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Growth models and the question of universality classes
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In the past many papers have appeared which simulated surface growth with different growth models. The
results showed that, if models differed only slightly in their “growth” rules, the resulting surfaces may belong
to different universality classes, i.e., they are described by different differential equations. In the present paper
we describe a mapping of “growth rules” to differential operators and give plausibility arguments for this
mapping. We illustrate the validity of our theory by applying it to published reqi8t8063-651X99)05603-2

PACS numbg(s): 68.35.Ct, 68.35.Dv, 68.55a

I. INTRODUCTION where is a noise term with zero medne., »=0) andF is
the flux rate of incident particles. For the particular case,
During the past few years the kinetic roughening of sur-ysually considered in the literature, thatis a constant we
faces has become a field of increasing interest. In particulaubb,[ain h=Ft. The last result is only true if there are no
many papers have appeared concerned with computer SimUécancies in the system. A similar res{idtt with F replaced

lations of surface growtisee, e.g., Ref1). by a larger entityF’ say would also hold, if the vacancy

In general, the surface is characterized by a hefgap- concentration stays constant over time, i.e., in this case we
propriate to al dimensional substrate of site The width of y T

the surfacew(t,L) at a timet is characterized byv(t,L) woul_d again h_aveh:F’t. However, for such a situation the
B \/ﬁ starting equation would not be equal to ER), andF’'#F,
= N (h)"— ()" where the bar denotes an average. If the réy,q jycigent flux. In general, the form of the starting equation
suItmg lsurfalg:e IIS self-affine it can be represented by a dyi"or situations where vacancies and overhangs occur is far
hamical scafing law, from obvious and is a problem we will return to later. Before
we can answer such questions it is pertinent to address a far
w(t,L)~ L“f(l) (1) simpler problem. Namely, what type of deposition process is
’ z|’ Eq. (2) applicable to anyway? One class of such processes is
the so called SOS models in which particles are deposited
where the functionf(x)— constant forx—o and f(x) randomly at lattice sites, i.e., a number is chosen at random
~xB, with 8= alz asx—0. The unit of time corresponds to and the number of particles at the site characterized by that

depositingL particles. For models which do not contain va- Number is increased by one. This is usually referred to as
cancies or overhangs, so-called solid on solid mot®®S, (pure random depositiofRD) and corresponds to a constant

this means that the average heighand the timet are iden- 2:;]); g tvr\]'gh dz rg;?g dma?gﬁs ;?;n?\.oiwgrﬁrt?;c;[otc;t r?)z&usre
tical. The exponentg, 8, andz determine which universal- P P

ity class the given model belongs to. In the present paper Wge” known that the interface width fdpure RD increases

wish to examine the implications of some of the standardndeﬁnitely with time, i.e., the associated surface is not self-

assumptions in the theory, and in particular to provide aaffiareatwe[ltlg the consequence that the width itself does not

. : . sa
mapping of prescribed rules of growth to the correspondlngS A variant of (pure RD is to allow the particles to move

differential operators appearing in the associated stochasti )
growth equations. Stter they have been deposited. Two types of movement are

possible. One is “horizontal” movement in which the height
of the moving particle does not change, and the other is
Il. THEORY AND DISCUSSION vertical movement in which the height of the particle does
change. With regard to the latter there are two possible types.
One is upward vertical movement in which the height of the
The dynamical evolution of a surface prior to any move-particle increases and the other is downward vertical move-
ment of the deposited particles is presumed to be describagient in which the height of the moving particle decreases. In

A. Simple growth systems

by the equation order to complete the rules of growth with regard to the
“allowed” moves we need to specify the conditions under
dh(x.H) —F+ 7(x,t) ) which horizontal or vertical movement is terminated. We

ot K will refer to these collectively as “sticking rules.”

