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Kinetic Ising model in an oscillating field: Avrami theory for the hysteretic response
and finite-size scaling for the dynamic phase transition
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Hysteresis is studied for a two-dimensional, séjmearest-neighbor, kinetic Ising ferromagnet in a sinu-
soidally oscillating field, using Monte Carlo simulations and analytical theory. Attention is focused on large
systems and moderately strong field amplitudes at a temperature Bglow this parameter regime, the
magnetization switches through random nucleation and subsequent gromtmgtiroplets of spins aligned
with the applied field. Using a time-dependent extension of the Kolmogorov-Johnson-Mehl-Avrami theory of
metastable decay, we analyze the statistical properties of the hysteresis-loop area and the correlation between
the magnetization and the field. This analysis enables us to accurately predict the results of extensive Monte
Carlo simulations. The average loop area exhibits an extremely slow approach to an asymptotic, logarithmic
dependence on the product of the amplitude and the field frequency. This may explain the inconsistent expo-
nent estimates reported in previous attempts to fit experimental and numerical data for the low-frequency
behavior of this quantity to a power law. At higher frequencies we observe a dynamic phase transition.
Applying standard finite-size scaling techniques from the theory of second-order equilibrium phase transitions
to this nonequilibriumtransition, we obtain estimates for the transition frequency and the critical exponents
(Blv=0.11,/v~1.84, andv~1.1). In addition to their significance for the interpretation of recent experiments
on switching in ferromagnetic and ferroelectric nanoparticles and thin films, our results provide evidence for
the relevance of universality and finite-size scaling to dynamic phase transitions in spatially extended nonsta-
tionary systems[S1063-651X99)08303-9

PACS numbgs): 05.40-a, 75.60-—d, 77.80.Dj, 64.60.Qb

I. INTRODUCTION when the ultrasonic absorption coefficient changes due to
oscillations in the amplitude of an ultrasonic wave.
The term hysteresis comes from the Greelsterein In recent years new experimental technigues, such as

(borepew) which means “to be behind’[1]. It describes  magnetic force microscopfMEM) [21-25, have been de-
the lagging of an effect behind its cause, as when the magse|oped that permit measurements of the magnetization state
netization of a body lags behind periodic changes in the apang switching behavior of particles as small as a few nanom-
p||eq field. Wh|'|e the mggngﬂzatmn response of a ferromaggters. Ferromagnetic particles in this size range consist of a
net in an oscillating field is probably the example mostgingie gomain in equilibrium. Together with ultrathin films,
familiar to physicists and engineef8-7], hysteresis is a they are of interest as potential materials for ultrahigh den-

?wte fongg p{gnpmer?orr]l.tfllzor w;stgnc;g, Itl IS altfoh§eden IQity recording media. The dynamics of magnetization rever-
CITOEIECINCS 6—19], I Which the polarizalion 'ags behind a | i, hanoscale systems has been modeled by kinetic Ising

time-varying electric field. Other examples of hysteresis in- ; .
clude electrochemical adsorbate layers that are drivefyStems subject to sudden field revefs-31]. These nu-

through a phase transition by an oscillating electrode potermer'cal and .analytlcal stgd|es give rgsults in_qualitative
tial in a cyclic voltammetry experimerit.6,17, and liquid- agree.ment with the expenments meqtloned abovg. Recent
crystalline systems driven through a phase transition by*Periments on ultrathin ferromagnetic Fe/AR0D) films
pressure oscillationd 8]. Recently, a new class of supercon- [32] and thinp(1x1) Fe films on W110 [33] have con-
ducting materials including DyyB,C [19] has shown hys- Sidered the frequency dependence of hysteresis loop areas,
teresis in the resistivity when subjected to an oscillatingvhich were interpreted in terms of effective exponents con-

magnetic field. Acoustic hysteresis in crystd0] occurs  Sistent with those found for a continuous spin mdde}, 34—
36]. Similar experiments have been performed on ultrathin

Co films on C001). A study of this system by Jiang, Yang,
*Present address: Integrated Materials Research Laboratory, Saand Wang[37] reported exponents consistent with a mean-
dia National Laboratory, Albuquerque, NM 87185. Electronic ad-field treatment of the Ising model, whereas a recent study by
dress: swsides@sandia.gov Suenet al. [38] found very small effective exponents in the
"Permanent address: Florida State University, Tallahassee, Flow-frequency regime, apparently consistent with the theo-
32306-4350. URL: http://www.scri.fsu.eduikvold/. Electronic  retical results we report here.

address: rikvold@scri.fsu.edu The above discussion is far from an exhaustive account of
*URL: http:/Avww.scri.fsu.edd/novotny/. Electronic address: hysteresis examples, but it does give an idea of the diversity
novotny@scri.fsu.edu of situations in which this nonlinear, nonequilibrium phe-
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nomenon is important. Systems that exhibit hysteresis havaverage distance a supercritical droplet interface propagates
in common a nonlinear, irreversible response which lags bebefore encountering another dropldRyecexp{Eq(T)/[(d
hind the applied force. Numerous general mathematical theo+ 1)[H|%"1]}. The physical significance & (T) is explained
ries have been formulated to model hysteretic behavior in & Sec. Il In this paper, we specifically consider decay in the
variety of systems, including the Preisach mofiB9-41]  multidroplet (MD) regime [Hpse(T,L)<|H|<Hyes(T)
and systems of differential equations that display discontinuwhere Rc(Hyrsp~0.5]. In terms of the characteristic
ous bifurcations[39,40,43. Hysteresis in thermodynamic lengths, the MD regime is defined by
systems is often due to the presence of a first-order phase
transition, which is the source of strong nonlinearity in the a<<R.<Ry<L. (1.9
system. These details of the nonlinear response can, how-
ever, be quite different in different systems and even in dif-Here the decay of the metastable phase proceeds by random
ferent parameter regimes for the same system. The detailhmogeneous nucleation ahany critical droplets of the
must be carefully considered in order to accurately predicktable phase, which then grow and coalesce. The MD re-
such aspects of the hysteretic response as its dependencedime is distinct from the strong-field regime|H|
the frequency, amplitude, and wave form of the oscillating>H,,-s«T). It is also distinct from the single-dropléSD)
force. Here we present a study of hysteresis in a particulafegime[ |H|<Hpge(T,L)], wherea<R.<L<R,. In the SD
model system which incorporates both spatial degrees qegime, the decay of the metastable phase proceeds by ran-
freedom and thermal fluctuations, and which has a first-ordeiom homogeneous nucleation ofsimgle critical droplet of
equilibrium phase transition. The system response in the pahe stable phase. Hysteresis in that regime is described in
rameter regime studied in this paperself-averagingand  detail in Ref,[50]. The present study, as well as our previous
may be described by the Kolmogorov-Johnson-Mehl-Avramiyork [51,52, shows that the response to an oscillating field
(KIMA) theory of metastable decqg3—-45. is significantly different in the MD and SD regimes.
Specifically, we consider hysteresis in a spinnearest- Theoretical and computational studies of hysteresis have
neighbor, kinetic Ising ferromagnet on a two-dimensionalpeen performed for several models, using a variety of meth-
square lattice with periodic boundary conditions, which isods [53]. These include various studies of models with a
subject to a sinusoidally oscillating field. For conveniencesingle degree of freedom, equivalent to mean-field treat-
and because many of the experimental measurements gfents of the Ising mod¢b4—56, Monte Carlo(MC) simu-
hysteresis involve magnetic systems, we use the customarytions of the sping Ising model[35,36,57—6§ and several
magnetic language in which the order parameter is the diO(N) type models[12,34—36,67. These studies were per-
mensionless magnetization per sita(t)e[—1,+1], and formed with variations in the details of the simulations and
the force is the magnetic fieltl(t). However, we expect in the model parameters. Most of them indicate that the av-
our results also to apply to hysteresis in other areas ograge hysteresis-loop area appears to display power-law de-
science. For example, in dielectriea(t) and H(t) can  pendences on the frequency and amplitudeH¢f). How-
be reinterpreted as polarization and electric field, in adever, there is no universal agreement on the values of the
sorption problems as coveraggt) =[m(t)+1]/2 [46] and  exponents, either experimentally or theoretically. For the
(electrgchemical potential ofosmotig pressure, etc. Ising model it has been pointed out that nucleation effects
Below its critical temperature and in zero field, this modelwould lead to an asymptotically logarithmic frequency de-
has two degenerate ordered phases corresponding to a nendencd11,29,35,68 A mean-field model exhibits a dy-
jority of the spins in the positive or negative direction. A namic phase transition in which the mean period-averaged
weak applied field breaks the degeneracy, and the phase withagnetization changes from a nonzero value to 6.
the spins alignedantialigned with the field is stablémeta-  Such a dynamic phase transition has been observed in MC
stablg. If the field varies periodically in time, the system is simulations of a kinetic Ising model as wdlb7—-62,64—
driven back and forth across a first-order phase transition @6,69. A fundamentally different example of criticality in a
H=0, and the two phases alternate between being momemysteretic system is the zero-temperature, random-field Ising
tarily stable and metastable. As a resufi(t) lags behind model, which exhibits critical behavior in the hysteresis loop
H(t), and hysteresis occurs. In the regime of large systemas a function of disordd70].
size, moderately strong field, and temperature well belgw The work presented in this paper and in R¢&-52,69
considered here, the system switches smoothly and almosliffers from most past theoretical and numerical studies of
deterministically between the two magnetized phases. hysteresis in two important ways. First, mean-field models
The metastable phase in Ising models subject to a suddefo not take into account thermal noise and spatial variations
field reversal fromH to —H decays by different mecha- in the order parameter, thus ignoring fluctuations which may
nisms, depending on the magnitude lf the system size be important in real materials. Second, most previous inves-
L, and the temperature Two distinct regimes are separated tigations of hysteresis in Ising models have considered the
by a crossover field called the dynamic spinoddlsp  frequency and amplitude dependence of quantities such as
~(InL) Y@= where d is the spatial dimensionality the loop area and the period-averaged magnetizatithout
[47,48. Detailed discussions of these different decay modesonsidering the manner in which the metastable phase de-
are found in Refs[31,48,49. At sufficiently low T that the  cays. In this paper, the long-time behavior of the hysteretic
single-phase correlation lengths are microscopic, the differresponse is analyzed by studying the power spectral densities
ent decay regimes can be distinguished by the interplapf the magnetization time series as well as the statistical
among four length scales: the lattice spacaghe system properties of the period-averaged magnetizat@rthe loop
size L, the radius of a critical dropleR.=1/H|, and the areaA, and the correlatioB. These quantities are defined as
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) oretical predictions based on the results in Sec. V. In Sec.
Q= > fﬁ m(t)dt, (1.2 VIl we consider the period-averaged magnetizat@which
is the order parameter for the dynamic phase transition. De-
tails of the finite-size scaling analysis for this transition are
A=— \(ﬁ m(H)dH, (1.3  9given in this section as well. A summary, discussion, and
topics for future study are presented in Sec. VIII.

