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Kinetic Ising model in an oscillating field: Avrami theory for the hysteretic response
and finite-size scaling for the dynamic phase transition
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Hysteresis is studied for a two-dimensional, spin-1
2, nearest-neighbor, kinetic Ising ferromagnet in a sinu-

soidally oscillating field, using Monte Carlo simulations and analytical theory. Attention is focused on large
systems and moderately strong field amplitudes at a temperature belowTc . In this parameter regime, the
magnetization switches through random nucleation and subsequent growth ofmanydroplets of spins aligned
with the applied field. Using a time-dependent extension of the Kolmogorov-Johnson-Mehl-Avrami theory of
metastable decay, we analyze the statistical properties of the hysteresis-loop area and the correlation between
the magnetization and the field. This analysis enables us to accurately predict the results of extensive Monte
Carlo simulations. The average loop area exhibits an extremely slow approach to an asymptotic, logarithmic
dependence on the product of the amplitude and the field frequency. This may explain the inconsistent expo-
nent estimates reported in previous attempts to fit experimental and numerical data for the low-frequency
behavior of this quantity to a power law. At higher frequencies we observe a dynamic phase transition.
Applying standard finite-size scaling techniques from the theory of second-order equilibrium phase transitions
to this nonequilibriumtransition, we obtain estimates for the transition frequency and the critical exponents
~b/n'0.11,g/n'1.84, andn'1.1!. In addition to their significance for the interpretation of recent experiments
on switching in ferromagnetic and ferroelectric nanoparticles and thin films, our results provide evidence for
the relevance of universality and finite-size scaling to dynamic phase transitions in spatially extended nonsta-
tionary systems.@S1063-651X~99!08303-8#

PACS number~s!: 05.40.2a, 75.60.2d, 77.80.Dj, 64.60.Qb
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I. INTRODUCTION

The term hysteresis comes from the Greekhusterein
(yc sterév) which means ‘‘to be behind’’@1#. It describes
the lagging of an effect behind its cause, as when the m
netization of a body lags behind periodic changes in the
plied field. While the magnetization response of a ferrom
net in an oscillating field is probably the example mo
familiar to physicists and engineers@2–7#, hysteresis is a
quite common phenomenon. For instance, it is also see
ferroelectrics@8–15#, in which the polarization lags behind
time-varying electric field. Other examples of hysteresis
clude electrochemical adsorbate layers that are dri
through a phase transition by an oscillating electrode po
tial in a cyclic voltammetry experiment@16,17#, and liquid-
crystalline systems driven through a phase transition
pressure oscillations@18#. Recently, a new class of superco
ducting materials including DyNi2B2C @19# has shown hys-
teresis in the resistivity when subjected to an oscillat
magnetic field. Acoustic hysteresis in crystals@20# occurs
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when the ultrasonic absorption coefficient changes due
oscillations in the amplitude of an ultrasonic wave.

In recent years new experimental techniques, such
magnetic force microscopy~MFM! @21–25#, have been de-
veloped that permit measurements of the magnetization s
and switching behavior of particles as small as a few nano
eters. Ferromagnetic particles in this size range consist
single domain in equilibrium. Together with ultrathin film
they are of interest as potential materials for ultrahigh d
sity recording media. The dynamics of magnetization rev
sal in nanoscale systems has been modeled by kinetic I
systems subject to sudden field reversal@26–31#. These nu-
merical and analytical studies give results in qualitat
agreement with the experiments mentioned above. Re
experiments on ultrathin ferromagnetic Fe/Au~001! films
@32# and thinp(131) Fe films on W~110! @33# have con-
sidered the frequency dependence of hysteresis loop a
which were interpreted in terms of effective exponents c
sistent with those found for a continuous spin model@12,34–
36#. Similar experiments have been performed on ultrat
Co films on Cu~001!. A study of this system by Jiang, Yang
and Wang@37# reported exponents consistent with a mea
field treatment of the Ising model, whereas a recent study
Suenet al. @38# found very small effective exponents in th
low-frequency regime, apparently consistent with the th
retical results we report here.

The above discussion is far from an exhaustive accoun
hysteresis examples, but it does give an idea of the diver
of situations in which this nonlinear, nonequilibrium ph

an-
-
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nomenon is important. Systems that exhibit hysteresis h
in common a nonlinear, irreversible response which lags
hind the applied force. Numerous general mathematical th
ries have been formulated to model hysteretic behavior
variety of systems, including the Preisach model@6,39–41#
and systems of differential equations that display disconti
ous bifurcations@39,40,42#. Hysteresis in thermodynami
systems is often due to the presence of a first-order ph
transition, which is the source of strong nonlinearity in t
system. These details of the nonlinear response can, h
ever, be quite different in different systems and even in d
ferent parameter regimes for the same system. The de
must be carefully considered in order to accurately pre
such aspects of the hysteretic response as its dependen
the frequency, amplitude, and wave form of the oscillat
force. Here we present a study of hysteresis in a partic
model system which incorporates both spatial degrees
freedom and thermal fluctuations, and which has a first-or
equilibrium phase transition. The system response in the
rameter regime studied in this paper isself-averagingand
may be described by the Kolmogorov-Johnson-Mehl-Avra
~KJMA! theory of metastable decay@43–45#.

Specifically, we consider hysteresis in a spin-1
2 , nearest-

neighbor, kinetic Ising ferromagnet on a two-dimension
square lattice with periodic boundary conditions, which
subject to a sinusoidally oscillating field. For convenien
and because many of the experimental measurement
hysteresis involve magnetic systems, we use the custom
magnetic language in which the order parameter is the
mensionless magnetization per site,m(t)P@21,11#, and
the force is the magnetic fieldH(t). However, we expec
our results also to apply to hysteresis in other areas
science. For example, in dielectricsm(t) and H(t) can
be reinterpreted as polarization and electric field, in
sorption problems as coverageu(t)5@m(t)11#/2 @46# and
~electro!chemical potential or~osmotic! pressure, etc.

Below its critical temperature and in zero field, this mod
has two degenerate ordered phases corresponding to a
jority of the spins in the positive or negative direction.
weak applied field breaks the degeneracy, and the phase
the spins aligned~antialigned! with the field is stable~meta-
stable!. If the field varies periodically in time, the system
driven back and forth across a first-order phase transitio
H50, and the two phases alternate between being mom
tarily stable and metastable. As a result,m(t) lags behind
H(t), and hysteresis occurs. In the regime of large sys
size, moderately strong field, and temperature well belowTc
considered here, the system switches smoothly and alm
deterministically between the two magnetized phases.

The metastable phase in Ising models subject to a sud
field reversal fromH to 2H decays by different mecha
nisms, depending on the magnitude ofH, the system size
L, and the temperatureT. Two distinct regimes are separate
by a crossover field called the dynamic spinodal,HDSP

;(ln L)21/(d21), where d is the spatial dimensionality
@47,48#. Detailed discussions of these different decay mo
are found in Refs.@31,48,49#. At sufficiently low T that the
single-phase correlation lengths are microscopic, the dif
ent decay regimes can be distinguished by the interp
among four length scales: the lattice spacinga, the system
size L, the radius of a critical dropletRc}1/uHu, and the
ve
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average distance a supercritical droplet interface propag
before encountering another dropletR0}exp$J0(T)/@(d
11)uHud21#%. The physical significance ofJ0(T) is explained
in Sec. II. In this paper, we specifically consider decay in
multidroplet ~MD! regime @HDSP(T,L),uHu,HMFSP(T)
where Rc(HMFSP)'0.5]. In terms of the characteristi
lengths, the MD regime is defined by

a!Rc!R0!L. ~1.1!

Here the decay of the metastable phase proceeds by ran
homogeneous nucleation ofmany critical droplets of the
stable phase, which then grow and coalesce. The MD
gime is distinct from the strong-field regime,uHu
.HMFSP(T). It is also distinct from the single-droplet~SD!
regime@ uHu,HDSP(T,L)#, wherea!Rc!L!R0 . In the SD
regime, the decay of the metastable phase proceeds by
dom homogeneous nucleation of asingle critical droplet of
the stable phase. Hysteresis in that regime is describe
detail in Ref.@50#. The present study, as well as our previo
work @51,52#, shows that the response to an oscillating fie
is significantly different in the MD and SD regimes.

Theoretical and computational studies of hysteresis h
been performed for several models, using a variety of me
ods @53#. These include various studies of models with
single degree of freedom, equivalent to mean-field tre
ments of the Ising model@54–56#, Monte Carlo~MC! simu-
lations of the spin-12 Ising model@35,36,57–66#, and several
O(N) type models@12,34–36,67#. These studies were per
formed with variations in the details of the simulations a
in the model parameters. Most of them indicate that the
erage hysteresis-loop area appears to display power-law
pendences on the frequency and amplitude ofH(t). How-
ever, there is no universal agreement on the values of
exponents, either experimentally or theoretically. For
Ising model it has been pointed out that nucleation effe
would lead to an asymptotically logarithmic frequency d
pendence@11,29,35,68#. A mean-field model exhibits a dy
namic phase transition in which the mean period-avera
magnetization changes from a nonzero value to zero@55#.
Such a dynamic phase transition has been observed in
simulations of a kinetic Ising model as well@57–62,64–
66,69#. A fundamentally different example of criticality in a
hysteretic system is the zero-temperature, random-field Is
model, which exhibits critical behavior in the hysteresis lo
as a function of disorder@70#.

The work presented in this paper and in Refs.@50–52,69#
differs from most past theoretical and numerical studies
hysteresis in two important ways. First, mean-field mod
do not take into account thermal noise and spatial variati
in the order parameter, thus ignoring fluctuations which m
be important in real materials. Second, most previous inv
tigations of hysteresis in Ising models have considered
frequency and amplitude dependence of quantities suc
the loop area and the period-averaged magnetizationwithout
considering the manner in which the metastable phase
cays. In this paper, the long-time behavior of the hystere
response is analyzed by studying the power spectral dens
of the magnetization time series as well as the statist
properties of the period-averaged magnetizationQ, the loop
areaA, and the correlationB. These quantities are defined a
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Q5
v

2p R m~ t !dt, ~1.2!

A52 R m~H !dH, ~1.3!