In what follows we will show that what superficially ap-
pear to be “trivial” or “obvious” rules of movementoften
*Present address: Instituf rftExperimentelle und Angewandte designed for convenience of implementation on a comjputer
Physik, Universita Regensburg, 93040 Regensburg, Germanycan have extremely subtle implications for the resulting
Electronic address: hermann ketterl@physik.uni-regensburg.de mathematics(and, in particular, the associated differential
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equations purporting to model the resulting surface struc- ah IG
ture). Furthermore, we will show that the implications for the —=F+—+1, )
mathematicgeven for the same set of rulesan be different

dependent on the dimensionality of the surfd€einder con-  whereG is, at this stage, some unspecified function. A com-
sideration. puter model ofd’ =1 RD plus surface relaxation was evalu-
We examine ad'=1 surface, i.e., a two-dimensional ated by Family[2] many years ago. According to this author
structure @=2) having ay axis (the height and anx axis  the resulting surface was self-affine, i.e., was described by
(the coordinate defining the position along the surfade  Eq. (1) with the value of the parametets, 3, andz being
possible set of rules is the following. Permit the particle to beindependent of the maximum number of lattice siteser
displaced horizontally up to a maximum oflattice sites  which a particle was allowed to move horizontaily point
provided always that there is another particle immediatelyyve will return to latey. Furthermore Family2] found that

below it. If such a situation always prevails, then at the endhe Sca"ng properties of the surfa@® equi\/a|ent|y' the val-
of thel moves leave the particle where it is. If, on the otheryes ofa, 8, andz) were consistent with the choice
hand, in the course of making these moves the particle en-
counters a gap, then allow it to move vertically down until it oh
reaches a position where there is again a particle immedi- G= Voax ©
ately below it at which point the particle movement is termi-
nated. Similarly, if in the course of making up tonoves, it  with v constant.
meets another particle on the same level all movement is The resulting equation,
terminated.
Itis clear that surface relaxation processes involving such ah #°h
SOS movements have the effect of changing the noise term ot Ftv—+7, @)

2
7 in EQ. (2) to a new valuen’. Thus this situation could be x

described by the equation is well known in the literature and is referred to as the Ed-
wards Wilkinson(EW) equation[3]. It is important to note
dh —Et 3 exactly how the mapping of the horizontal and vertical mo-
ot - ®) tion onto a differential operator occurs in E@). The entity
v(9°h/9x?) (with v positive correspondgas shown in Fig.
Such an equation, although correct, is of little use from anl) to @ movement of particles from the top of a “hill” to the
analytical viewpoint because we do not know the form of thebottom of it, i.e., a flattening of the hill. In other words it is
noise term’. However the essential characteristic of SOSconsistent with movements both horizontally and vertically
movement that we can make use of is that it leaves the avownwards. This manifests itself clearly in that model of
erage height of the surface unchanged. In effect one latticEamily [2] in which all possible downwards moves of a par-
site loses a particle and another lattice $itdich could be ticle are allowed to occur, and the particle moves to the
anywhere up to a distandeaway horizontally gains one. hearest-neighbor position only in the horizontal movement

This suggests that we write the noise tephin the form (i.e.,1=1). The form of the associated surface is shown in
Fig. 2. Examination of the latter shows that the “vertical”
G separation of nearest-neighbor columns is also small for this
7' =n+ T (4) situation. Hence the model leads self-consistefatya result

of the rules of movementto a situation where both small

. ) horizontal and downward vertical motion is the norm. Thus
whereG is any (well-behaved function we care to choose. ¢ sityation were all possible downward motion is permitted
The reason being that the act of averaging over a filit®  y, qccur with 100% probability is replicated in the math-
large number of discrete particles is deemed as be'”%matics by the differential formr(#2h/x?) (Fig. 3.
equivalent(in a continuum descriptiorto the act of integrat- This having been established we now return to the claim
ing and then dividing by the “length” of the region of inte- by Family [2] that the parameters, B, andz are indepen-
gration. Consequently, expressing the change in the noise nt of the magnitude df To see iha’t this cannot possibly
a divergence mearat least in the limit that the length of the be true let us take d’ =1 surface of length. and allow the
system becomes infiniighat the average o’ is zero(just number of horizontal moves to be up to a maximumLof

like 7). This then gives the formal result For such a situation it is clear that we will obtain layer by