w
B=5— 3€ m(tH(t)dt, (1.4 !l MODEL
The model used in this study is a kinetic, nearest-neighbor
Ising ferromagnet on a hypercubic lattice with periodic

where the initial timety of the period is defined such that boundary conditions. The Hamiltonian is given by

Due to the multidroplet decay mechanism, the average
hysteresis-loop area exhibits an extremely slow crossover to H= —JE SiSj— H(t)z S, (2.1
a logarithmic decay with frequency and amplitude in the (i) !
asymptotic low-frequency limit52]. This asymptotic behav-
ior of the loop area in the MD regime is qualitatively similar
to that for the SD regime for two dimensiofs0,52. How-
ever, the calculation is somewhat more involved, and th

whereH(t) = —Hg sin(wt), s==*1 is the state of theth spin,
2jy runs over all nearest-neighbor pairs, adg runs
over allN=LY lattice sites. The magnetization per site is

guantitative behavior of the loop area is different for the two 1 N
regimes. m(t)=— > s(t). (2.2
Beside our results on the low-frequency loop areas, our L% =1

most significant finding is detailed evidence of finite-size . ) ) o
scaling at a dynamic phase transiti®PT) in the MD re- The dynamic used is the Glaubgr1] single-spin-flip
gime. Here we provide a full account of these results, whiciVlonte Carlo algorithm with updates at randomly chosen
we briefly reported in Refi69]. This transition can be intu- Sites. The time unit is one Monte Carlo step per spin
itively understood as a competition between two time scalestMCSS. The system is put in contact with a heat bath at
the period of the external field,?w, and the average life- temperaturd’, and each attempted spin flip frasnto —s; is
time of the metastable phasgz(H)), defined as the first- accepted with probability72]

passage time to a magnetization of zero following an instan- exp(— BAE)

taneous field reversal frorl to —H. If 27w/ w<(7(Hy)) W(s——8)=—— (2.3
[Ho is the amplitude of (t)] the magnetization cannot fully 1+exp(—BAE;)

switch sign within a single period, and|>0. We shall
refer to this situation as the ordered dynamic phase.
27l w>(1(Hp)) the magnetization follows the field, ar@
~0. This is the disordered dynamic phase. Between the

[Here AE; is the change in the energy of the system that

would result if the spin flip were accepted, apd= 1/kgT

S\é{herekB is Boltzmann'’s constant. It has been shown in the

limits there is a critical frequency at whighQ|) appears to weak-coupling limit that the stochastic Glauber dynamic can

become singular in the infinite-system limit. We emphasizebe der_lved from a quantum-mechanical Hamiltonian In con-

that the DPT is a nonequilibrium phase transition, and thajact \.N'th a ther_mgl he_at bath model_gd as a collection of
guasi-free Fermi fields in thermal equilibriup3].

the probability distribution of the system magnetization
which characterizes the two phases never relaxes into a sta- The average number of droplets of the stable phase that

tionary state. However, the “filtered” time series Gf for are formed per unit time and volume is given by the field-

successive field periods is a stationary stochastic process. ﬂS‘d temperature-dependent nucleation rate per unit volume,

avoid confusion we establish the following terminology. By —
the term “dynamic phase” we mean one of the qualitatively L(H(1), T)=~B(T)|H(t)[< exg — Eo(T)
different system responses separated by the DPT. In contrast, ' [H(t)|9~2
the term “phase” by itself refers in the conventional way to
a uniform thermodynamic phase. The notation follows that of Ref26], whereB(T) is a non-
The rest of this paper is organized as follows. Details ofuniversal temperature-dependent prefactor, rahd = o( T)
the model and a brief review of relevant aspects of theare known from field theory74,75, MC simulations[48]
Avrami theory of metastable decay are given in Sec Il. Time-and numerical transfer-matrix calculatiof¥6,77]; their val-
series data for the magnetization and the period-averageges are listed in Table I. The quantiBy(T) is the field-
magnetizationQ are discussed in Sec. Ill. In Sec. IV we independent part of the free-energy cost of a critical droplet,
discuss the power spectral densities obtained from the timadivided bykgT. The field,H(t), is the only quantity through
series data. In Sec. V we obtain an analytical result for thevhich I (H(t),T) depends on time in this adiabatic approxi-
time-dependent system magnetization during a single perioghation.
of the field, based on the droplet theory of nucleation and a Several other quantities, whose values do not depend on
time-dependent extension of the Avrami theory. Section Vlithe frequency of the field, are required as input for the the-
contains an analysis of the hysteresis-loop akeand the oretical calculations in the following sections and are listed
correlationB. This section includes MC data for the prob- in Table I. They are determined through what we refer to as
ability distributions and averages AfandB along with the-  “field-reversal simulations.” In these simulations the system

. (29




PRE 59 KINETIC ISING MODEL IN AN OSCILLATING ... 2713

TABLE |. Parameters and constants used in this work. The values of the paraigtdrs andT have
been selected such that switching occurs via the multidroplet mechanism. The coEs@htsandK are
calculated from droplet theorj74—77 for two-dimensional Ising systems. The constafits andr are
measured from field-reversal MC simulations with the Glauber dyndusing the parameters listed in the
left column. The constantsQ(T) [77] and v»(T) [79], where the droplet interface velocity isg
=p(T)|H|, have been measured in other work. The valueHggp is taken from Fig. 11 of Ref80]. For
L=90 and 128, the relative standard deviatiom#s0.072 and 0.053, respectively. Except fbfsp, which
decreases slowly with increasihg all other values are the same for-90 andL =128.

Parameters Constantheory) Constantgsimulation

Ho 0.3 Eo(T) 0.506192 Q,(T) 3.15255

L 64 K 3 (exac) v(T) (0.465-0.0149 "1 MCsSs?

T 0.8T, (1) 74.5977 MCSS

Hpse(L=64) (0.11+0.005))
r(L=64) 0.105

initially has all spins up, i.e., positive. It is then subjected t g
to a static field of magnitudél, with a sign opposite the =2ex f 1Qq(vet’)"dt (2.5
system magnetization. This instantaneous field quench pre-
pares the system in a metastable state, and the decay of this Q0]
metastable phase proceeds by the MD mechanism outlined —2e %_ dvo td+1 1 (2.50
in Sec. I. d+1 '

In the MD parameter regime the average size of a critical
dropletR. and the average distance between drogiatare ~ Wherevy, the interface velocity for a growing droplet of the
both much smaller than the system size. Therefore, man§table phase, is assumed to be const@gtis a proportion-
droplets nucleate and grow to drive the system into the stablglity constant such that the volunveof a droplet of radiufR
phase, resulting in an almost deterministic decay procesés V=Q4R", and the other constants have been introduced
This can be understood by imagining the system subd|V|de9feV|0US|y The integradb (t) in Eq. (2.9 is the “extended
into cells of linear sizeR,, which each contain a single Vvolume” [45], i.e., the total volume fraction of droplets of
droplet. Each of these subsystems will appear to be in the Sthe equilibrium phase at timg uncorrectedfor overlaps.
regime, and the time taken to nucleate a critical droplet isThe assumption that the positions and sizes of the droplets
stochastic with an exponential probability distribution. How- &re uncorrelated leads directly to the exponential relation for
ever, as a consequence of the central limit theorem the pron(t) [78]. Solving Eq.(2.5¢ for the time at whichm=0
ability density of the lifetime for the entire system asymp-gives the average lifetime in the MD regime,
totically approaches a Gaussian as the system size increases.
The decay process thus becomes increasingly deterministic,
with a lifetime distribution whose variance decreases a% _
with increasing system siZ@6]. ()=
In addition to the “self-averaging” process described
above, two other concepts are needed to understand the MD
decay process: the droplet interface velocity and the overlapwhich, in contrast to the SD regime, is independent. ofo
ping of growing supercritical droplets. Our detailed treat-describe the hysteretic response in the MD regime, in Secs.
ment of these effects is given in Sec. V, where the theory o/ and VI we employ a time-dependent extension of this
MD decay in a static field is generalized to time-dependentheory, in whichl andv, are both functions of time through
fields. Accounting for all of these effects, an expression mayH(t).
be obtained for the time-dependent magnetization of a sys-
tem in a field_—r_eversal experiment. In th_e KIMA approxima- IIl. TIME-SERIES DATA
tion [43—-4Y, it is assumed that the positions and sizes of the
growing droplets are uncorrelated. In the simple field- All numerical simulations reported in this paper are per-
reversal case this leads to the well known “Avrami’s law” formed ford=2, T=0.8T. and one of three system sizes
=64, 90, and 128. A sinusoidal field is applied to the system
with amplitude Hy;=0.31>HpgL), chosen such that in
field-reversal simulations the system is clearly in the MD
m(t)=2exg —P(t)]-1 (2.59 regime for a field of magnitudel, for all three values of..