B5
v

2p R m~ t !H~ t !dt, ~1.4!

where the initial timet0 of the period is defined such tha
H(t0)5H(t012p/v)50.

Due to the multidroplet decay mechanism, the aver
hysteresis-loop area exhibits an extremely slow crossove
a logarithmic decay with frequency and amplitude in t
asymptotic low-frequency limit@52#. This asymptotic behav
ior of the loop area in the MD regime is qualitatively simil
to that for the SD regime for two dimensions@50,52#. How-
ever, the calculation is somewhat more involved, and
quantitative behavior of the loop area is different for the t
regimes.

Beside our results on the low-frequency loop areas,
most significant finding is detailed evidence of finite-si
scaling at a dynamic phase transition~DPT! in the MD re-
gime. Here we provide a full account of these results, wh
we briefly reported in Ref.@69#. This transition can be intu
itively understood as a competition between two time sca
the period of the external field, 2p/v, and the average life
time of the metastable phase,^t(H)&, defined as the first-
passage time to a magnetization of zero following an inst
taneous field reversal fromH to 2H. If 2p/v!^t(H0)&
@H0 is the amplitude ofH(t)] the magnetization cannot fully
switch sign within a single period, anduQu.0. We shall
refer to this situation as the ordered dynamic phase
2p/v@^t(H0)& the magnetization follows the field, andQ
'0. This is the disordered dynamic phase. Between th
limits there is a critical frequency at whicĥuQu& appears to
become singular in the infinite-system limit. We emphas
that the DPT is a nonequilibrium phase transition, and t
the probability distribution of the system magnetizati
which characterizes the two phases never relaxes into a
tionary state. However, the ‘‘filtered’’ time series ofQ for
successive field periods is a stationary stochastic process
avoid confusion we establish the following terminology. B
the term ‘‘dynamic phase’’ we mean one of the qualitative
different system responses separated by the DPT. In con
the term ‘‘phase’’ by itself refers in the conventional way
a uniform thermodynamic phase.

The rest of this paper is organized as follows. Details
the model and a brief review of relevant aspects of
Avrami theory of metastable decay are given in Sec II. Tim
series data for the magnetization and the period-avera
magnetizationQ are discussed in Sec. III. In Sec. IV w
discuss the power spectral densities obtained from the ti
series data. In Sec. V we obtain an analytical result for
time-dependent system magnetization during a single pe
of the field, based on the droplet theory of nucleation an
time-dependent extension of the Avrami theory. Section
contains an analysis of the hysteresis-loop areaA and the
correlationB. This section includes MC data for the pro
ability distributions and averages ofA andB along with the-
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oretical predictions based on the results in Sec. V. In S
VII we consider the period-averaged magnetizationQ, which
is the order parameter for the dynamic phase transition.
tails of the finite-size scaling analysis for this transition a
given in this section as well. A summary, discussion, a
topics for future study are presented in Sec. VIII.

II. MODEL

The model used in this study is a kinetic, nearest-neigh
Ising ferromagnet on a hypercubic lattice with period
boundary conditions. The Hamiltonian is given by

H52J(̂
i j &

sisj2H~ t !(
i

si , ~2.1!

whereH(t)52H0 sin(vt), si561 is the state of thei th spin,
(^ i j & runs over all nearest-neighbor pairs, and( i runs
over all N5Ld lattice sites. The magnetization per site is

m~ t !5
1

Ld (
i 51

N

si~ t !. ~2.2!

The dynamic used is the Glauber@71# single-spin-flip
Monte Carlo algorithm with updates at randomly chos
sites. The time unit is one Monte Carlo step per sp
~MCSS!. The system is put in contact with a heat bath
temperatureT, and each attempted spin flip fromsi to 2si is
accepted with probability@72#

W~si→2si !5
exp~2bDEi !

11exp~2bDEi !
. ~2.3!

Here DEi is the change in the energy of the system th
would result if the spin flip were accepted, andb51/kBT
wherekB is Boltzmann’s constant. It has been shown in t
weak-coupling limit that the stochastic Glauber dynamic c
be derived from a quantum-mechanical Hamiltonian in co
tact with a thermal heat bath modeled as a collection
quasi-free Fermi fields in thermal equilibrium@73#.

The average number of droplets of the stable phase
are formed per unit time and volume is given by the fie
and temperature-dependent nucleation rate per unit volu

I „H~ t !,T…'B~T!uH~ t !uK expF2
J0~T!

uH~ t !ud21G . ~2.4!

The notation follows that of Ref.@26#, whereB(T) is a non-
universal temperature-dependent prefactor, andK andJ0(T)
are known from field theory@74,75#, MC simulations@48#
and numerical transfer-matrix calculations@76,77#; their val-
ues are listed in Table I. The quantityJ0(T) is the field-
independent part of the free-energy cost of a critical drop
divided bykBT. The field,H(t), is the only quantity through
which I „H(t),T… depends on time in this adiabatic approx
mation.

Several other quantities, whose values do not depend
the frequency of the field, are required as input for the t
oretical calculations in the following sections and are list
in Table I. They are determined through what we refer to
‘‘field-reversal simulations.’’ In these simulations the syste
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TABLE I. Parameters and constants used in this work. The values of the parametersH0 , L, andT have
been selected such that switching occurs via the multidroplet mechanism. The constantsJ0(T) and K are
calculated from droplet theory@74–77# for two-dimensional Ising systems. The constants^t& and r are
measured from field-reversal MC simulations with the Glauber dynamic~using the parameters listed in th
left column!. The constantsV(T) @77# and n(T) @79#, where the droplet interface velocity isv0

5n(T)uHu, have been measured in other work. The value forHDSP is taken from Fig. 11 of Ref.@80#. For
L590 and 128, the relative standard deviation isr 50.072 and 0.053, respectively. Except forHDSP, which
decreases slowly with increasingL, all other values are the same forL590 andL5128.

Parameters Constants~theory! Constants~simulation!

H0 0.3J J0(T) 0.506192J V2(T) 3.15255

L 64 K 3 ~exact! n(T) (0.46560.014)J21 MCSS21

T 0.8Tc ^t& 74.5977 MCSS

HDSP(L564) (0.1160.005)J

r (L564) 0.105
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initially has all spins up, i.e., positive. It is then subject
to a static field of magnitudeH0 with a sign opposite the
system magnetization. This instantaneous field quench
pares the system in a metastable state, and the decay o
metastable phase proceeds by the MD mechanism outl
in Sec. I.

In the MD parameter regime the average size of a crit
dropletRc and the average distance between dropletsR0 are
both much smaller than the system size. Therefore, m
droplets nucleate and grow to drive the system into the st
phase, resulting in an almost deterministic decay proc
This can be understood by imagining the system subdivi
into cells of linear sizeR0 , which each contain a singl
droplet. Each of these subsystems will appear to be in the
regime, and the time taken to nucleate a critical drople
stochastic with an exponential probability distribution. Ho
ever, as a consequence of the central limit theorem the p
ability density of the lifetime for the entire system asym
totically approaches a Gaussian as the system size incre
The decay process thus becomes increasingly determin
with a lifetime distribution whose variance decreases asL2d

with increasing system size@26#.
In addition to the ‘‘self-averaging’’ process describe

above, two other concepts are needed to understand the
decay process: the droplet interface velocity and the over
ping of growing supercritical droplets. Our detailed tre
ment of these effects is given in Sec. V, where the theory
MD decay in a static field is generalized to time-depend
fields. Accounting for all of these effects, an expression m
be obtained for the time-dependent magnetization of a
tem in a field-reversal experiment. In the KJMA approxim
tion @43–45#, it is assumed that the positions and sizes of
growing droplets are uncorrelated. In the simple fie
reversal case this leads to the well known ‘‘Avrami’s law

m~ t !52 exp@2F~ t !#21 ~2.5a!
e-
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52 expF2E
0

t

IVd~v0t8!ddt8G21 ~2.5b!

52 expF2
Vdv0

dI

d11
td11G21, ~2.5c!

wherev0 , the interface velocity for a growing droplet of th
stable phase, is assumed to be constant,Vd is a proportion-
ality constant such that the volumeV of a droplet of radiusR
is V5VdRd, and the other constants have been introdu
previously. The integralF(t) in Eq. ~2.5! is the ‘‘extended
volume’’ @45#, i.e., the total volume fraction of droplets o
the equilibrium phase at timet, uncorrectedfor overlaps.
The assumption that the positions and sizes of the drop
are uncorrelated leads directly to the exponential relation
m(t) @78#. Solving Eq.~2.5c! for the time at whichm50
gives the average lifetime in the MD regime,

^t&5F Vdv0
dI

ln 2~d11!
G21/~d11!

, ~2.6!

which, in contrast to the SD regime, is independent ofL. To
describe the hysteretic response in the MD regime, in S
V and VI we employ a time-dependent extension of th
theory, in whichI andv0 are both functions of time through
H(t).

III. TIME-SERIES DATA

All numerical simulations reported in this paper are p
formed ford52, T50.8Tc and one of three system sizesL
564, 90, and 128. A sinusoidal field is applied to the syst
with amplitude H050.3J.HDSP(L), chosen such that in
field-reversal simulations the system is clearly in the M
regime for a field of magnitudeH0 for all three values ofL.
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This is illustrated in Fig. 1. The dynamic spinodal field
approximated byHDSP'H1/2, whereH1/2 is the value ofH
~for givenL andT) for which the relative standard deviatio
of the lifetime, r 5st /^t& is 1/2 (st is the standard devia
tion of the lifetime!. The values ofHDSP and ^t& for T
50.8Tc and L564 @79,80# are given in Table I. For the
larger systems,̂t& is approximately unchanged, whileHDSP
and r are smaller than forL564. At this temperature
HMESP'0.75J.H0. Thus the system is well within the MD
regime for all three sizes used.

To obtain the raw time-series data, the system was
tially prepared with either a random arrangement of up a
down spins withm(t50)'0, or with a uniform arrangemen
with all spins up. Then the sinusoidal field was applied a
changed every attempted spin flip, allowing for a smo
variation of the field. The time series did not appear to
pend on the initial conditions after a few periods. For ea
system size, the simulations were performed with sev
values of the driving frequencyv. For each frequency, we
recorded the time-dependent magnetizationm(t). Most of
the simulations at intermediate and high frequencies w
recorded for approximately 16.93106 MCSS. ~Simulations
for some of the lowest frequencies were recorded for
proximately 5.93105 MCSS.! Files containing the data fo
these longest runs are about 800 megabytes and req
nine days~one month! to run forL564 (L5128) on a single
66 MHz node of an IBM sp2 computer. Since the hystere
depends on the competition between the two time scales
resented by the field period and the metastable lifetime,
chose the frequencies ofH(t) by specifying the ratio

R5
~2p/v!

