilean transformation in order to eliminate
the constant force, since the presence of the linear force
singles out a special reference frame.

VI. SOME REMARKS ON THE NUMERICAL
SIMULATIONS

Using a computer code written i@, we have simulated
Lévy flights in two dimensions in order to compare with the
theoretical predictions. The amplitude of the noise has been
defined by the asymptotics of the \nedistribution to

p(m)=pnln tH (49)

We have basically investigated three propertigs: histo-
grams of the distribution of position for the free walké2)
histograms of the walker in a harmonic potential, #Bidthe
dynamic exponent as defined via the imaginary box in Eq.
(12).

The imaginary box according to E¢L1) grows in time
like the characteristic width of the stable distribution,
(x2(t)) ~t?*, which isnotthe variance. It gives a measure,
that a finite portion of the probability is gathered within a
given interval, which we call the imaginary box. The values
of L, andL, have been chosen so ag19 ensure that we are
in the asymptotic regime, whel/(x,t)~t|x| ~1~#, and(2)
to produce good statistics for all values @f When fitting
the results to a straight line on a log-log plot, we have se-
lected a subset of equidistant points from the entire set of
data, in order not to favor the highregion over the lowt
region.

Concerning the histogram, several precautions have to be
taken when working with power-law statistics. First of all,
due to the occurrence of arbitrarily long steps, we have to
define the interval of sampling beforehand, since this is the
only way to improve the statistics when increasing the num-
ber of samples. We have chosen a minimum limit for the
evaluated data points to ensure the asymptotic range. The
maximum limit has been chosen as the maximum of the first,
say, 100out of a total of 10 00Psimulations. In this way we
obtain many data points throughout the entire region, where

Fhe asymptotic power-law expression is valid.

We close with a remark on the axes of the plots of the
histograms. To obtain equidistant points on the log-log plots,
we chose to graph the histograms of the distributipfyg of
y, wherey=Inx. If now p(x)~|x|"17#, we havep(y)
~e~ Y, Plotting the logarithm op(y) as a function ofy, we
find a straight line with slope- u, which is not to be con-
fused with the slope-1— u for the log-log plot ofp(x).

VII. CONCLUSIONS

We have investigated My flights under the influence of
external force fields. Especially for the cases of free flights, a
constant and a linear force, explicit solutions are derived and
the consequences shown. The solutions can be reduced to a
transformation of variables in the free flight result. We have
employed the approaches of FFPEs and a Langevin equation
with a power-law noise term. We have shown that the clas-
sical fluctuation-dissipation theorem is violated in the case of
constant force, and exhibited the non-Gibbsian nature of the
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“equilibrium” distribution in the harmonic potential. The ACKNOWLEDGMENTS
approach to stationarity has been characterized by an effec-
tive time, and the connection to Tsalligisstatistics has been
explored in some detail. For the constant force, due to th
divergence of the mean square displacement, the generalizg,
Einstein relation breaks down, so that the FFPE Egalso
violates linear response. Numerical simulations have be
found to agree well with the theoretical analysis.

The direct solution of the Langevin equation, E2), was
given, in agreement with the solutions for the FFPE ap
proach. The Langevin approach containgriori more infor-
mation than the corresponding FFPE, and might be more APPENDIX: CORRELATION FUNCTIONS
suitable for a physical interpretation of the underlying sys-
tem. For a given problem, however, it will be more conve- Here we examine two-point correlations like(t)x(t"))
nient to employ the FFPE approach and use the methods &1 the harmonic case, according to the tools developed in
characteristics or the separation of variables. Especially, th8€c. V. They are often sufficient for the description of the
extraction of momentgx") is straightforward using the System in applications of the underlyi§)FPE. Assuming
FFPE, by noting thatc(/dt)(x”)=fde(x,t)x“. Eirl)enmmal conditionx(0)=0, we introduce the Green func-
b-
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Levy flights are typical for systems off thermal equili
rium, where thermal equilibrium is to be understood in the
classical Boltzmann-Gibbs sense. For the systems analyzed X(t)ZJ dt'G(t,t") n(t'), (A1)
in Refs.[13-14, or similar situations, the remoteness from
thermal equilibrium is evident. For the bulk mediated surfaceand by comparison with Eq44) it is seen that
diffusion process in Ref§11,12, one should keep in mind .
that the Lery process emanates only as effectivemotion, G(t,t")=e MIME(t—t)O(t'). (A2)
resulting from a Brownian walker which is eventually ab-
sorbed on the surface, before it gets activated again.
The connections to Tsallis’g entropy still remain un-
clear. The discrepancy of the relationsgab the Lavy index
w in the free and harmonic cases shows that the concept of )
entropy cannot provide a full explanation of weflights. <e_'fdsp(s)x(s)>=<ex¥<—lj dSJ dS'A(S)G(S,S’)n(S’))>
Especially, the stationary solution found for the harmonic
potential is not an equilibrium solu_tion in the sense of Tsal- ZH <e‘iA”<5')f dsNS)G(S‘S,)>
lis's g entropy. To our understanding, only a nonlinear gen- ]
eralized FPE can lead to results compatible with this theory. s
We believe that our analysis provides further understand-
ing of anomalous diffusion processes, and will give rise to
further experimental investigations of for example,vie
type reaction dynamics subject to an electric field, or thewhere A(t) denotes ara priori arbitrary function, and we
tracer diffusion in rock structures under gravitation, or simi-used the definition Eq3). With the usual renormalization of
lar problems. the noiseDA#~1—D [21] we have