—1/(d+1)

Q0
=0 , 2.6

In2(d+1)
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0.5 We note that{ 7(Hg)) is the “shortest of the long time

scales” that describe the system. Fo+=0.8T, and all the
values ofL used here, the time scale for spontaneous fluc-
tuations between the phases in the absence of an applied
field, (7(0)), is essentially infinite. Even when the field has
its maximum strengtli 4, the nucleation of the critical drop-
lets necessary to leave the metastable phase is always driven
by the thermal fluctuations. Driving the system from the
- metastable to the stable phase therefore truly depends on the
0051 | THSP & R ] joint action of the random thermal noise and the determinis-
. e tic oscillating field. Figure 2 shows short initial segments of

05 " 2 25 the magnetization time series for four different valuesRof

" The figures for the first three values Bfare chosen to rep-
FIG. 1. Location of MD simulations in theH,,L) plane. The  resent: a system in the ordered dynamic phase 3, (|Q|)

solid curve represents the dynamic spinoddSP Hpge  >0), near the dynamic transitiorRE 3.436=R.,), and in
~(InL)""9=D_ This theoretical curve is an asymptotic result ob- the disordered dynamic phasR+ 7, (|Q|)~0). This value
tained by settindRo~L. The filled circles denote the system sizes fgr R, is obtained by finite-size scaling analysis of the prob-
(L=64, 90, and 12Band field amplitude i, =0.3]) used here to  gapjlity density forQ, as described in Sec. VII. The time-
study hysteresis in the MD regime. The open circle denotes th eries segment shown f&=200 is deep in the disordered

system size and field amplitude used to study hysteresis in the S namic phase region and illustrates the behavior of the svs-
regime in Ref[50]. The dotted curve represents a theoretical result y P 9 y

for the “thermodynamic spinodal field(THSP [47,48 which tem for vgry_low _frequencies. T_he s_tandar(_j deviation of the
separates the SD region from the coexistence regi@®. It is  average lifetime in the MD regime is relatively small com-
obtained by settindR.~L. pared to the SD regime. If the period Hf(t) is sufficiently
long, the system has enough time to switch phases during a
This is illustrated in Fig. 1. The dynamic spinodal field is single half-period. This is clearly seenR# 7, for which the
approximated byHpge~H 4, whereH,, is the value ofH system switches during practically every half-period. Soon
(for givenL andT) for which the relative standard deviation after m(t) reaches saturation, the field passes through zero
of the lifetime,r=o,./{7) is 1/2 (o, is the standard devia- and favors the opposite phase. Similar behavior is seen in the
tion of the lifetimg. The values ofHpgp and (7) for T  time series folR=200, except that the period is so long that
=0.8T, and L=64 [79,80 are given in Table I. For the the system decays to the favored phase well before the field
larger systemg,r) is approximately unchanged, whiléysp ~ reaches its maximum value. Then the magnetization fluctu-
and r are smaller than fol.=64. At this temperature, ates near its equilibrium valuen(t)~=1 until the field
Hyese~=0.75]>H,. Thus the system is well within the MD again switches sign and the system once more becomes
regime for all three sizes used. metastable. If the period dfi(t) is sufficiently short, the
To obtain the raw time-series data, the system was inisystem does not have time to switch during a single half-
tially prepared with either a random arrangement of up angberiod. This can be seen f&=23. While the field favors the
down spins withm(t=0)~0, or with a uniform arrangement opposite phase, the magnetization changes as many critical
with all spins up. Then the sinusoidal field was applied anddroplets nucleate and begin to grow. Before the magnetiza-
changed every attempted spin flip, allowing for a smoothtion can completely reverse, however, the field changes sign
variation of the field. The time series did not appear to de-and the droplets of the now unfavored phase shrink and dis-
pend on the initial conditions after a few periods. For eachappear. FOR=23.436, the period near the critical value, the
system size, the simulations were performed with severgberiod-averaged magnetization slowly “meanders” from
values of the driving frequency. For each frequency, we positive to negative values over several periodsHit).
recorded the time-dependent magnetizatingt). Most of  This “slow switching” occurs many times over the entire
the simulations at intermediate and high frequencies wertime series. The number of field cycles shown in Fig. 2 is
recorded for approximately 16:910° MCSS. (Simulations  small compared to the total number of cycles in an entire
for some of the lowest frequencies were recorded for aptime series.
proximately 5.% 10° MCSS) Files containing the data for The “slow switching” seen near the dynamic phase tran-
these longest runs are about 800 megabytes and requirsition also occurs for frequencies in the ordered dynamic
nine daysone monthto run forL=64 (L=128) on a single phase region, wher@Q|)>0. However, there the times be-
66 MHz node of an IBM sp2 computer. Since the hysteresigween consecutive switches are too long to show in plots of
depends on the competition between the two time scales repa(t) vs t. For this reason, the “filtered time series” f@
resented by the field period and the metastable lifetime, ware shown in Fig. 3, which provide plots Qffor consecutive
chose the frequencies &f(t) by specifying the ratio periods in the magnetization time series. Even for@ime
series, the number of periods shown is small compared to the
total number of periods, except fét=200 which displays
(1(Hp))" 3D the entire time series. For the low frequencies, @healues
are concentrated ne®=0, with larger fluctuations foR
One may think ofR as a scaled period, andRLAs a scaled =7 than forR=200. Analysis of theQ data and the dynamic
frequency. phase transition will be detailed in Sec. VII.
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FIG. 2. Short segments of the magnetization time semi@&y (solid curve and the external fieldH (t) (dashed curjevs timet for T
=0.8T,, d=2,L=64, andH,=0.3]. The total lengths of the time series are approximately *6@ MCSS. For these parameter values
the average lifetime in a static field {s(Hy))~75 MCSS. The time series are shown for the scaled field pet@d?=3, (b) R=3.436
~R, (c) R=7, and(d) R=200.

IV. POWER SPECTRAL DENSITIES wave (see Fig. 2 The powerp, contained in thenth com-

A standard method used to characterize a time series is &S of the L:ourlerz Series for a pure 732quare WavPn!S
calculate its power spectral densitySD). Figure 4 shows _ Lasin@m2)]"/(nm)?, which decays as “ and vanishes
the PSD's of the raw data, short segments of which aréor evenn. Thls_enables one to understgnd_tht_e reduced sec-
shown in Fig. 2. The technical details on how the PSD’sPnd harmonic in the PSD foR=7, which is just barely
were obtained are elaborated upon in K&f]. For clarity, observable between the first two sharp peaks. However, in
the PSD's for different driving frequencies, shown in Fig. contrast to our observations in the SD regir&€], no dips in
4(a) with L=64, have been shifted in the vertical direction the PSD at evem, corresponding to the zeros of, [81],
by arbitrary offsets. The same spectra are plotted in Riy. 4 were observed for the values Bfanalyzed here.
with no offset. The fourth spectrum shown in Fig. 4, labeled Unlike the SD regimg50], the highest frequencies for
“background,” corresponds to thermal equilibrium fluctua- each of the PSD’s do not fall onto the thermal noise back-
tions in a single thermodynamic phase. To obtain this specground. Since the average lifetime in the MD regime is much
trum, a simulation was performed on a system with the samemaller than in the SD regime, tlievalues shown in Fig. 4
size, temperature, and for the same number of MCSS as thgrrespond to much larger frequencies in units of MC5S
other spectra, in atatic field of Hol\/f. Therefore, the time scales characterizing the peaks and the

To describe the PSD for each frequency, we identify threeghermal noise regions are not as well separated as for the SD
distinct regionsi(1) the peaks(2) the thermal noise region, regime, so the two regions overlap. Also, none of the PSD’s
and (3) the low-frequency region. The most prominent shown here are for low enough frequencies that the meta-
features of the PSD’s are the sharp peaks. Rer3 and stable phase can decay and the system remain in the stable
R=3.436=R,, the first peak in the spectrum corresponds tostate sufficiently long during each half-period to sample the
w, the frequency of the external field; the second peak corpurely thermal fluctuations which would display exponential
responds to @; and so on. These odd and even harmonictime correlations.
peaks arise because the shape of the time series is not purely The low-frequency region comprises the portion of each
sinusoidal due to the nonlinear response of the system. Fa@pectrum between the first peak and the lowest resolved fre-
R=7 (and longer periodsonly odd harmonics are seen. The quency. The PSD in this region exhibits a strong dependence
extinction of the even harmonic peaks occurs because then the frequency of the field. Significant amounts of power
shape of the time series is beginning to resemble a squaie this portion of a PSD indicate the presence of slow behav-
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FIG. 3. Short segments of the “filtered time series” of period-averaged magnetization v@lues, number of field periods. The
parameters used are the same as in Figa)2R=3, (b) R=3.436~R,,, (c) R=4, (d) R=7, and(e) R=200.