^t~H0!&
. ~3.1!

One may think ofR as a scaled period, and 1/R as a scaled
frequency.

FIG. 1. Location of MD simulations in the (H0 ,L) plane. The
solid curve represents the dynamic spinodal~DSP! HDSP

;(ln L)21/(d21). This theoretical curve is an asymptotic result o
tained by settingR0'L. The filled circles denote the system siz
(L564, 90, and 128! and field amplitude (H050.3J) used here to
study hysteresis in the MD regime. The open circle denotes
system size and field amplitude used to study hysteresis in the
regime in Ref.@50#. The dotted curve represents a theoretical res
for the ‘‘thermodynamic spinodal field’’~THSP! @47,48# which
separates the SD region from the coexistence regime~CE!. It is
obtained by settingRc'L.
i-
d

d
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-
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al
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-

red

is
p-
e

We note that̂ t(H0)& is the ‘‘shortest of the long time
scales’’ that describe the system. ForT50.8Tc and all the
values ofL used here, the time scale for spontaneous fl
tuations between the phases in the absence of an ap
field, ^t(0)&, is essentially infinite. Even when the field ha
its maximum strengthH0 , the nucleation of the critical drop
lets necessary to leave the metastable phase is always d
by the thermal fluctuations. Driving the system from t
metastable to the stable phase therefore truly depends o
joint action of the random thermal noise and the determin
tic oscillating field. Figure 2 shows short initial segments
the magnetization time series for four different values ofR.
The figures for the first three values ofR are chosen to rep
resent: a system in the ordered dynamic phase (R53, ^uQu&
.0), near the dynamic transition (R53.436'Rcr), and in
the disordered dynamic phase (R57, ^uQu&'0). This value
for Rcr is obtained by finite-size scaling analysis of the pro
ability density for Q, as described in Sec. VII. The time
series segment shown forR5200 is deep in the disordere
dynamic phase region and illustrates the behavior of the
tem for very low frequencies. The standard deviation of
average lifetime in the MD regime is relatively small com
pared to the SD regime. If the period ofH(t) is sufficiently
long, the system has enough time to switch phases durin
single half-period. This is clearly seen atR57, for which the
system switches during practically every half-period. So
after m(t) reaches saturation, the field passes through z
and favors the opposite phase. Similar behavior is seen in
time series forR5200, except that the period is so long th
the system decays to the favored phase well before the
reaches its maximum value. Then the magnetization fluc
ates near its equilibrium valuem(t)'61 until the field
again switches sign and the system once more beco
metastable. If the period ofH(t) is sufficiently short, the
system does not have time to switch during a single h
period. This can be seen forR53. While the field favors the
opposite phase, the magnetization changes as many cr
droplets nucleate and begin to grow. Before the magnet
tion can completely reverse, however, the field changes
and the droplets of the now unfavored phase shrink and
appear. ForR53.436, the period near the critical value, th
period-averaged magnetization slowly ‘‘meanders’’ fro
positive to negative values over several periods ofH(t).
This ‘‘slow switching’’ occurs many times over the entir
time series. The number of field cycles shown in Fig. 2
small compared to the total number of cycles in an en
time series.

The ‘‘slow switching’’ seen near the dynamic phase tra
sition also occurs for frequencies in the ordered dynam
phase region, wherêuQu&.0. However, there the times be
tween consecutive switches are too long to show in plots
m(t) vs t. For this reason, the ‘‘filtered time series’’ forQ
are shown in Fig. 3, which provide plots ofQ for consecutive
periods in the magnetization time series. Even for theQ time
series, the number of periods shown is small compared to
total number of periods, except forR5200 which displays
the entire time series. For the low frequencies, theQ values
are concentrated nearQ50, with larger fluctuations forR
57 than forR5200. Analysis of theQ data and the dynamic
phase transition will be detailed in Sec. VII.

e
D
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FIG. 2. Short segments of the magnetization time seriesm(t) ~solid curve! and the external fieldH(t) ~dashed curve! vs time t for T
50.8Tc , d52, L564, andH050.3J. The total lengths of the time series are approximately 16.93106 MCSS. For these parameter value
the average lifetime in a static field is^t(H0)&'75 MCSS. The time series are shown for the scaled field periods~a! R53, ~b! R53.436
'Rcr , ~c! R57, and~d! R5200.
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IV. POWER SPECTRAL DENSITIES

A standard method used to characterize a time series
calculate its power spectral density~PSD!. Figure 4 shows
the PSD’s of the raw data, short segments of which
shown in Fig. 2. The technical details on how the PSD
were obtained are elaborated upon in Ref.@50#. For clarity,
the PSD’s for different driving frequencies, shown in F
4~a! with L564, have been shifted in the vertical directio
by arbitrary offsets. The same spectra are plotted in Fig. 4~b!
with no offset. The fourth spectrum shown in Fig. 4, label
‘‘background,’’ corresponds to thermal equilibrium fluctu
tions in a single thermodynamic phase. To obtain this sp
trum, a simulation was performed on a system with the sa
size, temperature, and for the same number of MCSS as
other spectra, in astatic field of H0 /A2.

To describe the PSD for each frequency, we identify th
distinct regions:~1! the peaks,~2! the thermal noise region
and ~3! the low-frequency region. The most promine
features of the PSD’s are the sharp peaks. ForR53 and
R53.436'Rcr , the first peak in the spectrum corresponds
v, the frequency of the external field; the second peak c
responds to 2v; and so on. These odd and even harmo
peaks arise because the shape of the time series is not p
sinusoidal due to the nonlinear response of the system.
R57 ~and longer periods!, only odd harmonics are seen. Th
extinction of the even harmonic peaks occurs because
shape of the time series is beginning to resemble a sq
to

e
s

c-
e
he

e

o
r-
c
rely
or

he
re

wave ~see Fig. 2!. The powerpn contained in thenth com-
ponent of the Fourier series for a pure square wave ispn

516@sin(np/2)#4/(np)2, which decays asn22 and vanishes
for evenn. This enables one to understand the reduced s
ond harmonic in the PSD forR57, which is just barely
observable between the first two sharp peaks. However
contrast to our observations in the SD regime@50#, no dips in
the PSD at evenn, corresponding to the zeros ofpn @81#,
were observed for the values ofR analyzed here.

Unlike the SD regime@50#, the highest frequencies fo
each of the PSD’s do not fall onto the thermal noise ba
ground. Since the average lifetime in the MD regime is mu
smaller than in the SD regime, theR values shown in Fig. 4
correspond to much larger frequencies in units of MCSS21.
Therefore, the time scales characterizing the peaks and
thermal noise regions are not as well separated as for the
regime, so the two regions overlap. Also, none of the PS
shown here are for low enough frequencies that the m
stable phase can decay and the system remain in the s
state sufficiently long during each half-period to sample
purely thermal fluctuations which would display exponent
time correlations.

The low-frequency region comprises the portion of ea
spectrum between the first peak and the lowest resolved
quency. The PSD in this region exhibits a strong depende
on the frequency of the field. Significant amounts of pow
in this portion of a PSD indicate the presence of slow beh
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FIG. 3. Short segments of the ‘‘filtered time series’’ of period-averaged magnetization values,Q, vs number of field periods. The
parameters used are the same as in Fig. 2.~a! R53, ~b! R53.436'Rcr , ~c! R54, ~d! R57, and~e! R5200.
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ior on time scales larger than that of the driving field. Ne
the transition frequencyR53.436'Rcr , the overall slope in
the low-frequency region is close to22. This suggests tha
the long-time correlations are exponential with a very la
correlation time @82#. The turnover in the correspondin
Lorentzian PSD is not observable because of the lack
low-frequency resolution due to the finite length of the tim
series. ForR53, the low-frequency region of the PSD als
suggests a Lorentzian, again with a correlation time tha
difficult to estimate due to the poor low-frequency reso
tion. For R57, the flat low-frequency region is that of th
PSD of white noise. This is consistent with the behavior
the Q time series shown in Fig. 3~d!. The PSD’s for other
system sizes display a qualitatively similar frequency dep
dence in the sharp peak and low-frequency regimes
cussed above. However, there is a systematic size de
dence in the PSD’s for the thermal noise background, wh
r

e

of

is
-

f

-
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h

is smaller for largerL. This is easily understood since th
variance of the magnetization in equilibrium should be p
portional toL22.

V. DERIVATION OF m„t… FROM AVRAMI’S LAW

The theoretical predictions for the frequency depende
of both the hysteresis-loop areas and the correlation
on numerically solving an expression form(t) during a
single field period. This expression is derived from a gen
alization of Avrami’s law with time-dependent nucleatio
rate and growth velocity. Using these values form(t) in
Sec. VI, we explicitly calculate the average hysteresis-lo
area ^A&52^rm(H)dH& and the average correlatio
^B&5(v/2p)^rm(t)H(t)dt&. Avrami’s law gives the vol-
ume fraction of the metastable state for systems in wh
many noninteracting droplets nucleate, then grow and c
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FIG. 4. ~a! Power spectral densities~PSD’s! for L564. Spectra
are shown for three different frequencies of the field, and are plo
with an arbitrary offset for clarity. In addition to a change in t
amount of smoothing, the right-hand section of each spectrum
tains only one out of every 250 data points to facilitate plotting. T
magnetization is sampled every 1.0 MCSS, so the Nyquist
quency is (VN/2p)50.5 MCSS21. The lowest frequency that ca
be resolved is 2.3831027 MCSS21. The dashed line with slope
22 is a guide to the eye.~b! Same spectra without the offset t
illustrate how all three PSD’s fall near the thermal noise ba
ground at high frequencies. Note that the spectra forR53 andR
53.436'Rcr cross at low frequencies.
lesce without changing their shapes as the system deca
the stable phase. The volume fraction of metastable pha
related to the magnetization byf(t)'@m(t)11#/2. The
original KJMA calculation shows that the volume fraction
the metastable phase,f(t), is given by Eq.~2.5a!. For a
homogeneous, time-dependent nucleation rate, the exte
volume in Eq.~2.5b! is generalized to

F~ t !5E
0

t

I ~L,T;tn!V~ t,tn!dtn , ~5.1!

whereV(t,tn) is the volume at timet of a droplet which was
nucleated at timetn , and I (L,T;tn) is the time-dependen
nucleation rate given by Eq.~2.4!. The volumeV(t,tn) is
given by

V~ t,tn!5VdF E
tn

t

v~ t8!dt8Gd

. ~5.2!