_ layer growth—the reason being the following. During the

h=(h)=Ft, first monolayer coverage “islands” will develop of sig

say. With increasing coverage it becomes increasingly prob-

which is known to be correct for SOS mode{@ne might able that the next particle added will be on one of these
note that, strictly speaking, this result is not “exact” for a islands. However, if the particle is alloweld horizontal
finite system since the divergence term integrates to a smathoves, it will migrate readily to the edge of the island, go
but finite entity. Such “errors” are an inherent feature of the over the side and then adhere to the rim of it, thus extending
modeling of finite systems by continuum differential equa-the size of the island. There are several important results to
tions) Thus, for SOS models invoking “surface relaxation” be deduced from these considerations. First, if we have a
we expect the generalization of the equation of motion Eqsurface of total length., then as long as we allow horizontal
(2), for (pure RD to be moves up to some maximuhsay, we may well find a series
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FIG. 2. Surface for RD plus relaxation after Famitgken from
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05 . . . . well known, such a model does have overhangs and vacan-
0 20 40 60 80 100 cies present in it. Consider nefpure BD plus surface re-
X laxation. The specification of the latter is the following. If
e 1.0 there is another particle immediately beneath the one under
S 05 consideration then no movement occurs. On the other hand,
S 0.0 if there is no particle immediately beneath the one under
- consideration move the latter down until it comes into con-
P -05 N N . . . . .
‘o 0 0 40 80 80 100 tact with either the substrate or another particle which lies

immediately below it. At this point motion ceases. In other

FIG. 1. Differential operators acting on the functidr(x). words we are looking at a model of BD plus surface relax-
[+ (oh/ax)]? increases the particles at the side of the hill but doesation where the latter is defined to be vertical movement
not transport them to the top of it- (9°h/ax?) removes particles downwards. At this stage the extent of the movement down-
form the top of the hill and redistributes them to the sides andyards is ill defined. It is obvious that such a model of BD
bottom of it. —(4*h/ox?) is similar to the previous case. plus vertical movement downward gives us exactly the same
+(3%19x)(9hl 3x)? moves particles from the base of the hill to the and result agpure RD. Hence the equation of motion for
top of it. BD plus vertical movement downwar@r pure RD is Eq.

(2). However, the interface width for such a situation in-
of surfaces belonging to the same universality class. Howgreases without limit and hence, after an infinite time, the
ever, this can only be true as long kss less than some width is infinite. Correspondingly the vertical movements
fraction of the total “length” L of the surface. Oncéex-  gownward must be infinite. What this shows us is that when
ceeds this fraction, an increasing number of islands will coaye define the rules of movement for BD plus vertical relax-
lesce and we will very quickly obtain layer by layer growth. ation, we have no idea of the extent of the vertical move-
In short, dependent on the size of the system, universalityhent. However, the model, when evolved self-consistently
classes will only be obtained if we permit a limited number gccording to these same rules, shows us that the motion in
of horizontal movements only. The precise number is ill de-
fined at this stage, but typically in the literature this number
is chosen to be 1 or 2 only.

B. Surface relaxation involving vertical
motion downwards only

We consider next vertical motion and, in particulgyre
ballistic deposition(BD). In such a model one imagines the
particles being deposited vertically onto a substrate in a ran-
dom sequence. The rule of movement is to move vertically
down until the particle meets another particle. The latter can
be either directly underneath or at the side of the moving
particle. In either event movement is then terminated. As is FIG. 3. Growth rules of Family.
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the vertical direction is unlimited. Furthermore, althoughdealing with essentially pure RD. This is because the inter-
vertical movement is occurring, the equation of motion, i.e.,face width in the early stages of growth will be much less
Eq. (2), does not contain any differential operators, the structhan 100 lattice spacings. Hence initially we will have a SOS
ture itself is free of vacancies and the surface is not selfpure RD growth mode in which there are no vacancies
affine. present in the structure. For this stage of the growth the
governing equation will be Eq2). However, as we know,
1. Surface relaxation involving vertical motion upwards only  the interface width grows without limit fofpure RD and a

Let us consider next a variant on this model but this timeStage will eventually be reached at which the interface width
involving upward motion. In essence, the previous modePPpProaches and then exceeds 100 lattice spacings. Once this

started from(pure BD allowed vertical motion downwards ©OCccurs a situation will develop where some of the downward
and ended up witipure® RD. We will now consider the vertical motion will leave vacancies in the structure, i.e.,
converse, i.e., we will start wittipure RD allow vertical ~S0me of the downward motion will not be SOS. For such a
motion upwards and end up witpure BD. Thus the rules Situation we would expect from our earlier considerations
of motion are the following. Choose a random number anghat the form of the equation of motion would change and,
add one particle to the corresponding lattice point. If theby analogy with the previous case, we might anticipate non-
added particle has no neighboring points occupied by pa,ljnear terms to appear in it. The hybrid nature of the present
ticles to a higher level, then leave it where it is. On the othelc@Se from the earlier viewpoint of describifmure BD start-
hand, if the added particle finds higher columns next to it\nd from (pure RD is that only some of the particles having
move it up the side of the highest such column until it isigher columns next to them are eventually moved up, and