ior on time scales larger than that of the driving field. Nearis smaller for largei.. This is easily understood since the
the transition frequenciR=3.436~R,,, the overall slope in variance of the magnetization in equilibrium should be pro-
the low-frequency region is close te2. This suggests that portional toL ~2.

the long-time correlations are exponential with a very large
correlation time[82]. The turnover in the corresponding
Lorentzian PSD is not observable because of the lack of
low-frequency resolution due to the finite length of the time  The theoretical predictions for the frequency dependence
series. FolR=3, the low-frequency region of the PSD also of both the hysteresis-loop areas and the correlation rely
suggests a Lorentzian, again with a correlation time that i®n numerically solving an expression fon(t) during a
difficult to estimate due to the poor low-frequency resolu-single field period. This expression is derived from a gener-
tion. For R=7, the flat low-frequency region is that of the alization of Avrami's law with time-dependent nucleation
PSD of white noise. This is consistent with the behavior ofrate and growth velocity. Using these values fao(t) in

the Q time series shown in Fig.(8). The PSD’s for other Sec. VI, we explicitly calculate the average hysteresis-loop
system sizes display a qualitatively similar frequency depenarea (A)=—(ém(H)dH) and the average correlation
dence in the sharp peak and low-frequency regimes dis-B)=(w/27)($m(t)H(t)dt). Avrami's law gives the vol-
cussed above. However, there is a systematic size depeanme fraction of the metastable state for systems in which
dence in the PSD'’s for the thermal noise background, whiclmany noninteracting droplets nucleate, then grow and coa-

V. DERIVATION OF m(t) FROM AVRAMI'S LAW
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6 ‘ ‘ N ‘ completely switch during a period. Iflb) and (c) the dark regions
-7 -6 -5 —4 B2 -1 0 represent the stable phase, and the light regions represent the meta-
logy (/2m) [MCSS ] stable phase. The arrows indicate the growth direction of the droplet
interfaces.
_R=3
lesce without changing their shapes as the system decays to
4+ the stable phase. The volume fraction of metastable phase is
related to the magnetization bg(t)~[m(t)+1]/2. The
original KJIMA calculation shows that the volume fraction of
the metastable phasey(t), is given by Eq.(2.59. For a
homogeneous, time-dependent nucleation rate, the extended
o volume in Eq.(2.5b is generalized to
-1
t
q)(t):f (L, T:ty) V(L t,)dt,, (5.9
0
whereV(t,t,) is the volume at timé of a droplet which was
nucleated at time,,, andI(L,T;t,) is the time-dependent
nucleation rate given by Eq2.4). The volumeV(t,t,) is
6 ‘ ‘ ‘ —— given by
-7 -6 -5 —4 -3 -2 -1 0
log,, (Q/2m) [MCSS ]
t d
FIG. 4. () Power spectral densiti¢®SD’s for L =64. Spectra V(t,th) =Qyq Jt U(t/)dt/} - (5.2
are shown for three different frequencies of the field, and are plotted n

with an arbitrary offset for clarity. In addition to a change in the

amount of smoothing, the right-hand section of each spectrum con- o . . .

tains only one out of every 250 data points to facilitate plotting. The ' € Lifshitz-Allen-Cahn approximatiof83-83 is used to
magnetization is sampled every 1.0 MCSS, so the Nyquist freSPecify the interface velocity of a growing droplet a§t)
quency is (/2m)=0.5 MCSS L. The lowest frequency that can =~ »|H(t)|. (The proportionality factow should not be con-
be resolved is 2.3810°7 MCSS 1. The dashed line with slope fused with the critical exponent, discussed in Sec. V)I.
—2 is a guide to the eygb) Same spectra without the offset to The effects of the dependence of the proportionality faetor
illustrate how all three PSD’s fall near the thermal noise back-on the droplet radius, which are remarkably minor, are dis-
ground at high frequencies. Note that the spectraRier3 andR  cussed by Shneidman and co-workigg8,87]. Equation(5.1)
=3.436~R, cross at low frequencies. with d=2 andK =3 in Eq.(2.4) then gives
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2 22
t t ) t Q,v°Hg
q>(t)=f I(L,T:t)Q, J vHosinwt’dt’ dtn=f I(L,T;t)———[coswt,— coswt]*dt,
0 th 0 o
B(T)Q,v°Hj 2 . 3 Eo(T)
T f [coswt,—coswt]?|Hg sinwt,|” ex ~ THosinet] (5.3

Numerically integrating Eq(5.3) for te[0,7/w] and substi- stable phase. Therefore, an approximate calculatiom(of
tuting into Eq.(2.59 enables one to find(t) =exd —P(t)] for te[w/w,27m/w] must be devised. Assume that the
for a system which starts witéh(0)=1. The only quantity shrinking droplets in Fig. &) are described by merely re-
which must be determined from the MC simulations isversing the nucleation and growth process represented in
B(T), the field-independent part of the prefactor in theFig. 5b). Then, the volume fraction of the growing, now
nucleation rate. In the present paper, this single parametetable, background fare[ 7/w,27/w] would be given by
is set by demanding that the average simulated loop[(27/w)—t]. In addition to the growing stable back-
area for R=200 matches the theoretical predictigeee ground, which encroaches upon the droplets of the meta-
Sec. V). stable phase during the second half-period, we assume that
The integration of Eq(5.3) can only be performed for the droplets of the stable phase nucleate and grow within the
first half-period of the field cycle, in whicm(t) and H(t) shrinking metastable droplets as depicted in Fig).5-ur-
have opposite signs. Wheam(t) and H(t) have the same thermore, we assume that this nucleation and growth process
sign, the droplets that were formed during the previous halfis also described by Avrami’s law, with the shrinking meta-
period will shrink. The magnetization is therefore unable tostable phase analogous to the metastable background filling
switch sign during a single period for sufficiently high fre- the entire system fare [0,7/w]. The complete prescription
guenciegsee Fig. ). The KIMA theory cannot be used to for the volume fraction of the growing stable background for
find the volume fraction ofhrinking droplets of the meta- te[#/w,27/w] is then

2
d' (1)~ ¢(% —t) +[(shrinking metastable phase(growing stable phase inside shrinking dropléts

oo

i)

+

2
o

_ ( ™
=1-¢(t——

Thus the theoretical result for the magnetization during an entire periet{fis

2¢(t)—1, o<t<mlw

m(t)~ (5.5

mlw<t<27mlw.

2¢'(1)—1=1- 2¢>(t——) 1- ¢(——t)
Note that, in this approximatiom(2/w)=m(0) for all frequencies. Although it gives very good values {&) at all
frequencies and fofB) especially at low frequencies, it gives a continuous chang®inwith w, with no sign of a dynamic
phase transition.

It is possible to rewrite Eq(5.3) for @ (t) by making the substitutiol = H sin(wt) andH' =H sin(wt,). After tedious,
but straightforward, algebra this gives

1-
B(T)Q,v°Hg (H - H'\?
@(H)=—f H’3eFo(MH’ 1-|—| -2
3 0 HO H

w 0

o

(5.6

2

!
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FIG. 6. Representative hysteresis loops obtained from Monte Carlo simulation data with systein=$¢4efor (a) R=3, (b) R
=3.436~R,,, (c) R=7, and(d) R=200. Each panel shows loops for the same time intervals shown in the corresponding time-series data
in Fig. 2.

The equation is valid foH €[0,Hg], so this expression al- each separate frequency of the field. The hysteresis-loop area
lows a theoretical calculation of the magnetization for suffi-represents the energy dissipated during a single period of the
ciently low frequencies such that(t) completely switches field [2—4]. It is therefore one of the most important physical
sign within aquarter period of the field. Notice thab is no  quantities characterizing hysteretic systems, and it is fre-
longer part of the integration operation. A similar calculationquently measured in experiments.
has been used to describe experimental data for switching Recent experimentg on ultrathin ferromagnetic films
currents in(Nb,Co-doped BaTiQ ceramicd13] and hyster-  [32,33, as well as numerical simulations of two-dimensional
esis loops for triglycine sulphat€TGS) single crystals |sing modeld35,62,66,8% have been interpreted in terms of
[14,15 in the presence of an oscillating electric field. Those, low-frequency power Iaw\ocHwa, with a range of expo-
studies assume heterogeneous ”gc'eaﬂo”' and th%rffore %nt values reporte62,66,88. This interpretation is not
tain a frequency dependence of °, rather thanw (. ) fully consistent with the fluctuation-free mean-field result
[see Eq(5.6)] for the case of homogeneous nucleation stud- 54,56, A=Ayt [ w2(H2— H2)1Y3 with i
ied here. The integral in Eq5.6) is evaluatedoncefor H [54.56), 0™ CONS [(.” (Ho—Hg)] with -~ positive
constantsA, and Hg,, which has been applied to analyze