The Lifshitz-Allen-Cahn approximation@83–85# is used to
specify the interface velocity of a growing droplet asv(t)
'nuH(t)u. ~The proportionality factorn should not be con-
fused with the critical exponentn, discussed in Sec. VII.!
The effects of the dependence of the proportionality facton
on the droplet radius, which are remarkably minor, are d
cussed by Shneidman and co-workers@86,87#. Equation~5.1!
with d52 andK53 in Eq. ~2.4! then gives

d

n-
e
-

-

FIG. 5. Schematic of growing and shrinking droplets in the M
regime for a sufficiently high frequency such thatm(t) does not
completely switch during a period. In~b! and ~c! the dark regions
represent the stable phase, and the light regions represent the
stable phase. The arrows indicate the growth direction of the dro
interfaces.
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F~ t !5E
0

t

I ~L,T;tn!V2F E
tn

t

nH0 sinvt8dt8G2

dtn5E
0

t

I ~L,T;tn!
V2n2H0

2

v2
@cosvtn2cosvt#2dtn

5
B~T!V2n2H0

2

v2 E
0

t

@cosvtn2cosvt#2uH0 sinvtnu3 expF2
J0~T!

uH0 sinvtnu
Gdtn . ~5.3!
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Numerically integrating Eq.~5.3! for tP@0,p/v# and substi-
tuting into Eq.~2.5a! enables one to findf(t)5exp@2F(t)#
for a system which starts withf(0)51. The only quantity
which must be determined from the MC simulations
B(T), the field-independent part of the prefactor in t
nucleation rate. In the present paper, this single param
is set by demanding that the average simulated l
area for R5200 matches the theoretical prediction~see
Sec. VI!.

The integration of Eq.~5.3! can only be performed for the
first half-period of the field cycle, in whichm(t) and H(t)
have opposite signs. Whenm(t) and H(t) have the same
sign, the droplets that were formed during the previous h
period will shrink. The magnetization is therefore unable
switch sign during a single period for sufficiently high fr
quencies@see Fig. 5~a!#. The KJMA theory cannot be used t
find the volume fraction ofshrinking droplets of the meta-
ter
p

f-

stable phase. Therefore, an approximate calculation ofm(t)
for tP@p/v,2p/v# must be devised. Assume that th
shrinking droplets in Fig. 5~c! are described by merely re
versing the nucleation and growth process represente
Fig. 5~b!. Then, the volume fraction of the growing, no
stable, background fortP@p/v,2p/v# would be given by
f@(2p/v)2t#. In addition to the growing stable back
ground, which encroaches upon the droplets of the m
stable phase during the second half-period, we assume
droplets of the stable phase nucleate and grow within
shrinking metastable droplets as depicted in Fig. 5~c!. Fur-
thermore, we assume that this nucleation and growth pro
is also described by Avrami’s law, with the shrinking met
stable phase analogous to the metastable background fi
the entire system fortP@0,p/v#. The complete prescription
for the volume fraction of the growing stable background
tP@p/v,2p/v# is then
f8~ t !'fS 2p

v
2t D1@~shrinking metastable phase!3~growing stable phase inside shrinking droplets!#

5fS 2p

v
2t D1F12fS 2p

v
2t D GF12fS t2

p

v D G
512fS t2

p

v D F12fS 2p

v
2t D G . ~5.4!

Thus the theoretical result for the magnetization during an entire period ofH(t) is

m~ t !'H 2f~ t !21, 0,t,p/v

2f8~ t !215122fS t2
p

v D F12fS 2p

v
2t D G , p/v,t,2p/v.

~5.5!

Note that, in this approximationm(2p/v)5m(0) for all frequencies. Although it gives very good values for^A& at all
frequencies and for̂B& especially at low frequencies, it gives a continuous change in^Q& with v, with no sign of a dynamic
phase transition.

It is possible to rewrite Eq.~5.3! for F(t) by making the substitutionH5H0 sin(vt) andH85H0 sin(vtn). After tedious,
but straightforward, algebra this gives

F~H !5
B~T!V2n2H0

v3
E

0

H

H83e2J0~T!/H8FA12S H8

H0
D 2

22A12S H

H0
D 2

1

12S H

H0
D 2

A12S H8

H0
D 2GdH8. ~5.6!
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FIG. 6. Representative hysteresis loops obtained from Monte Carlo simulation data with system sizeL564 for ~a! R53, ~b! R
53.436'Rcr , ~c! R57, and~d! R5200. Each panel shows loops for the same time intervals shown in the corresponding time-seri
in Fig. 2.
-
ffi

on
hi

se
e

ud

n
b

ica

tiz

im
c

area
f the
al
fre-

s
al
f

ult

e

ga-
le-
e

ate
of

uali-
mic
tion
e
time

the
-
e-
The equation is valid forHP@0,H0#, so this expression al
lows a theoretical calculation of the magnetization for su
ciently low frequencies such thatm(t) completely switches
sign within aquarter period of the field. Notice thatv is no
longer part of the integration operation. A similar calculati
has been used to describe experimental data for switc
currents in~Nb,Co!-doped BaTiO3 ceramics@13# and hyster-
esis loops for triglycine sulphate~TGS! single crystals
@14,15# in the presence of an oscillating electric field. Tho
studies assume heterogeneous nucleation, and therefor
tain a frequency dependence ofv2d, rather thanv2(d11)

@see Eq.~5.6!# for the case of homogeneous nucleation st
ied here. The integral in Eq.~5.6! is evaluatedonce for H
P@0,H0#, from which m(t) for tP@0,p/(2v)# at any fre-
quency can be calculated. For numerical reasons, Eq.~5.6!
enables the theoretical prediction of the hysteretic respo
to be more easily calculated for lower frequencies than
using Eq.~5.3! alone. The values ofm(t) obtained from both
Eq. ~5.3!, for intermediate to high frequencies, and Eq.~5.6!,
for low frequencies, are used in calculating the theoret
predictions for̂ A& and ^B& in Sec. VI.

VI. HYSTERESIS-LOOP AREAS AND CORRELATION

In this section we calculate the hysteresis-loop areaA and
the correlation between the field and the system magne
tion B, defined in Eqs.~1.3! and ~1.4!, respectively. These
quantities are calculated over each period in the entire t
series. From the resulting ‘‘filtered’’ time series we constru
histograms to obtain the probability densities ofA andB for
-

ng

ob-

-

se
y

l

a-

e
t

each separate frequency of the field. The hysteresis-loop
represents the energy dissipated during a single period o
field @2–4#. It is therefore one of the most important physic
quantities characterizing hysteretic systems, and it is
quently measured in experiments.

Recent experiments on ultrathin ferromagnetic film
@32,33#, as well as numerical simulations of two-dimension
Ising models@35,62,66,88#, have been interpreted in terms o
a low-frequency power lawA}H0

avb, with a range of expo-
nent values reported@62,66,88#. This interpretation is not
fully consistent with the fluctuation-free mean-field res
@54,56#, A5A01const3@v2(H0

22Hsp
2 )#1/3 with positive

constantsA0 and Hsp, which has been applied to analyz
experiments on ultrathin films of Co on Cu~001! @37#. Nor
does the single power-law dependence agree with the lo
rithmic dependence expected if thermally activated nuc
ation @11,29,35,68# is the rate-determining process. Here w
present in detail analytical and numerical results that indic
a resolution of this puzzling situation. A brief summary
some of the results was given in Ref.@52#.

The hysteresis loops depend on frequency and have q
tatively different shapes above, near, and below the dyna
phase transition. Figure 6 shows plots of the magnetiza
vs field in the MD regime for four field frequencies. Th
loops shown here are for the same frequencies as the
series shown in Fig. 2. The loops shown in Fig. 6~b! indicate
the large fluctuations in the average magnetization near
transition atR53.436'Rcr . As the frequency is moved fur
ther away from the transition, the variation in the loops b
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comes smaller. The loops for a very low frequency,R
5200 in Fig. 6~d!, show how the magnetization reverses si
early in each half-period of the field, saturating close to
equilibrium magnetization at a field well belowH0 . The
low-frequency approximations forA derived later in this
section are applicable to these squarish loops, in which
switching field is small and the field variation is near
linear.

Probability densities forA are shown in Fig. 7. The loop
area has been divided by the maximum possible loop a
4H0 . Figure 7~a! shows the probability densities forL564
and several values ofR betweenR52 and 200. In contrast to
the SD regime@50#, the distributions are unimodal forall
frequencies. The roughness of the distributions at the low
frequencies is due to the lack of statistics because the
series for these frequencies contain a smaller total numbe
periods than the data for the intermediate and high frequ
cies. Figure 7~b! shows the probability densities for a fre
quency near the transition forL564, 90, and 128. The posi
tion of the peak for each of these distributions appears to
independent of system size. However, the width of the d
tribution becomes smaller with increasing system size. T
observation is consistent with the system-size dependenc
the switching-field distribution in field-reversal experimen
@26#. For further details on theL dependence of the width
near the transition, see the end of Sec. VII. The average
area for a specific frequency is a quantity often displayed

FIG. 7. Probability densities of the hysteresis-loop areaA5
2rm(H)dH. The loop area has been normalized by the maxim
possible loop area 4H0 . ~a! L564. The values of the scaled perio
shown areR52, 3, 3.436'Rcr , 3.5, 3.75, 3.9, 4, 5, 6, 7, 8.4, 12, 25
50, 80, 140, and 200, so theR axis is not linear. The twoR values
explicitly marked indicate the directions of increasing and decre
ing frequency.~b! Distributions near the critical frequency show
for L564, 90, and 128. The distributions are narrower away fr
Rcr but look qualitatively similar.
e

e

ea

st
e
of
n-

e
-

is
of

op
in

experimental and numerical studies of hysteresis. It can
be obtained in the present case, and we do so below.
means of the distributions in Fig. 7~a! are shown in Fig. 8,
along with the average loop areas forL590 and 128. The
solid curve in Fig. 8 is obtained by numerical integration
Eq. ~1.3! using the values ofm(t) obtained in Sec. V.