Due to the divergence of the moments of thesy @istribu-
tion in general, we have to work with characteristic functions
discussing correlations:

—[] e Dlardsasicess i (A3)

S

M/Z)

<e‘fds”‘5)x<s)>:exp<—Dfds’ fdsA(s)G(s,s’) H)zexp{—Dfds’ fdsf ds'G(s,s’)G(s",s')A(s)A(S")

o [=] =] ,u/2
=ex;{ —DJ euhs'llymlg gy f dsJ’ ds’e Ms+sIvmA(g) A(S") ) (A4)
0 s’ s’
In the last step we used the identity
G(s,s')G(s",s')=e Ms+s"=28"Iyml@(s— 5O (s"—5')O(S). (A5)

SettingA(s)=Ad(t—s), we find
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,u/Z)
t

u/Z) ZGXF{ — Df dse—MMt—S)/[vm]Aﬂ)
0

<e—iAx(t)>:eX’{ _ Df”ds,e;u\s//[ym]
0

=exr( - DJ’wds’e“"S/’[Vm]
0

ym(1— e—MM/[ym])
= - H
exr{ DA Ay ,

fdsf ds'e MsHIDMAZS(s—1) 5(s"—t)
s’ s’

e 2)\t/[ym]A20(t_ S/)

(A6)

which is equivalent to Eq24), as it should be, and therefore gin. At long times, initial conditions are not important, and
includes also the results for the Brownian case. One-pointence only a dependence on the time differeneet, (kept
correlation functiongmoments of the distribution if they  fixed and finitg is retained,

exist, can thus be obtained from E&6), so we will proceed p( _DA*ym

to the more interesting case of the two-point correlations. To(e=1AX(t) ~x(t2)]) ~ ex [(1—e #Mt—talllymlyu

this end, we take\(t) =A(S(t—t;) — 8(t—t,)) and insert it M
into Eq. (A4), and we find
+1— e MMt —tol/[ym] ) A8
(exp{—iIA[X(ty) —x(t2)]}) ] A8
ym(1—e~#Mz/lymly Writing x;,=X(t;) —X(t2), we have by the usual arguments
=exp( —DA* Ay a Levy distribution ofxy,:
Mot , YM(L = s t2rm) (e Mg e DIk, (A9)
—_ o~ MA(t —t)/[[ym]yu
X (1-er R TR Ay ) with

(A7) BM(tl t)=D m[l— e~ #M2/lyml (1 g=uA(ty—tp)/[yml ).
for t;>t,, andt; andt, interchanged in the other case when BN
t,>t,. This is essentially the characteristic function of the +1—e mM)yml], (A10)
stochastic variabl&(t;) —x(t5), so all two-point correlation
functions and the distribution itself can in principle be foundAs with the other Ley distributions, this stochastic variable
from Eq.(A7). However, it is seen that it is a kg distribu- IS characterized by a power-law tath &t, t,=0):
tion, so all higher moments diverge. Nevertheless, (B,
still gives some information about the correlation betweeny(x,, t)~ D—[(1 e rMlymlyuy 1 guitllyml)
the position of the walker at two different times. Whgn
>t, the characteristic function splits up into the product of X |xgg L H (A11)
the characteristic function of the two variables EA6), 12 '
which means thak(t;) and x(t,) are independent in this In the case ofu=2 all the preceding results reproduce the
limit. At intermediate times, i.e., when both andt, are  well-known Brownian relations for ordinary diffusion. One
small, the correlation depends on both. This is a memory o€ould proceed like this finding three-point correlations in an
the initial conditions, since both walkers start out at the ori-analogous manner.
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