e[0,Hy], from which m(t) for te[0,7/(2w)] at any fre- X e
quency can be calculated. For numerical reasons (&g  €XPeriments on ultrathin films of Co on @03 [37]. Nor

enables the theoretical prediction of the hysteretic respongdoes the single power-law dependence agree with the loga-
to be more easily calculated for lower frequencies than byithmic dependence expected if thermally activated nucle-
using Eq.(5.3) alone. The values afi(t) obtained from both ~ation[11,29,35,68is the rate-determining process. Here we
Eq. (5.3, for intermediate to high frequencies, and E5}6), present in detail analytical and numerical results that indicate
for low frequencies, are used in calculating the theoreticaf resolution of this puzzling situation. A brief summary of

predictions for{A) and(B) in Sec. VI. some of the results was given in Rg52].
The hysteresis loops depend on frequency and have quali-

tatively different shapes above, near, and below the dynamic
phase transition. Figure 6 shows plots of the magnetization
In this section we calculate the hysteresis-loop #&emd  vs field in the MD regime for four field frequencies. The
the correlation between the field and the system magnetizdeops shown here are for the same frequencies as the time
tion B, defined in Eqs(1.3) and (1.4), respectively. These series shown in Fig. 2. The loops shown in Fi¢o)dndicate
guantities are calculated over each period in the entire timéghe large fluctuations in the average magnetization near the
series. From the resulting “filtered” time series we constructtransition atR=3.436=R,,. As the frequency is moved fur-
histograms to obtain the probability densitiesfoindB for ~ ther away from the transition, the variation in the loops be-

VI. HYSTERESIS-LOOP AREAS AND CORRELATION
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6 o . L=64 FIG. 8. Mean and standard deviation of the loop-area distribu-
= f £ tions vs the scaled frequencyRL/The data points are the means of
= 4 i the distributions shown in Fig. 7 fdr=64 along with the means of
§ the corresponding distributions far=90 and 128. The vertical bars

arenot error bars, but give the standard deviations of those distri-

butions. The solid curve comes from numerical integration of Eqg.
(1.3 using the values af(t) from Sec. V. The single free param-
eter B(T) is adjusted so the theoretical prediction agrees with the
data point at R=0.005, as described in the text.

experimental and numerical studies of hysteresis. It can also
be obtained in the present case, and we do so below. The
FIG. 7. Probability densities of the hysteresis-loop afea ~ means of the distributions in Fig(a are shown in Fig. 8,
—¢$m(H)dH. The loop area has been normalized by the maximumglong with the average loop areas for-90 and 128. The
possible loop areak, . (a) L="64. The values of the scaled period solid curve in Fig. 8 is obtained by numerical integration of
shown areR=2, 3, 3.436=Ry,, 3.5,3.75,3.9,4,5,6, 7,84, 12,25, Eq (1.3) using the values ofn(t) obtained in Sec. V.
50, 80, 140, and 200, so tiieaxis is not linear. The i values For any finite time series there is a sufficiently low fre-
explicitly marked indicate the directions of increasing and decreasquency such that the magnetization switches during every

ing frequency.(b) Distributions near the critical frequency shown half-peri f the field. For verv low fr nei he madne-
for L=64, 90, and 128. The distributions are narrower away from alf-period of the field. For very low frequencies the magne

R, but look qualitatively similar.

— NI
0 )
comes smaller. The loops for a very low frequendy, B ””el“; .
=200 in Fig. &d), show how the magnetization reverses sign -02 o asmprore
early in each half-period of the field, saturating close to the 0w . Loot

equilibrium magnetization at a field well beloW,. The %f _—
low-frequency approximations foA derived later in this
section are applicable to these squarish loops, in which the
switching field is small and the field variation is nearly 08
linear.

Probability densities foA are shown in Fig. 7. The loop
area has been divided by the maximum possible loop area  -r2b . "
4H,. Figure 7a) shows the probability densities for=64 - N -
and several values & betweerR=2 and 200. In contrast to o
the SD regime[50], the distributions are unimodal faall FIG. 9. Log-log plot for the mean of the loop-area distributions
frequencies. The roughness of the distributions at the loweS the scaled frequencyR/ The vertical bars areoterror bars, but
frequencies is due to the lack of statistics because the tim@ve the standard deviations of thosg dlgtrlbutlons. The data points
series for these frequencies contain a smaller total number §f€ e same as those used fior 64 in Fig. 8 for the lowest fre-
periods than the data for the intermediate and high frequenquenc'es' .The solid .Cur\(.e“ for numerical mtt_agratlc_))w_ls th.e same
cies. Figure ) shows the probability densities for a fre- as the solid curve in Fig. 8Due to numerical difficulties, this

o .~ calculation was not extended to lower frequencies than those
quency near the transition far=64, 90, and 128. The posi- shown) The dotted curve results from numerical solution of the

tion of the peak for each of these distributions appears t0 bg,ear approximatioEq. (6.3]. The dash-dotted curve is the pre-
independent of system size. However, the width of the disgiction for the loop area in the SD regime for- 64, scaled so that
tribution becomes smaller with increasing system size. Thig may pe plotted along with the MD results. The dashed curve is
observation is consistent with the system-size dependence gfe asymptotic, logarithmic frequency dependence for the MD loop
the switching-field distribution in field-reversal experiments area[Eq. (6.9)]. This asymptotic result approaches the full solution
[26]. For further details on thé dependence of the width only for frequencies that are lower than the crossover to the SD
near the transition, see the end of Sec. VII. The average loogolution, even for very largé. The arrow indicates the area of a
area for a specific frequency is a quantity often displayed irhysteresis loop withH ~H gL =64).

-3
logp(4/R)
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tization switchesbeforethe field reaches its extreme value As Figs. Zd) and &d) show, for sufficiently low frequencies
during every half-period. In this frequency regimmyt) m(t) switches sign early in the period, i.e. at a value
switches sign abruptly relative to the length of a field period/H(t)| <Hg. This allows the approximatioh (t)~Hqwt to
[see Fig. 2d)]. The switching timets may be found by solv- be used for the field, henceforth referred to as “the linear

ing m(t)=0. Thus the equation fdr, becomes approximation in the field.” Using this approximation and
the substitutionx=Hywt andx’ =Hywt, allows Eq.(5.3)
In2=®(ty). (6.  to be rewritten as

B(T)Q,v? [Hs Eo(T B(T)Q,1? Hs Bo(T
<I>(ts)~—( )3 ZVJ’ x"3(x?—x"?)%exp — olT) dx’' = ( )3 2 Jx“J x"3exg — olT) dx’
4H3w® Jo X' 4H3® | Jo X'
Hs Eo(T Hs Eo(T
—ZXZJ x’%x;{—L) dx’+f x’7exp{— o) dx’], (6.2
0 x' 0 X'
whereH =Hywts. Together with Eq(6.1), this yields the equation fdtl,
B(T)QZVZ A= 4 EO(T) 2—6 EO(T) —8 EO(T)
mz_Tng HEEQ(MT| — 4~ ——| ~2HE (M| —6.— ——|+Eo(DT| -8 —5— 1. (63

where each of the integrals in E@.2) has been rewritten as as well. For sufficiently low frequencies thatl ( w)
an incomplete gamma functid®9] using the expression  <Hc{L,T), the system undergoes SD decay before the
field becomes large enough to produce MD decay. In fact,
_ (6.4) the intersection of the SD and MD theoretical predictions
occurs at a value oA which corresponds to a square loop
with a switching field ofH (w)~HpsL,T). While m(t)
For smallw the hysteresis loops are practically square, so theind A do not depend on system size in the MD regirén
scaled loop area in the low-frequen@yF) limit can be ex-  the SD regime, and hence the location of the crossover, de-
pressed as pends orL through thel. 9 dependence of the lifetime in the
SD regime[see Eqgs(4.15 and(7.13 of Ref. [50]].
(A ~m Hyw) (6.5 One can obtain an approximate analytic solution(foy,
4Ho %1 Ho - ' by taking the first three terms in the asymptotic expansion
[89]

X a
f u"e¥Udu=a"" | —(1+ n),5

0

The switching fieldH () is obtained by numerical solution

of Eg. (6.3), and the result fofA) /4H, is shown as the a-1 (a—1)(a—2)

dotted curve in Fig. 9. There is good agreement between this (3 x)~x2-1e~x + +.. 1

linear approximation calculation, the numerical integration X X2

calculation, and the MC data for low frequencies. The slight (6.6)

overestimate of the loop area by the linear approximation at

low frequencies is due to a systematic error in the way thafor large x. Straightforward, but lengthy, algebra gives the

the loop area is calculated from the value b§(w). The following asymptotic expansion for E¢6.3):

disagreement near the maximum in the loop area is due to

the breakdown of the linear approximation as the magnetiza- He M Hg

tion begins to switch sign only at fields closekg . Eo(T) exp — Eo(T)
The dash-dotted curve in Fig. 9 is the theoretical low-

frequency prediction foL. =64 in the SD regime. This curve \here we define

corresponds to the solid curve in Fig. (bl of Ref. [50],

1+

~(DHow)®, (6.7

appropriately rescaled so that it may be shown together with In2 113
the MD results. This re-scaling consists of usthg=0.3J in D :( (6.9
the quantityA/4H, and(7(Hg)) for the MD regime in cal- 2B(T)Q,1?2EY(T)

culating the scaled frequencyRL/ The MC data point at the

very lowest frequency in Fig. 9R=5000) agrees with the With B(T)=0.02048 3 MCSS ! and the values found in
SD, rather than the MD, theoretical prediction, even thoughTable | this givesD=17.908"! MCSS!. Ignoring the
the simulation was performed withy=0.3J. This crossover nonexponential prefactor in E(.7), solving for the switch-
from MD to SD hysteretic behavior is a completely ing field H(w), and substituting it into Eq(6.5 results in
frequency-dependent effect. As the frequency of the fieldhe asymptotic, logarithmic frequency dependence for the
decreases, the value of the switching field @) decreases loop area,
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—a— L=64 A FIG. 11. Mean and standard deviation of the correlation distri-

butions vs the scaled frequencyR1/The data points are the means
of the distributions shown in Fig. 18 for L= 64, along with the
corresponding results fdr=90 and 128. The vertical bars anet
error bars, but give the standard deviations of the distributions. The
solid curve comes from a theoretical calculation analogous to that in
Fig. 8.