For any finite time series there is a sufficiently low fr
quency such that the magnetization switches during ev
half-period of the field. For very low frequencies the magn

s-

FIG. 8. Mean and standard deviation of the loop-area distri
tions vs the scaled frequency 1/R. The data points are the means
the distributions shown in Fig. 7 forL564 along with the means o
the corresponding distributions forL590 and 128. The vertical bar
arenot error bars, but give the standard deviations of those dis
butions. The solid curve comes from numerical integration of E
~1.3! using the values ofm(t) from Sec. V. The single free param
eter B(T) is adjusted so the theoretical prediction agrees with
data point at 1/R50.005, as described in the text.

FIG. 9. Log-log plot for the mean of the loop-area distributio
vs the scaled frequency 1/R. The vertical bars arenot error bars, but
give the standard deviations of those distributions. The data po
are the same as those used forL564 in Fig. 8 for the lowest fre-
quencies. The solid curve~NI for numerical integration! is the same
as the solid curve in Fig. 8.~Due to numerical difficulties, this
calculation was not extended to lower frequencies than th
shown.! The dotted curve results from numerical solution of t
linear approximation@Eq. ~6.3!#. The dash-dotted curve is the pre
diction for the loop area in the SD regime forL564, scaled so that
it may be plotted along with the MD results. The dashed curve
the asymptotic, logarithmic frequency dependence for the MD lo
area@Eq. ~6.9!#. This asymptotic result approaches the full soluti
only for frequencies that are lower than the crossover to the
solution, even for very largeL. The arrow indicates the area of
hysteresis loop withHs'HDSP(L564).
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tization switchesbefore the field reaches its extreme valu
during every half-period. In this frequency regime,m(t)
switches sign abruptly relative to the length of a field per
@see Fig. 2~d!#. The switching timets may be found by solv-
ing m(ts)50. Thus the equation forts becomes

ln 25F~ ts!. ~6.1!
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As Figs. 2~d! and 6~d! show, for sufficiently low frequencies
m(t) switches sign early in the period, i.e. at a val
uH(t)u,H0 . This allows the approximationH(t)'H0vt to
be used for the field, henceforth referred to as ‘‘the line
approximation in the field.’’ Using this approximation an
the substitutionsx5H0vt and x85H0vtn allows Eq.~5.3!
to be rewritten as
F~ ts!'
B~T!V2n2

4H0
3v3 E

0

Hs
x83~x22x82!2 expF2

J0~T!

x8
Gdx85

B~T!V2n2

4H0
3v3 H x4E

0

Hs
x83 expF2

J0~T!

x8
Gdx8

22x2E
0

Hs
x85 expF2

J0~T!

x8
Gdx81E

0

Hs
x87 expF2

J0~T!

x8
Gdx8J , ~6.2!

whereHs5H0vts. Together with Eq.~6.1!, this yields the equation forHs,

ln 25
B~T!V2n2

4H0
3v3 H Hs

4J0
4~T!GF24,2

J0~T!

Hs
G22Hs

2J0
6~T!GF26,2

J0~T!

Hs
G1J0

8~T!GF28,2
J0~T!

Hs
G J , ~6.3!
the
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where each of the integrals in Eq.~6.2! has been rewritten a
an incomplete gamma function@89# using the expression

E
0

x

une2a/udu5an11GF2~11n!,
a

xG . ~6.4!

For smallv the hysteresis loops are practically square, so
scaled loop area in the low-frequency~LF! limit can be ex-
pressed as

^A&LF

4H0
'meq

Hs~v!

H0
. ~6.5!

The switching fieldHs(v) is obtained by numerical solutio
of Eq. ~6.3!, and the result for̂ A&LF/4H0 is shown as the
dotted curve in Fig. 9. There is good agreement between
linear approximation calculation, the numerical integrati
calculation, and the MC data for low frequencies. The sli
overestimate of the loop area by the linear approximation
low frequencies is due to a systematic error in the way t
the loop area is calculated from the value ofHs(v). The
disagreement near the maximum in the loop area is du
the breakdown of the linear approximation as the magnet
tion begins to switch sign only at fields close toH0 .

The dash-dotted curve in Fig. 9 is the theoretical lo
frequency prediction forL564 in the SD regime. This curve
corresponds to the solid curve in Fig. 11~b! of Ref. @50#,
appropriately rescaled so that it may be shown together w
the MD results. This re-scaling consists of usingH050.3J in
the quantityA/4H0 and ^t(H0)& for the MD regime in cal-
culating the scaled frequency 1/R. The MC data point at the
very lowest frequency in Fig. 9 (R55000) agrees with the
SD, rather than the MD, theoretical prediction, even thou
the simulation was performed withH050.3J. This crossover
from MD to SD hysteretic behavior is a complete
frequency-dependent effect. As the frequency of the fi
decreases, the value of the switching fieldHs(v) decreases
e

is

t
at
t

to
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-

th

h

d

as well. For sufficiently low frequencies thatHs(v)
,HDSP(L,T), the system undergoes SD decay before
field becomes large enough to produce MD decay. In fa
the intersection of the SD and MD theoretical predictio
occurs at a value ofA which corresponds to a square loo
with a switching field ofHs(v)'HDSP(L,T). While m(t)
andA do not depend on system size in the MD regime,A in
the SD regime, and hence the location of the crossover,
pends onL through theL2d dependence of the lifetime in th
SD regime†see Eqs.~4.15! and ~7.13! of Ref. @50#‡.

One can obtain an approximate analytic solution for^A&LF
by taking the first three terms in the asymptotic expans
@89#

G~a,x!;xa21e2xF11
a21

x
1

~a21!~a22!

x2
1•••G

~6.6!

for large x. Straightforward, but lengthy, algebra gives th
following asymptotic expansion for Eq.~6.3!:

S Hs

J0~T! D
11

expF2
Hs

J0~T!G'~DH0v!3, ~6.7!

where we define

D5S ln 2

2B~T!V2n2J0
8~T!

D 1/3

. ~6.8!

With B(T)50.02048J23 MCSS21 and the values found in
Table I this givesD517.905J21 MCSS21. Ignoring the
nonexponential prefactor in Eq.~6.7!, solving for the switch-
ing field Hs(v), and substituting it into Eq.~6.5! results in
the asymptotic, logarithmic frequency dependence for
loop area,
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^A&LF' 4
3 J0~T!@2 ln~DH0v!#21. ~6.9!

As in the SD case@50,52#, from a log-log plot of the loop
area versus frequency one can extract effective expon
from the data over nearly two decades in 1/R. However,
these effective exponents depend strongly on the freque
range in which the fit is performed. Very small effectiv
exponents that appear consistent with this picture were
cently reported by Suenet al. for ultrathin Co films on
Cu~001! @38#.

As for the SD regime, we stress that the asymptotic lo
frequency behavior described by Eq.~6.9! would only be
seen forextremelylow frequencies, where the dotted an
dashed curves in Fig. 9 come together. Therefore, due to
dependence ofHDSP on L the crossover to SD droplet beha
ior will occur at frequencies much larger than those
which this asymptotic expression is valid even for largeL.
For a system size ofL5109 the ratio of the full numerical
solution to the asymptotic expression is approximately t
near the crossover frequency, which for that system s
would be near 1/R'631029.

Relatively few studies have consideredB, the correlation
of the magnetization with the external field. Our theoreti
derivations ofB are analogous to those forA. The probability
densities ofB in the MD regime are shown in Fig. 10. Figur
10~a! shows the probability densities for several values oR
between 2 and 200. The source of the roughness of the
tributions at the lowest frequencies is the same as in
7~a!. Figure 10~b! shows the probability densities for
frequency near the transition forL564, 90, and 128. The

FIG. 10. Probability densities of the correlation,B
5(v/2p)rm(t)H(t)dt. ~a! L564. The values ofR shown are the
same as in Fig. 7.~b! Distributions near the critical frequenc
shown forL564, 90, and 128. Lines connecting the data points
guides to the eye. The distributions look qualitatively similar, ev
away fromRcr .
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system-size dependence of the peak position and the wid
the distributions is similar to that for the loop-area distrib
tions. The means of the distributions in Fig. 10~a! are shown
in Fig. 11 along with the results forL590 and 128. The solid
curve is obtained by numerical integration of Eq.~1.4! simi-
lar to the procedure forA. The agreement between the M
data and the theoretical prediction is very good for low a
high frequencies, but poor for intermediate frequenci
where the MC data take on negative values. This disag
ment is probably due to the procedure for calculatingm(t)
during a half-period in which shrinking droplets are prese
in the system~see Sec. V!.

As for the SD regime@50#, the physical significance of the
integralsA andB can be clarified by comparison with linea
response theory. One can easily find thatA/(pH0

2) and
2B/H0

2 correspond to the dissipative and reactive parts of
complex linear response function, respectively. It is theref
natural to combineA and B into an analogousnonlinear
response function

X̂~H0 ,T,v!5
1

H0
2F2B1

i

p
AG . ~6.10!