level with the top most point. Again at this stage we have ngEVen then they are only moved part of the way up the col-
idea of the extent of the upward motion that will ultimately Y4mn- _ _ _ _

be involved in such a model. It is well known of course that 1 he essential point here is the following. We started from
(pure BD, which is in essence the model we are describing,a model with well defined rules of movement. In the early
leads to a surface width which ultimately saturates. In turrStages of growth, the resultant structure was defect(free
this means that the upward motion is in fact finite and deter0 vacanciesand was described by a particular equation.
mined by the surface width. Furthermore, the associateflOWeVer, as a self-consistent result of the rules of move-
equation of motion for the surface is well known. However Ment, the surface eventually evolves according to a different
we deliberately refrain from writing it down at this stage for differential equation from the one describing the earlier
reasons that will be apparent later. Suffice it to say that oupt@ges of growth. During the second stage of growth defects
original starting point wagpure RD for which the equation (i.e., \_/acanue)sdo occur in the structure and the resulting
of motion is Eq.(2). We then included what turns out to be _eq_uatlon would be ant|C|pa_1te_d to contain nonlinear terms. It
finite upward motion. The latter can, apparently, be deS important to stress that it isot the case that the equation
scribed by adding two differential operators to Eg). One of motion is the same throughout all the growth, but with a
of these turns out to have the same form as that given in EroSS-over from one regime of dominance to another regime.

(7). However the other cannot be written as a divergenc ather different forms of equation are required to describe
term, i.e., it is a nonconservative term and is in fact repre{h€ evolution of the different stages of growth. What is more,

sented by a nonlinear operator. if we increased the maximum number of allowed downwards

Another interesting aspect of these two cases is the folértical moves from 100 to, say, 1000, the time during which
lowing. At the outset it is not apparent in either model justthe first growth stage was governed by pure RD would in-
what the extent of the vertical motion is. However, the mod-crease correspondingly. This shows clearly that the “cross-
els themselves evolve in such a way that the downward ve@VEr" time between the two regimes is governed by the
tical motion is unlimited in extent whereas the upward ver-number of vertical moves that are permitted to occur. Given
tical motion is limited. This shows that the rules of that(purg RD is not a self-affine surface, we can see that in
movement, which appear to be the “mirror image” of one general whether such a surfa@e., self-affing is ever seen

another, lead to models which evolve in such a way thato evolve in a finite time computer model can bg crucially
up-down symmetry in the growth direction is broken, i_e”dependent on the nature and extent of the permitted move-

motion downwards can occur to a significantly greater extenfnents.

than motion upwards.
C. Heuristic rules
2. Surface relaxation involving limited vertical motion

downwards only As a prelude to describing the proposed rules we consider

a simplified model that permits some insight into this ques-
When considering horizontal movement, we argued thation. Consider first pure random deposition in one dimension

the existence of universality classes, associated with surfacgnd the question of the change in the interface width follow-

relaxation processes, was in fact a consequence of the limitagg the deposition of one monolayer. The expression for the

amount of horizontal movement that was permitted to occurfinal height(h); reads

We will now examine the corresponding question of impos-

ing a limited amount of vertical movement downwards. Thus 1

we begin with a model which initially starts frofpure BD (he=r

and then allows a limited number of vertical moves down-

ward (i.e., a maximum of 100 lattice spacings sahitially, where(h); is the initial average height arld the length of

when “growing” such a model on the computer, we will be the substrate.

> (hi+1+7)

=(h);+1, (8




PRE 59 GROWTH MODELS AND THE QUESTION ® ... 2703

Similarly, edge. Yet again these are to be distinguished from the frac-
tion a3 of particles having a;=2. For generality we will
assume that the fraction of particles arg up to «,. [In
terms of the previous notatiormvE a1+ ay+ -+ a,)]. The
generalization of Eq(11) can be readily shown to be

1
(h)=g| 2 (hf+2hi+ D+ 2m(hi+ 1)+ 77,

ie.,
W=7+ (nf)+2a+2{as[(hi)g— (i)}

o +ag[(hi)og—(hi)ar ]+
It follows from Egs.(8) and (9) that the final interface
width w; is related to the initial interface widttv, by the +anl(hi)ng=(hi)nL]} (13)
relation