system-size dependence of the peak position and the width of
the distributions is similar to that for the loop-area distribu-
tions. The means of the distributions in Fig.(&0are shown
FIG. 10. Probability densities of the correlationB  in Fig. 11 along with the results far=90 and 128. The solid
=(w/2m)$m(t)H(t)dt. (a) L=64. The values oR shown are the  cyrye is obtained by numerical integration of E.4) simi-
same as in Fig. 7(b) Distributions near th_e critical frequ_ency lar to the procedure foA. The agreement between the MC
shown forl =64, 90, and 128. Lines connecting the data points argy,i5 and the theoretical prediction is very good for low and
guides to the eye. The distributions look qualitatively similar, evenhigh frequencies, but poor for intermediate frequencies,
away fromR. where the MC data take on negative values. This disagree-
ment is probably due to the procedure for calculating)
during a half-period in which shrinking droplets are present

As in the SD cas¢50,52, from a log-log plot of the loop the system(see S_ec. Y _ o
area versus frequency one can extract effective exponents AS for the SD regim¢50], the physical significance of the
from the data over nearly two decades irR1MHowever, integralsA andB can be clarified by comparison with linear
these effective exponents depend strongly on the frequend{SPonse theory. One can easily find thei(7H3) and
range in which the fit is performed. Very small effective 2B/H3 correspond to the dissipative and reactive parts of the
exponents that appear consistent with this picture were resomplex linear response function, respectively. It is therefore
cently reported by Suemt al. for ultrathin Co films on natural to combineA and B into an analogousonlinear
Cu(001) [38]. response function

As for the SD regime, we stress that the asymptotic low-
frequency behavior described by E@.9) would only be

(A)Lr=3Eo(T)[~IN(DHow)] . (6.9

seen forextremelylow frequencies, where the dotted and R 1 i
dashed curves in Fig. 9 come together. Therefore, due to the X(Ho, T,w)= — 2B+ ;A}- (6.10
dependence dfl pgpon L the crossover to SD droplet behav- Ha

ior will occur at frequencies much larger than those for

which this asymptotic expression is valid even for latge ]

For a system size df =10° the ratio of the full numerical The frAequency dependence of the norm of this response func-

solution to the asymptotic expression is approximately twdtion, |X|, is shown in Fig. 12. The maximum iA (Fig. 8

near the crossover frequency, which for that system sizand the sign change iB (Fig. 11, which occur close to-

would be near R~6x10°. gether in frequency, are characteristic behaviors of dissipa-
Relatively few studies have considerBdthe correlation tive and reactive parts of a response function near resonance.

of the magnetization with the external field. Our theoreticalThe behavior of A) and(B) in this frequency range is very

derivations ofB are analogous to those fér The probability ~ similar to that observed in the SD reginig0], where we

densities oB in the MD regime are shown in Fig. 10. Figure associate it with stochastic resonarj®]. Whether or not

10(a) shows the probability densities for several valueRof this name is appropriate for the low-frequency synchroniza-

between 2 and 200. The source of the roughness of the digon of m(t) with H(t) in the MD regime is probably a

tributions at the lowest frequencies is the same as in Figmatter of taste. Although the overall fluctuationsnit) are

7(a). Figure 1@b) shows the probability densities for a small, the switching is entirely driven by random nucleation

frequency near the transition fdr=64, 90, and 128. The on a microscopic scale.
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FIG. 12. Mean and standard deviation of the norm of the re-
sponse functiorj5(| vs the scaled frequency R/ The data points
are obtained using the loop-area and correlation data in Figs. 8 anc
11. The solid curve is obtained using the theoretical valuegAdr
and(B) in those figures.
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VII. DYNAMIC PHASE TRANSITION

Although nonequilibrium phase transitions have been
studied for over two decades, the understanding of their uni-
versality and scaling properties remains much weaker than
for equilibrium critical phenomena. Finite-size scaling is
routinely used to determine the location and critical expo- **
nents of equilibrium thermodynamic phase transitions from
numerical results for finite systenjg2,91. A true phase
transition occurs only in the thermodynamic limit, i.e., as the =
system size approaches infinity while the energy and particle B N _ _
densities are kept constant. For simulations on finite systems, FIG. 13. Probability densities of the period-averaged magneti-
quantities such as the susceptibility and specific heat onlgationQ=(w/2m)$m(t)dt. (a) L=64. The values oR shown are
display a bounded peak, rather than a divergence, as a funl® S8me as in Fig. 7b) L=90. The values of the scaled period

tion of temperature or field. However, for simulations per—s_hf;"én '?LzR:a?ﬁSjiﬁﬁg’ssélsé d3.p7e5r’io?j'853hso’wt ;rld35§) 4;6
formed on larger and larger lattices, thermodynamic quanti- R.,. 3.5, 3.612, 3.693, 3.721, 3.75, 4, 5, 7, and 200. The unimo-

ties approach_the_ |n_f|n|te-s_|ze I_|r_n|t. It is this f’ipprof’;\ch to thedal distributions for the smalle&value in(a) and(c) are due to the
thermodynamic limit that is utilized to obtain estimates off. o -
o . . inite simulation time.

the critical exponents from various system sizes.

Second-order phase transitions in equilibrium systems are

X - and

characterized by a set of critical exponents, each of which
describes the behavior of a different quantity at the critical

point. Three of these quantities and their associated expo-
nents ard92] the order parameteM ~|t[? for t<0), the . .
¢92] P M=l ) wherex{~“"is the maximum value of the susceptibility for a

susceptibility f~[t]""), and th_e correlation_ length £( givenL, and{|M|"), is thenth moment of the norm of the
~|[t|™"), where~ denotes “the singular behavior of.” The order-parameter &k, .
field conjugate to the order parameter is understood to be The period-averaged magnetizati@nhas been proposed
zero, andt=(T—T.)/T, is the reduced temperature. Finite- as a “dynamic order parameter” for systems exhibiting hys-
size scaling theory allows one to estimate the critical expoteresig55,57—-62,6@ Those studies of the Ising model have
nents by measuring the system-size dependence of variogsiggested the existence of a dynamic phase transition be-
quantities. Combining the expression for the correlationtween an ordered dynamic phase w{f|)>0 and a disor-
length exponent with the finite-size scaling assumptiondered dynamic phase witf{Q|)~0. Figure 13 shows the
E(T.(L))~L, gives probability densities of in the MD regime forL =64, 90,
and 128. For each system size, as the frequencii (@)

| Te(L) = TeloeL ™, (7.)  decreases, the probability densities @change from bimo-

) ) _ dal distributions with the two peaks each centered around a
whereT,(L) can be defined as the location of the peak in thenonzero value of, to unimodal distributions with a peak
susceptibility for a givert. [72,91. When combined with the  aroundQ=0. Each of theQ distributions shown in the three-
definitions for the critical exponents, E(.1) gives dimensional Fig. 13 is a histogram &f time-series values

S (see Fig. 3 at a particular frequency. These distributions

XL =L (7.2 suggest the presence of a second-order dynamic phase tran-

0.5

(IM|)y e LA, (7.3

peak
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FIG. 14. Mean of the norm of the period-averaged magnetiza- ITI;;‘-.flS. Orderﬂ-?;/)arime‘t%r_ flugtuagoﬁg—L \_/ar(|r(3|) YS the
tion vs the scaled frequencyR./ The finite-size effects are clearly swcael. requelr;cyl 'fT e disor .gre f Knamlckp as;}e <‘|,(Q|3 d
seen for frequencies in the neighborhood of the dynamic phaswo) les on the low-frequency side of the peaks. The “ordere

transition. The arrow indicates the approximate value of the criticaﬁyn?m'c phase” (|Q[)>0) I_|es on the hlgh_-fre_quency S|de._ The
statistical error bars are estimated by partitioning the data into ten

frequency 1R, . Lines connecting the data points are guides to the
eyg Y Ber d P g blocks. Error bars smaller than the symbol sizes are not shown. The
' arrow indicates the approximate value of the critical frequency

sition. In particular, the frequency dependence for thes@/Rer- Lines connecting the data points are guides to the eye.