The frequency dependence of the norm of this response f
tion, uX̂u, is shown in Fig. 12. The maximum inA ~Fig. 8!
and the sign change inB ~Fig. 11!, which occur close to-
gether in frequency, are characteristic behaviors of diss
tive and reactive parts of a response function near resona
The behavior of̂ A& and^B& in this frequency range is very
similar to that observed in the SD regime@50#, where we
associate it with stochastic resonance@90#. Whether or not
this name is appropriate for the low-frequency synchroni
tion of m(t) with H(t) in the MD regime is probably a
matter of taste. Although the overall fluctuations inm(t) are
small, the switching is entirely driven by random nucleati
on a microscopic scale.

e
n

FIG. 11. Mean and standard deviation of the correlation dis
butions vs the scaled frequency 1/R. The data points are the mean
of the distributions shown in Fig. 10~a! for L564, along with the
corresponding results forL590 and 128. The vertical bars arenot
error bars, but give the standard deviations of the distributions.
solid curve comes from a theoretical calculation analogous to tha
Fig. 8.
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VII. DYNAMIC PHASE TRANSITION

Although nonequilibrium phase transitions have be
studied for over two decades, the understanding of their
versality and scaling properties remains much weaker t
for equilibrium critical phenomena. Finite-size scaling
routinely used to determine the location and critical exp
nents of equilibrium thermodynamic phase transitions fr
numerical results for finite systems@72,91#. A true phase
transition occurs only in the thermodynamic limit, i.e., as t
system size approaches infinity while the energy and par
densities are kept constant. For simulations on finite syste
quantities such as the susceptibility and specific heat o
display a bounded peak, rather than a divergence, as a f
tion of temperature or field. However, for simulations pe
formed on larger and larger lattices, thermodynamic qua
ties approach the infinite-size limit. It is this approach to t
thermodynamic limit that is utilized to obtain estimates
the critical exponents from various system sizes.

Second-order phase transitions in equilibrium systems
characterized by a set of critical exponents, each of wh
describes the behavior of a different quantity at the criti
point. Three of these quantities and their associated ex
nents are@92# the order parameter (M;u t̄ ub for t̄ ,0), the
susceptibility (x;u t̄ u2g), and the correlation length (j

;u t̄ u2n), where; denotes ‘‘the singular behavior of.’’ The
field conjugate to the order parameter is understood to
zero, andt̄ 5(T2Tc)/Tc is the reduced temperature. Finit
size scaling theory allows one to estimate the critical ex
nents by measuring the system-size dependence of va
quantities. Combining the expression for the correlat
length exponent with the finite-size scaling assumpti
j„Tc(L)…;L, gives

uTc~L !2Tcu}L21/n, ~7.1!

whereTc(L) can be defined as the location of the peak in
susceptibility for a givenL @72,91#. When combined with the
definitions for the critical exponents, Eq.~7.1! gives

xL
peak}Lg/n ~7.2!

FIG. 12. Mean and standard deviation of the norm of the

sponse functionuX̂u vs the scaled frequency 1/R. The data points
are obtained using the loop-area and correlation data in Figs. 8
11. The solid curve is obtained using the theoretical values for^A&
and ^B& in those figures.
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^uM un&L}L2n~b/n!, ~7.3!

wherexL
peak is the maximum value of the susceptibility for

given L, and^uM un&L is thenth moment of the norm of the
order-parameter atTc .

The period-averaged magnetizationQ has been propose
as a ‘‘dynamic order parameter’’ for systems exhibiting hy
teresis@55,57–62,69#. Those studies of the Ising model hav
suggested the existence of a dynamic phase transition
tween an ordered dynamic phase with^uQu&.0 and a disor-
dered dynamic phase witĥuQu&'0. Figure 13 shows the
probability densities ofQ in the MD regime forL564, 90,
and 128. For each system size, as the frequency ofH(t)
decreases, the probability densities forQ change from bimo-
dal distributions with the two peaks each centered aroun
nonzero value ofQ, to unimodal distributions with a pea
aroundQ50. Each of theQ distributions shown in the three
dimensional Fig. 13 is a histogram ofQ time-series values
~see Fig. 3! at a particular frequency. These distributio
suggest the presence of a second-order dynamic phase

-

nd

FIG. 13. Probability densities of the period-averaged magn
zationQ5(v/2p)rm(t)dt. ~a! L564. The values ofR shown are
the same as in Fig. 7.~b! L590. The values of the scaled perio
shown areR53, 3.436'Rcr , 3.5, 3.75, 3.835, 4, and 5.~c! L
5128. The values of the scaled period shown areR53, 3.436
'Rcr , 3.5, 3.612, 3.693, 3.721, 3.75, 4, 5, 7, and 200. The unim
dal distributions for the smallestR value in~a! and~c! are due to the
finite simulation time.
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sition. In particular, the frequency dependence for th
probability densities is strikingly similar to the dependen
on inverse temperature for probability densities of the eq
librium magnetization in the zero-field Ising model. W
therefore identify the norm of the period-averaged magn
zation, uQu, as the order parameter of the dynamic pha
transition, and we apply finite-size scaling theory in analo
to the scaling theories used to quantify second-order ph
transitions inequilibrium systems. Figure 14 shows the a
erage norm of the period-averaged magnetization,^uQu&, for
the same system sizes as in Fig. 13. This figure clearly s
gests a DPT as the average order parameter^uQu& changes
from a value near zero to a nonzero value. Rather tha
sudden change in the order parameter, the transition regi
‘‘smeared’’ out due to finite-size effects. The mean and st
dard deviation foruQu are system-size dependent as well. W
quantify these finite-size effects below.

At a second-order phase transition there is a divergenc
the susceptibility. For equilibrium systems, the fluctuatio
dissipation theorem relates the susceptibility to fluctuati
in the order parameter. For the present system, it is not
vious what the field conjugate toQ might be. Therefore, we
cannot measure the susceptibility directly. However, we
calculate the variance inuQu as a function of frequency an
study its system-size dependence. We defineX as

X5L2 Var~ uQu!5L2@^Q2&2^uQu&2#. ~7.4!

If the system were to obey a fluctuation-dissipation relati
X would be proportional to the susceptibility, and both wou
scale withL in the same manner. Figure 15 showsX vs 1/R
for all three system sizes. For all three values ofL, X displays
a prominent peak near the transition frequency, which
creases in height with increasingL, while no finite-size effect
is seen at lower and higher frequencies. This finite-size ef
in X implies the existence of a divergent length associa
with the order-parameter correlation function near the
namic transition. The observation thatP(uQu) displays no
peak nearuQu50 in the ordered dynamic phase is addition
evidence of the second-order~as opposed to first-order! na-
ture of this transition@93#.

FIG. 14. Mean of the norm of the period-averaged magnet
tion vs the scaled frequency 1/R. The finite-size effects are clearl
seen for frequencies in the neighborhood of the dynamic ph
transition. The arrow indicates the approximate value of the crit
frequency 1/Rcr . Lines connecting the data points are guides to
eye.
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The cumulant intersection method@72,91# is useful for
determining the location of a second-order transition wh
the critical exponents are not known. In order to estimate
location of the transition we define the ‘‘dynamic’’ fourth
order cumulant ratio

UL512
^uQu4&L

3^uQu2&L
2

, ~7.5!

where^uQun&5*0
`uQunP(uQu)duQu. Figure 16 showsUL vs

1/R for the same system sizes shown in Fig. 15. Above
transition frequency, in thêuQu&.0 ordered dynamic phase
UL approaches23 , corresponding to two narrow peaks ce
tered at 6^uQu&. Below the transition frequency, in th
^uQu&'0 disordered dynamic phase,UL approaches 0, cor
responding to a Gaussian centered at zero. At the transi
the cumulant should have a nontrivial fixed valueU* .
Therefore, the location of the cumulant intersection gives
estimate of the transition frequency without foreknowled

-

se
l

e

FIG. 15. Order-parameter fluctuationX5L2 Var(uQu) vs the
scaled frequency 1/R. The ‘‘disordered dynamic phase’’ (^uQu&
'0) lies on the low-frequency side of the peaks. The ‘‘order
dynamic phase’’ (̂uQu&.0) lies on the high-frequency side. Th
statistical error bars are estimated by partitioning the data into
blocks. Error bars smaller than the symbol sizes are not shown.
arrow indicates the approximate value of the critical frequen
1/Rcr . Lines connecting the data points are guides to the eye.

FIG. 16. Fourth-order cumulant ratioUL vs scaled frequency
1/R, for L564, 90, and 128. We use the same symbols as in
15. The horizontal line marksUL5

2
3 . Lines connecting the data

points are guides to the eye. Inset: area close to the cumulant c
ing at 1/Rcr'0.2910.
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of the critical exponents. Due to the large spacing of our d
and possible correction-to-scaling effects, we cannot iden
a unique intersection point. We estimate the location of
intersection by the crossing for the two largest system s
nearRcr

21'0.2910 (Rcr'3.436) withUL5U* '0.61. This is
close to an extremely precise transfer-matrix calculation
U* 50.610 6901(5) @94# as well as MC estimates@95# for
the two-dimensional Ising model in equilibrium. Howeve
as recently pointed out by Luijten, Binder, and Blo¨te @96#,
the value of the cumulant intersection should not be ta
too seriously unless a sufficient range of system size
available.

With our estimate for the transition frequency, we c
now approximate the critical exponentsb, g, andn charac-
terizing the transition by using Eqs.~7.1!–~7.3!, replacingTc

by Rc , xL
peak by XL

peak, and^uM un&L by ^uQun&L . To extract
exponent estimates using these relations, we use a me
sometimes referred to as ‘‘phenomenological renormal
tion’’ @91# of the MC data. This method consists of estim
ing an exponent by using two system sizes,bL and L. The
following example is a derivation of an exponent estim
for b/n:

^uQun&bL

^uQun&L

}
~bL!2n~b/n!

L2n~b/n!
5b2n~b/n!,

which yields

2 lnF ^uQun&bL

^uQun&L
G Y ln b5nS b

n D1O~1/lnb!. ~7.6!

Similar relations can be found for the other exponent rat

lnFXbL
peak

XL
peakG Y ln b5

g

n
1O~1/lnb!, ~7.7!

lnF uRc~bL!2Rcu
uRc~L !2Rcu

G Y ln b5
1

n
1O~1/lnb!. ~7.8!

In the large-system limit these exponent estimates will
linear when plotted vs (lnb)21. Then one can extrapolate t
the infinite-size limit by performing a linear fit of the data
find the intercept at (lnb)2150. Simulations with larger sys
tem sizes would be computationally prohibitive, and sma
system sizes would no longer be in the MD regime. W
data for only three system sizes, the exponent estim
obtained using the two largest system sizes are easily sh
to be identical to those obtained using the extrapolat
procedure above. We calculate two sets of estimates forb/n,
one using the scaling relation for the second moments
the order-parameter distribution (n52) and the other using
n54, obtaining (b/n)n52'0.111 and (b/n)n54'0.113.
Our estimates for the other exponents areg/n'1.84 and
n'1.1. Also, we obtained an independent estimate for
exponentn by measuring the finite-size effects in the loc
tion of the high-frequency zero crossing in^B&. The estimate
obtained isn'1.09, in good agreement with that obtain
from the location ofXpeak. Our results are close to the two
dimensional Ising values for the analogous exponent ra
~b/n51/850.125,g/n57/451.75,n51!. Given the accuracy
ta
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of our data however, our exponent estimates are also
inconsistent with the universality class of two-dimension
random percolation ~b/n55/48'0.104,g/n543/24'1.79,
n54/3'1.33!. Combining the exponent estimates we fin

2~b/n!1~g/n!'2.06'd. ~7.9!