probability densities is strikingly similar to the dependence

on inverse temperature for probability densities of the equi-d tThe .c_umutlr?ntl mtet_rsectl;)n methdgz,%]] 'S{ use{gl forh
librium magnetization in the zero-field Ising model. We etermining the location of a second-order transition when

therefore identify the norm of the period-averaged magneti:[he critical exponents are not known. In order to estimate the

zation, |Q|, as the order parameter of the dynamic phaséor%atr'on ,?: Thﬁttrragsmon we define the “dynamic” fourth-
transition, and we apply finite-size scaling theory in analogyO er cumuiant ratio

to the scaling theories used to quantify second-order phase (%
transitions inequilibrium systems. Figure 14 shows the av- L=1- —L, (7.5
erage norm of the period-averaged magnetizati@|), for 3(|QI%¢

the same system sizes as in Fig. 13. This figure clearly sug-
gests a DPT as the average order paramg@®}) changes where{|Q|") = [5|Q|"P(|Q|)d|Q|. Figure 16 showsJ, vs
from a value near zero to a nonzero value. Rather than &/R for the same system sizes shown in Fig. 15. Above the
sudden change in the order parameter, the transition region igansition frequency, in thgQ|)>0 ordered dynamic phase,
“smeared” out due to finite-size effects. The mean and stanu, approaches, corresponding to two narrow peaks cen-
dard deviation fofQ| are system-size dependent as well. Wetered at +(|Q|). Below the transition frequency, in the
guantify these finite-size effects below. (|Q|)~0 disordered dynamic phase, approaches 0, cor-

At a second-order phase transition there is a divergence iresponding to a Gaussian centered at zero. At the transition,
the susceptibility. For equilibrium systems, the fluctuation-the cumulant should have a nontrivial fixed vallg .
dissipation theorem relates the susceptibility to fluctuationsherefore, the location of the cumulant intersection gives an
in the order parameter. For the present system, it is not okestimate of the transition frequency without foreknowledge
vious what the field conjugate @ might be. Therefore, we
cannot measure the susceptibility directly. However, we can
calculate the variance ifQ| as a function of frequency and
study its system-size dependence. We defiras

X=L2Var(|Q|)=LZ({Q*»—(|Q)?]. (7.4

If the system were to obey a fluctuation-dissipation relation, =

X would be proportional to the susceptibility, and both would ~ %*
scale withL in the same manner. Figure 15 sho)ss 1R
for all three system sizes. For all three value oX displays

0.6

05

02 ¢

a prominent peak near the transition frequency, which in- o * i
creases in height with increasihgwhile no finite-size effect
is seen at lower and higher frequencies. This finite-size effect 02 025 03 035 04 045 05

in X implies the existence of a divergent length associated 1R

with the order-parameter correlation function near the dy- FiG. 16. Fourth-order cumulant ratid, vs scaled frequency
namic transition. The observation thB(|Q|) displays no  1/r, for L=64, 90, and 128. We use the same symbols as in Fig.
peak neafQ|=0 in the ordered dynamic phase is additional 15. The horizontal line mark&), = 2. Lines connecting the data
evidence of the second-ordé&s opposed to first-ordena-  points are guides to the eye. Inset: area close to the cumulant cross-
ture of this transitiorf 93]. ing at 1R,~0.2910.
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of the critical exponents. Due to the large spacing of our dataf our data however, our exponent estimates are also not
and possible correction-to-scaling effects, we cannot identifynconsistent with the universality class of two-dimensional,
a unique intersection point. We estimate the location of theandom percolation (8/v=5/48~0.104,y/v=43/24~1.79,
intersection by the crossing for the two largest system sizeg=4/3~1.33. Combining the exponent estimates we find
nearR_,'~0.2910 Rcr~3.43§) withUL=U*~Q.61. This.is 2(Blv)+ (ylv)~2.06~d. (7.9
close to an extremely precise transfer-matrix calculation of
U*=0.610690L(5) [94] as well as MC estimatg®5] for ~ This relation between the measured exponent ratios indicates
the two-dimensional Ising model in equilibrium. However, the consistency of our scaling procedures, and thus strength-
as recently pointed out by Luijten, Binder, and ®¢96],  ens our belief that the dynamic transition is a genuine, con-
the value of the cumulant intersection should not be taketinuous phase transition. If the divergent length is indeed the
too seriously unless a sufficient range of system sizes igorrelation length that describes the order-parameter correla-
available. tion function, then Eq(7.9) is a hyperscaling relation. The
With our estimate for the transition frequency, we canDPT critical point then should be a nontrivial fixed point in
now approximate the critical exponengs y, andv charac- the renormalization group sense. Based on the evidence pre-
terizing the transition by using Eq&.1)—(7.3), replacingT, sented in the following paragraph, we .bt'ellieve this is the case.
by Re, xP*®by XPe2 and(|M|™, by (|Q|"). . To extract One should also consider the possibility that hyperscaling
exponent estimates using these relations, we use a methiyviolated and the DPT represents a mean-field critical point.
sometimes referred to as “phenomenological renormalizal N€ divergent length would then be the “thermal length”

B

14

tion” [91] of the MC data. This method consists of estimat-L72,98, whose divergence is governed by the exponent
ing an exponent by using two system sizkg, andL. The (2B+ y)/d. This would then be the exponent we have called
following example is a derivation of an exponent estimate »»~ and Eg.(7.9) would hold exactly as a tautology. How-
for Bl v: ever, our estimates fg8 and y are far from those of a mean-
field * model (8=3 and y=1). Likewise, our estimated
{(QI"p. (bL)~N&M gl cumulant crossind)* ~0.61, is far from the expected mean-
(1QI™. * L —n(BIv) =b ' field value,U* =1—T"%(3)/(247?%)~0.27[96,97. Further-
more, if the phase transition were to be mean field in this
which yields two-dimensional system, it should have to be induced by
some effective long-range interaction, which then should
QML have the same effect in one dimension. However, explor-
—In N / Inb=n| —|+0O(1/Inb). (7.6  atory MC simulations indicate that the one-dimensional Ising
(I model in an oscillating field does not have a dynamic or-
Similar relations can be found for the other exponent ratiosdéréd phas¢98]. The evidence summarized in this para-
graph makes it extremely unlikely that hyperscaling is vio-
ypeak lated by the DPT.
In{ bL ] / Inb= Z+O( 1/Inb), (7.7 The consistency of the estimates wofrom the positions
Xpeak v of XP®¥and the high-frequency zero crossing (&) indi-
| | cates that this zero probably occurs at the DPT. The two
Re(bL) —Rc zeros of (B) are clearly separated in frequency, and our
n[ |IR.(L)—R| }/ Inb=;+0(1/lnb). (7.8 finite-size scaling results indicate that they remain so as
L—oo. The low-frequency zero is associated with the maxi-
In the large-system limit these exponent estimates will benum in (A). These observations enable us to answer the
linear when plotted vs (Ib)"1. Then one can extrapolate to question recently raised by Acharyy82] of whether the
the infinite-size limit by performing a linear fit of the data to DPT corresponds to the maximum {A). It does not.
find the intercept at (Ib) '=0. Simulations with larger sys- To further illustrate the nature of the dynamic phase tran-
tem sizes would be computationally prohibitive, and smallersition, the finite-size effects in the distributions for the norm
system sizes would no longer be in the MD regime. Withof the order parametetQ|, are shown in Fig. 17. These
data for only three system sizes, the exponent estimatgsobability densities fofQ| are the symmetrized versions of
obtained using the two largest system sizes are easily shovgelected distributions shown in Fig. 13. Distributions in the
to be identical to those obtained using the extrapolatiorordered dynamic phase region, i.e., above the transition fre-
procedure above. We calculate two sets of estimateg/tar  quency, should move toward a constant, nonzero value of
one using the scaling relation for the second moments ofQ| and become narrower with increasihgThis is seen in
the order-parameter distributiom2) and the other using Fig. 17a). For this frequency, the distribution @ for L
n=4, obtaining (B/v),-,~0.111 and B/v),-4,~0.113. =90 is highly asymmetric about zero, and for=128 the
Our estimates for the other exponents afe~1.84 and distribution is unimodal. This gradual loss of symmetry with
vr~1.1. Also, we obtained an independent estimate for théncreasingL is due to the finite length of the simulation time
exponenty by measuring the finite-size effects in the loca- series, but it does not adversely affect our ability to analyze
tion of the high-frequency zero crossing(iB). The estimate  P(|Ql). The distributions in Fig. 1(b) are in the disordered
obtained isy~1.09, in good agreement with that obtained dynamic phase region, i.e., at a frequency slightly below the
from the location ofXP®3 Our results are close to the two- transition frequency. Due to finite-size effects, however, the
dimensional Ising values for the analogous exponent ratiodistributions forL=64 and 90 appear to be centered about
(Blv=1/8=0.125,y/v=7/4=1.75,v=1). Given the accuracy nonzero values ofQ|. The distributions in Fig. 1¢) are
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35 ‘ FIG. 18. Scaled probability densities p®| for three system

sizes. The same symbols are used as in Fig. 15. The scaling func-
tion isL™#"P(|Q|) vs L#"*|Q|, and the value of the scaling expo-
nent used is 8/v),-,~0.11. The scaled frequency of the field is
1/R=0.291C~1/R,,. Lines connecting the data points are guides to
the eye.

P(QD

finite-size scaling that are too large for these relatively small
system sizes. Also, the lack of scaling for the peak heights
could be due to the asymmetry B(Q) near the transition.
The results in this section clearly show that the statistical
properties of the order paramet@rexhibit finite-size scal-
1 ing, and that scaling techniques developed for estimating the
critical exponents for second-order phase transitions in equi-
6 ‘ librium systems apparently can be successfully applied to
estimate the exponents associated with the dynamic phase
5 () Ry ~0.2910 X transition. While these scaling relations are concerned with
e Lot LR |Q|, it is worth mentioning that one may also measure the
fluctuations in the other two quantities measuradand B.
Figure 19 shows the fluctuations fér and B, defined in
analogy to the order-parameter fluctuati®n The fluctua-
tions in A seem to show slight finite-size effects, as the peak
positions appear to be approachiFig1 with increasingL.
One might speculate that this could indicate thés coupled
to energy fluctuations which are logarithmically divergent, as
they are for the two-dimensional Ising model in equilibrium.
7 The fluctuations irB show no significant finite-size effects.

P(QN

121

FIG. 17. Probability distributions for the norm of the period- VIIl. DISCUSSION

averaged magnetizatig®| for a frequencya) above the transition,

1/R=0.333; (b) below the transition, =0.25; and(c) near the The mechanism by which a metastable phase decays de-

transition, 1R=0.2910. Lines connecting the data points are guidepends sensitively on the system size, the temperature, and the

to the eye. strength of the applied field. For large systems and moder-
ately strong fields, the decay proceeds through the nucleation

near the transition, and should scale with system ki2&/e  and growth ofmanydroplets of overturned spins in different

assume that the mean of the order parameter scalesLwith parts of the system. This regime has been termed the multi-

and define the scaling variabl'é:LB’V|Q|, Hence the droplet(MD) regime. In this regime the magnetization re-

scaled probability density fdiQ| is given by sponse in a static field is described by the KIMA approxi-
mation(Avrami’s law), which assumes the presence of many
ﬁL(Q)zL*ﬁ/quQD, (7.10 noninteracting, overlapping droplets. Theoretical predictions

by a generalization of the KIMA approximation, in which a
where the prefactor ~#/” ensures conservation of probabil- time-dependent nucleation rate and droplet interface velocity
ity. Figure 18 shows this scaled probability density. The pealare used, agree well with simulations for quantities like the
positions scale fairly well, the peak heights less so. Thisaverage hysteresis-loop area and correlation, especially at
could be due to the following reasons. The frequency mightow driving frequencies. The time dependence is included
be sufficiently far from the transition that single-parameterin the theory by replacing the constant fieltl by H(t)
scaling is not adequate, and there might be corrections to the —Hgsin(wt). This central idea provides the analytic
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titative difference between these PSD’s and those in the or-
dered dynamic phase region.

We also calculate the hysteresis-loop afeand the cor-
relationB for a wide range of frequencies. Because of its role
as a measure of the energy dissipation in the system,a
quantity of particular experimental significance. For all fre-
guencies, the loop-area and correlation distributions are uni-
modal due to the almost deterministic magnetization re-
sponse in the MD regime. Our theoretical predictions for the
frequency dependence ofA) and (B) use the time-
dependent extension of Avrami’s law to calculaté), from
which the loop area and correlation are calculated explicitly.
IR ' ' The assumption is that the(t) values calculated for single
period accurately describe the average value#\ @ind B
over a long simulation time series. This assumption should
be expected to break down most significantly for frequencies
near the dynamic phase transition, where the fluctuations in
the magnetization response are largest. This is clearly seen in
Figs. 8 and 11, where the least satisfactory agreement be-
tween the theory and the MC data occurs for frequencies
near the dynamic phase transition. For the low-frequency
regime we obtain an analytic expression {&). Our theo-
retical calculation agrees well with our MC results, and pre-
dicts anextremelyslow crossover to a logarithmic depen-
dence of the loop area diyw. The switching dynamics is

0 07 02 03 0l 05 dominated by nucleation, and indicates no overall power-law
1R dependence for the loop area on field amplitude and/or fre-

FIG. 19. (@ L2var(A]) vs scaled frequency B! (b) quency, in contrast to what has. been claimed in.other simu-
L2var(|B|) vs scaled frequency R/ In both parts, the lines con- Iatlo.nal and e>'(per|mental studies. We emphaSIZ_e that.nu-
necting the data points are guides to the eye. merical analysis of data generated by our analytic sqlutlon,

even over two or three frequency decades, could easily lead

to the conclusion that the data were taken from a power law.
framework for our theoretical descriptions of quantities mea-Qur simulations reveal that for frequencifess higher than
sured from the MC simulations in the MD regime. The the-those at which the asymptotic logarithmic dependence would
oretical calculations and the MC data agree very well, espebe observable, a system-size-dependent crossover from MD
cially considering that only one adjustable parameter igo SD behavior occurs. This novel frequency dependence for
needed, which was measured from a particular hysteresi is a consequence of the field dependence of the SD and
simulation R=200). All of the other constants used are MD decay mechanisms. As the frequency of the field be-
either known from droplet theory or were measured for MCcomes sufficiently small, the system is subject to fields
simulations of field reversal in kinetic Ising models. To the smaller tharHps(T,L) for a sufficiently long time, so that
best of our knowledge, the work reported here is the firsSD decay usually occurs before the field becomes large
which explicitly considers hysteresis for the Ising model inenough for MD decay to happen.
the MD regime. The period-averaged magnetizatiQihas been proposed

We compute the power spectral densities from the simuas an order parameter associated with the dynamic phase
lated time series, and qualitatively explain various features ofransition(DPT) in kinetic Ising models. The DPT is @on-
the spectra in the full frequency range from the lowest ob-equilibrium phase transition which occurs due to an explicit
servable frequencies to the rapid fluctuations due to thermdime dependence in the Hamiltonian, rather than the dynami-
noise. For low field frequencies, the system is in the disor<al rules governing the system. The probability densities that
dered dynamic phase, and the time series contain no largee obtain forQ clearly show that the system changes from
fluctuations. Consequently, the PSD’s are flat at frequenciean ordered dynamic phase with nonz€[®|) to a disor-
below the fundamental peak at the frequency of the fielddered dynamic phase withQ|)~0 as the field moves from
The significant power density in the low-frequency portionhigh to low frequencies. To distinguish this frequency-
of the PSD’s corresponds to the long-time behavior in thedependent change {1Q|) as a true second-order phase tran-
filtered time series fof. For high field frequencies, the sys- sition rather than merely a simple bifurcation, we measure
tem is in the ordered dynamic phase, and the time seriethe finite-size effects at the DPT and apply finite-size scaling
display long-time behavior as the system switches betwee(FSS techniques analogous to those used to measure the
thermodynamic phases. This corresponds to a large poweritical exponents which characterizguilibrium second-
density in the low-frequency portion of the PSD’s. Near theorder transitions. The measured exponemsr&0.11, v/ v
dynamic phase transition the PSD’s exhibit similar behavior~1.84, andv~1.1) are close to both the two-dimensional
in the low-frequency part of the spectrum. Due to insuffi-Ising and random percolation values, and they represent
ciently long time series we are unable to resolve any quanstrong evidence that hyperscaling is obeyed. Our success in

L? [(A%) —(AIY]




2728 S. W. SIDES, P. A. RIKVOLD, AND M. A. NOVOTNY PRE 59

applying FSS techniques borrowed from the theory of equiwe note that the quantities that we have analyzed numeri-
librium second-order phase transitions to this nonstationargally could all be measured in experiments on hysteresis in a
nonequilibrium problem suggests the possibility of mappingvariety of systems and analyzed by methods essentially iden-
other suitably defined quantities for this system to thermodytical to our analysis of the MC data.
namic entities, such as the field conjugate to the order pa-
rameter, the specific heat, and the correlation length. Such a
nonequilibrium thermodynamic theory for steady states as
been attempted by Paniconi and Ode8]. Thanks are due to M. Acharyya, P. D. Beale, G. Brown,
In future work we plan to analyze longer simulations onW. Janke, W. Klein, M. Kolesik, G. Korniss, R. A. Ramos,
larger system sizes to determine more accurately the values. L. Richards, H. Tomita, and J. Vais for helpful discus-
of the exponents and the location of the DPT. This includesions. S.W.S. and P.A.R. appreciate hospitality and support
measuring the possible finite-size effects in the probabilitfrom the Colorado Center for Chaos and Complexity during
distributions of the energj65], which might be related to the 1997 Workshop on Nucleation Theory and Phase Tran-
the finite-size effects seen in the fluctuations An If a  sitions. This research was supported in part by the Florida
fluctuation-dissipation theorem could be shown for this sysState University Center for Materials Research and Technol-
tem, the order-parameter and energy fluctuations could begy, by the FSU Supercomputer Computations Research In-
related to a nonequilibrium susceptibility and specific heatstitute, which is partially funded by the U.S. Department of
respectively. Another important question left to future studyEnergy through Contract No. DE-FC05-85ER25000, and by
is if and to what extent the exponents depend on the tenmthe National Science Foundation through Grant Nos. DMR-
perature and field amplitude. While the critical frequency9315969, DMR-9634873, DMR-9520325, and DMR-
will almost certainly depend on amplitude and temperature9871455. Computing resources at the National Energy Re-
the critical exponents would most likely not if the DPT in- search Scientific Computing Center were made available by
deed represents a new “dynamic universality class.” Finally,the U.S. Department of Energy.
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