This relation between the measured exponent ratios indic
the consistency of our scaling procedures, and thus stren
ens our belief that the dynamic transition is a genuine, c
tinuous phase transition. If the divergent length is indeed
correlation length that describes the order-parameter corr
tion function, then Eq.~7.9! is a hyperscaling relation. The
DPT critical point then should be a nontrivial fixed point
the renormalization group sense. Based on the evidence
sented in the following paragraph, we believe this is the ca

One should also consider the possibility that hypersca
is violated and the DPT represents a mean-field critical po
The divergent length would then be the ‘‘thermal length
@72,96#, whose divergence is governed by the expon
(2b1g)/d. This would then be the exponent we have call
‘‘ n,’’ and Eq. ~7.9! would hold exactly as a tautology. How
ever, our estimates forb andg are far from those of a mean
field f4 model ~b51

2 and g51!. Likewise, our estimated
cumulant crossing,U* '0.61, is far from the expected mean

field value,U* 512G4( 1
4 )/(24p2)'0.27 @96,97#. Further-

more, if the phase transition were to be mean field in t
two-dimensional system, it should have to be induced
some effective long-range interaction, which then sho
have the same effect in one dimension. However, exp
atory MC simulations indicate that the one-dimensional Is
model in an oscillating field does not have a dynamic
dered phase@98#. The evidence summarized in this par
graph makes it extremely unlikely that hyperscaling is v
lated by the DPT.

The consistency of the estimates ofn from the positions
of Xpeak and the high-frequency zero crossing of^B& indi-
cates that this zero probably occurs at the DPT. The
zeros of ^B& are clearly separated in frequency, and o
finite-size scaling results indicate that they remain so
L→`. The low-frequency zero is associated with the ma
mum in ^A&. These observations enable us to answer
question recently raised by Acharyya@82# of whether the
DPT corresponds to the maximum in^A&. It does not.

To further illustrate the nature of the dynamic phase tr
sition, the finite-size effects in the distributions for the nor
of the order parameter,uQu, are shown in Fig. 17. Thes
probability densities foruQu are the symmetrized versions o
selected distributions shown in Fig. 13. Distributions in t
ordered dynamic phase region, i.e., above the transition
quency, should move toward a constant, nonzero value
uQu and become narrower with increasingL. This is seen in
Fig. 17~a!. For this frequency, the distribution ofQ for L
590 is highly asymmetric about zero, and forL5128 the
distribution is unimodal. This gradual loss of symmetry wi
increasingL is due to the finite length of the simulation tim
series, but it does not adversely affect our ability to analy
P(uQu). The distributions in Fig. 17~b! are in the disordered
dynamic phase region, i.e., at a frequency slightly below
transition frequency. Due to finite-size effects, however,
distributions forL564 and 90 appear to be centered abo
nonzero values ofuQu. The distributions in Fig. 17~c! are
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near the transition, and should scale with system sizeL. We
assume that the mean of the order parameter scales wiL,
and define the scaling variableQ̃5Lb/nuQu. Hence the
scaled probability density foruQu is given by

P̃L~Q̃!5L2b/nP~ uQu!, ~7.10!

where the prefactorL2b/n ensures conservation of probab
ity. Figure 18 shows this scaled probability density. The pe
positions scale fairly well, the peak heights less so. T
could be due to the following reasons. The frequency mi
be sufficiently far from the transition that single-parame
scaling is not adequate, and there might be corrections to

FIG. 17. Probability distributions for the norm of the perio
averaged magnetizationuQu for a frequency~a! above the transition,
1/R50.333; ~b! below the transition, 1/R50.25; and~c! near the
transition, 1/R50.2910. Lines connecting the data points are gui
to the eye.
k
s
t
r
he

finite-size scaling that are too large for these relatively sm
system sizes. Also, the lack of scaling for the peak heig
could be due to the asymmetry inP(Q) near the transition.

The results in this section clearly show that the statisti
properties of the order parameterQ exhibit finite-size scal-
ing, and that scaling techniques developed for estimating
critical exponents for second-order phase transitions in e
librium systems apparently can be successfully applied
estimate the exponents associated with the dynamic p
transition. While these scaling relations are concerned w
uQu, it is worth mentioning that one may also measure
fluctuations in the other two quantities measured,A and B.
Figure 19 shows the fluctuations forA and B, defined in
analogy to the order-parameter fluctuationX. The fluctua-
tions inA seem to show slight finite-size effects, as the pe
positions appear to be approachingRcr

21 with increasingL.
One might speculate that this could indicate thatA is coupled
to energy fluctuations which are logarithmically divergent,
they are for the two-dimensional Ising model in equilibrium
The fluctuations inB show no significant finite-size effects

VIII. DISCUSSION

The mechanism by which a metastable phase decays
pends sensitively on the system size, the temperature, an
strength of the applied field. For large systems and mod
ately strong fields, the decay proceeds through the nuclea
and growth ofmanydroplets of overturned spins in differen
parts of the system. This regime has been termed the m
droplet ~MD! regime. In this regime the magnetization r
sponse in a static field is described by the KJMA appro
mation~Avrami’s law!, which assumes the presence of ma
noninteracting, overlapping droplets. Theoretical predictio
by a generalization of the KJMA approximation, in which
time-dependent nucleation rate and droplet interface velo
are used, agree well with simulations for quantities like t
average hysteresis-loop area and correlation, especiall
low driving frequencies. The time dependence is includ
in the theory by replacing the constant fieldH by H(t)
52H0 sin(vt). This central idea provides the analyt

s

FIG. 18. Scaled probability densities ofuQu for three system
sizes. The same symbols are used as in Fig. 15. The scaling f
tion is L2b/nP(uQu) vs Lb/nuQu, and the value of the scaling expo
nent used is (b/n)n52'0.11. The scaled frequency of the field
1/R50.2910'1/Rcr . Lines connecting the data points are guides
the eye.
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PRE 59 2727KINETIC ISING MODEL IN AN OSCILLATING . . .
framework for our theoretical descriptions of quantities m
sured from the MC simulations in the MD regime. The th
oretical calculations and the MC data agree very well, es
cially considering that only one adjustable parameter
needed, which was measured from a particular hyster
simulation (R5200). All of the other constants used a
either known from droplet theory or were measured for M
simulations of field reversal in kinetic Ising models. To t
best of our knowledge, the work reported here is the fi
which explicitly considers hysteresis for the Ising model
the MD regime.

We compute the power spectral densities from the sim
lated time series, and qualitatively explain various feature
the spectra in the full frequency range from the lowest
servable frequencies to the rapid fluctuations due to ther
noise. For low field frequencies, the system is in the dis
dered dynamic phase, and the time series contain no l
fluctuations. Consequently, the PSD’s are flat at frequen
below the fundamental peak at the frequency of the fie
The significant power density in the low-frequency porti
of the PSD’s corresponds to the long-time behavior in
filtered time series forQ. For high field frequencies, the sys
tem is in the ordered dynamic phase, and the time se
display long-time behavior as the system switches betw
thermodynamic phases. This corresponds to a large po
density in the low-frequency portion of the PSD’s. Near t
dynamic phase transition the PSD’s exhibit similar behav
in the low-frequency part of the spectrum. Due to insu
ciently long time series we are unable to resolve any qu

FIG. 19. ~a! L2Var(uAu) vs scaled frequency 1/R. ~b!
L2Var(uBu) vs scaled frequency 1/R. In both parts, the lines con
necting the data points are guides to the eye.
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titative difference between these PSD’s and those in the
dered dynamic phase region.

We also calculate the hysteresis-loop areaA and the cor-
relationB for a wide range of frequencies. Because of its ro
as a measure of the energy dissipation in the system,A is a
quantity of particular experimental significance. For all fr
quencies, the loop-area and correlation distributions are
modal due to the almost deterministic magnetization
sponse in the MD regime. Our theoretical predictions for
frequency dependence of̂A& and ^B& use the time-
dependent extension of Avrami’s law to calculatem(t), from
which the loop area and correlation are calculated explici
The assumption is that them(t) values calculated for asingle
period accurately describe the average values ofA and B
over a long simulation time series. This assumption sho
be expected to break down most significantly for frequenc
near the dynamic phase transition, where the fluctuation
the magnetization response are largest. This is clearly see
Figs. 8 and 11, where the least satisfactory agreement
tween the theory and the MC data occurs for frequenc
near the dynamic phase transition. For the low-freque
regime we obtain an analytic expression for^A&. Our theo-
retical calculation agrees well with our MC results, and p
dicts anextremelyslow crossover to a logarithmic depen
dence of the loop area onH0v. The switching dynamics is
dominated by nucleation, and indicates no overall power-
dependence for the loop area on field amplitude and/or
quency, in contrast to what has been claimed in other sim
lational and experimental studies. We emphasize that
merical analysis of data generated by our analytic soluti
even over two or three frequency decades, could easily
to the conclusion that the data were taken from a power l
Our simulations reveal that for frequenciesfar higher than
those at which the asymptotic logarithmic dependence wo
be observable, a system-size-dependent crossover from
to SD behavior occurs. This novel frequency dependence
A is a consequence of the field dependence of the SD
MD decay mechanisms. As the frequency of the field b
comes sufficiently small, the system is subject to fie
smaller thanHDSP(T,L) for a sufficiently long time, so tha
SD decay usually occurs before the field becomes la
enough for MD decay to happen.

The period-averaged magnetizationQ has been propose
as an order parameter associated with the dynamic p
transition~DPT! in kinetic Ising models. The DPT is anon-
equilibrium phase transition which occurs due to an expli
time dependence in the Hamiltonian, rather than the dyna
cal rules governing the system. The probability densities t
we obtain forQ clearly show that the system changes fro
an ordered dynamic phase with nonzero^uQu& to a disor-
dered dynamic phase witĥuQu&'0 as the field moves from
high to low frequencies. To distinguish this frequenc
dependent change in̂uQu& as a true second-order phase tra
sition rather than merely a simple bifurcation, we meas
the finite-size effects at the DPT and apply finite-size scal
~FSS! techniques analogous to those used to measure
critical exponents which characterizeequilibrium second-
order transitions. The measured exponents (b/n'0.11,g/n
'1.84, andn'1.1) are close to both the two-dimension
Ising and random percolation values, and they repres
strong evidence that hyperscaling is obeyed. Our succes
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applying FSS techniques borrowed from the theory of eq
librium second-order phase transitions to this nonstation
nonequilibrium problem suggests the possibility of mapp
other suitably defined quantities for this system to thermo
namic entities, such as the field conjugate to the order
rameter, the specific heat, and the correlation length. Su
nonequilibrium thermodynamic theory for steady states
been attempted by Paniconi and Oono@99#.

In future work we plan to analyze longer simulations
larger system sizes to determine more accurately the va
of the exponents and the location of the DPT. This includ
measuring the possible finite-size effects in the probab
distributions of the energy@65#, which might be related to
the finite-size effects seen in the fluctuations inA. If a
fluctuation-dissipation theorem could be shown for this s
tem, the order-parameter and energy fluctuations could
related to a nonequilibrium susceptibility and specific he
respectively. Another important question left to future stu
is if and to what extent the exponents depend on the t
perature and field amplitude. While the critical frequen
will almost certainly depend on amplitude and temperatu
the critical exponents would most likely not if the DPT in
deed represents a new ‘‘dynamic universality class.’’ Fina
in
hy
s

m
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p

-

L.
i-
ry
g
-

a-
a

s

es
s
y

-
be
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y

-

,

,

we note that the quantities that we have analyzed num
cally could all be measured in experiments on hysteresis
variety of systems and analyzed by methods essentially id
tical to our analysis of the MC data.

ACKNOWLEDGMENTS

Thanks are due to M. Acharyya, P. D. Beale, G. Brow
W. Janke, W. Klein, M. Kolesik, G. Korniss, R. A. Ramo
H. L. Richards, H. Tomita, and J. Vin˜als for helpful discus-
sions. S.W.S. and P.A.R. appreciate hospitality and sup
from the Colorado Center for Chaos and Complexity dur
the 1997 Workshop on Nucleation Theory and Phase Tr
sitions. This research was supported in part by the Flor
State University Center for Materials Research and Tech
ogy, by the FSU Supercomputer Computations Research
stitute, which is partially funded by the U.S. Department
Energy through Contract No. DE-FC05-85ER25000, and
the National Science Foundation through Grant Nos. DM
9315969, DMR-9634873, DMR-9520325, and DMR
9871455. Computing resources at the National Energy
search Scientific Computing Center were made available
the U.S. Department of Energy.
pl.

.

v.

,

s
th,
-

ic
@1# J. A. Ewing, Proc. R. Soc. London33, 21 ~1881!.
@2# E. Warburg, Ann. Phys. Chem.~Neue Folge! 13, 141 ~1881!.
@3# J. A. Ewing, Proc. R. Soc. London34, 39 ~1882!.
@4# C. P. Steinmetz, Trans. Am. Inst. Electr. Eng.9, 3 ~1892!.
@5# R. R. Kline,Steinmetz: Engineer and Socialist~Johns Hopkins

University Press, Baltimore, 1992!. We owe most of our
knowledge about the early research on hysteresis by Ew
Warburg, and Steinmetz to this excellent scientific biograp

@6# I. D. Mayergoyz, Mathematical Models of Hysteresi
~Springer, New York, 1991!.

@7# A. Aharoni, Introduction to the Theory of Ferromagnetis
~Clarendon, Oxford, 1996!.

@8# Y. Ishibashi and Y. Takagi, J. Phys. Soc. Jpn.31, 506 ~1971!.
@9# H. Orihara and Y. Ishibashi, J. Phys. Soc. Jpn.61, 1919

~1992!.
@10# H. M. Duiker and P. D. Beale, Phys. Rev. B41, 490 ~1990!.
@11# P. D. Beale, Integr. Ferroelectr.4, 107 ~1994!.
@12# M. Rao and R. Pandit, Phys. Rev. B43, 3373~1991!.
@13# L. Mitoseriu, V. Tura, and A. Stancu, Phys. Lett. A196, 272

~1994!.
@14# H. Orihara, S. Hashimoto, and Y. Ishibashi, J. Phys. Soc. J

63, 1031~1994!.
@15# S. Hashimoto, H. Orihara, and Y. Ishibashi, J. Phys. Soc. J

63, 1601~1994!.
@16# A. J. Bard and L. R. Faulkner,Electrochemical Methods: Fun

damentals and Applications~Wiley, New York, 1980!.
@17# P. A. Rikvold, M. Gamboa-Aldego, J. Zhang, M. Han, H.

Richards, Q. Wang, and A. Wieckowski, Surf. Sci.335, 389
~1995!.

@18# A. Cheng and M. Chaffrey, J. Phys. Chem.100, 5608~1996!.
@19# Z. Peng, K. Krug, and K. Winzer, Phys. Rev. E57, R8123

~1998!.
@20# G. Burlak and I. Ostrovskiiˇ, Tech. Phys. Lett.23, 725 ~1997!.
g,
.

n.

n.

@21# Y. Martin and H. Wickramasinghe, Appl. Phys. Lett.50, 1455
~1987!.

@22# T. Chang, J. G. Zhu, and J. Judy, J. Appl. Phys.73, 6716
~1993!.

@23# M. Lederman, G. Gibson, and S. Schultz, J. Appl. Phys.73,
6961 ~1993!.

@24# M. Lederman, D. Fredkin, R. O’Barr, and S. Schultz, J. Ap
Phys.75, 6217~1994!.

@25# M. Lederman, S. Schultz, and M. Ozaki, Phys. Rev. Lett.73,
1986 ~1994!.

@26# H. L. Richards, S. W. Sides, M. A. Novotny, and P. A
Rikvold, J. Magn. Magn. Mater.150, 37 ~1995!.

@27# H. L. Richards, M. A. Novotny, and P. A. Rikvold, Phys. Re
B 54, 4113~1996!.

@28# H. L. Richards, M. Kolesik, P.-A. Lindgård, M. A. Novotny
and P. A. Rikvold, Phys. Rev. B55, 11 521~1997!.

@29# M. Kolesik, M. A. Novotny, and P. A. Rikvold, Phys. Rev. B
56, 11 791~1997!.

@30# M. Kolesik, M. A. Novotny, and P. A. Rikvold, inMicroscopic
Simulation of Interfacial Phenomena in Solids and Liquid,
edited by S. Phillpot, S. Bristowe, D. Stroud, and J. Smi
MRS Symposia Proceedings No. 492~Materials Research So
ciety, Pittsburgh, 1998!.

@31# P. A. Rikvold, M. A. Novotny, M. Kolesik, and H. L. Rich-
ards, in Dynamical Properties of Unconventional Magnet
Systems, edited by A. T. Skjeltorp and D. Sherrington~Kluwer,
Dordrecht, 1998!, p. 307.

@32# Y. He and G.-C. Wang, Phys. Rev. Lett.70, 2336~1993!.
@33# J. S. Suen and J. Erskine, Phys. Rev. Lett.78, 3567~1997!.
@34# M. Rao, H. Krishnamurthy, and R. Pandit, J. Phys. C1, 9061

~1989!.
@35# M. Rao, H. Krishnamurthy, and R. Pandit, Phys. Rev. B42,

856 ~1990!.



e

s

ll.

ef

ys

-

E

y,

s.

a,

A

r.

ys

v.

.

a

ce

t

-

ds

v.

v.

of

e
n be
the

PRE 59 2729KINETIC ISING MODEL IN AN OSCILLATING . . .
@36# M. Rao, H. Krishnamurthy, and R. Pandit, J. Appl. Phys.67,
5451 ~1990!.

@37# Q. Jiang, H.-N. Yang, and G.-C. Wang, Phys. Rev. B52, 14
911 ~1995!.

@38# J.-S. Suen, M. H. Lee, G. Teeter, and J. L. Erskine, Phys. R
B 59, 4249~1999!.

@39# A. Visintin, Differential Models of Hysteresis~Springer, Ber-
lin, 1994!.

@40# M. Brokate and J. Sprekels,Hysteresis and Phase Transition
~Springer, New York, 1996!.

@41# F. Preisach, Z. Phys.94, 277 ~1935!.
@42# A. H. Nayfeh and B. Balachandran,Applied Nonlinear Dy-

namics~Wiley, New York, 1995!.
@43# A. N. Kolmogorov, Bull. Acad. Sci. USSR, Phys. Ser.1, 355

~1937!.
@44# W. A. Johnson and P. A. Mehl, Trans. Am. Inst. Min. Meta

Eng.135, 416 ~1939!.
@45# M. Avrami, J. Chem. Phys.7, 1103~1939!; 8, 212 ~1940!; 9,

177 ~1941!.
@46# This elementary relation was regrettably misprinted in R

@50# .
@47# H. Tomita and S. Miyashita, Phys. Rev. B46, 8886~1992!.
@48# P. A. Rikvold, H. Tomita, S. Miyashita, and S. W. Sides, Ph

Rev. E49, 5080~1994!.
@49# P. A. Rikvold and B. M. Gorman, inAnnual Reviews of Com

putational Physics I, edited by D. Stauffer~World Scientific,
Singapore, 1994!, p. 149.

@50# S. W. Sides, P. A. Rikvold, and M. A. Novotny, Phys. Rev.
57, 6512~1998!.

@51# S. W. Sides, R. A. Ramos, P. A. Rikvold, and M. A. Novotn
J. Appl. Phys.79, 6482~1996!; 81, 5597~1997!.

@52# S. W. Sides, P. A. Rikvold, and M. A. Novotny, J. Appl. Phy
83, 6494~1998!.

@53# A recent review is given in B. Chakrabarti and M. Acharyy
e-print cond-mat/9811086.

@54# P. Jung, G. Gray, and R. Roy, Phys. Rev. Lett.65, 1873
~1990!.
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