(h2)i=(h?);+2(h);+1+(7f). )

where, in an obvious notatioth;),q4((hi)n) is the average
w?=(h?);—(h)2=w?+(7?). (100  height of typen columns that gair(lose a particle. Once
again the effect of reducing all the, by the samefactor 8
If we now imagine a relaxation process occurring involv-will give the immediate generalization of the result described
ing the movement of particles downwards in which a fractionearlier. However, it is clear from the present equation that the
a of the columns lose a particle and a fractianof them  functional form of the equation remains unchanged only

gain one, a similar analysis leads readily to the result when all thea; are reduced in this way. As opposed to this,
s ) if the «; are all reduced by different factois;, then the
Wi =w; +(n7) +2a+2a[(h)g— ()], (1) functional form of the equation is changed. For such a situ-

ation it is far from obvious whether the resultant class of
moves belongs to the same universality class agfed (or
for a uniform value ofB). In the extreme case thg{=0 for
some of the moves, but exists for others, we would clearly
1 anticipate a different universality class. However, even for
<hi>|.—<hi>g=2—<7ii2>+1- (12)  the latter situation, it is not clear whether increasing the

o values that were previously identically zero to extremely
small values would change the universality class type, i.e.,

Since the noise terrfi.e., (77)) is fixed itis clear thatitwill ~ yhe stapility of the latter to small changes of movement type
be difficult, in general, to satisfy this equation on a layer byq ot presently known.

layer growth basis and that in general large fluctuati@rs
oscillationg about the “equilibrium” width will occur in
computer simulations on finite size substrates. Another im-
portant feature that is apparent from examination of [#8)

is the following. If, within a class of allowed moves, we  We form next a set of rules for which differential opera-
permit only a fraction8 of any given move to occur, we tors are to be associated with which situatisee also Fig.
would replacea by the fractiona8. This means that the 1). In the latter, following conventional wisdom, we have
entity on the left hand side of Eq12) would increase pro- considered four types of differential operators only namely,
gressively as we decreased the valuggofin turn this im-  (oh/dx)?, 9*hlox?, (6%19x%)(dhlax)?, and d*h/ox*. (As

plies that the corresponding interface width would increaseshould be clear from Fig. 1 the effect of such operators on a
Since allowed moves of a given class are presumed to b&symmetric hill” is symmetric—hence as long as the pre-
associated with a universality class of a particular type, thiscribed rules of deposition and surface relaxation possess this
implies that the interface width of the latter can be increasedeft—right symmetry one would expect such even order op-
continuously simply by reducing the probability of move- erators).

where(h;)4((h;),) is the average height of the columns that
gain(lose a particle. It follows from Eq(11) that saturation
will occur if the following relation is obeyed:

D. Heuristic arguments for the differential operators
appearing in the stochastic differential equation

ment uniformly for all allowed moves in the classlearly Our suggested rules are the following.
the range of possible values gf although undefined at this For surfaces whose interface width saturates:
stage, cannot be over the entire regiog 8<1 since, e.g., (i) For movement vertically downwardgurther refine-

B=0 gives the model involving no relaxation, i.e., exactly ment of these rules are presented latd) employ the op-
how smallB can be is not known at this stag@®ut alterna-  erator+ v(J%/9x?) if the rules of movement include all pos-
tively, this suggests that interface width alone is a poor indisible downward motion, (2) employ the operator
cator of the universality class since the prefactor of the term- (9% 9x*) if the rules of movement exclude certain
describing the time evolution of this width for such a class=2 particles.

can be increased by simply varying the probability of occur- (i) For movement vertically upwards$urther refinement
rence of all allowed moves in the class. It is revealing toof these rules are presented latét) employ the operator
pursue this argument further and to distinguish between the- y(sh/dx)? if the rules of movement involve the creation
various types of move contained within a given class ofof vacancies in the structure and correspond to maximal
moves. This can be done on the basis of the coordinatiomovemeni{with 100% probability of particles up the side of
numberv; of the particle prior to movement. For example, in columns but danot involve movement to the top of the ad-
the case ob;=1 we could distinguish between the fraction jacent columri.e., non-SOS models(2) employ the opera-
of particlesa; having av;=1 and sat on top of a column, tor \(3%/9x?)(dh/x)? if the rules of movement do not in-
from the fractiona, having av;=1 and sat next to a step volve the creation of vacancies in the structure and
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correspond to the movement of particlggith 100% prob-
ability) upward from the top of one column to the top of an
adjacent columri.e., SOS mode)s Note that upwards mo-
tion can, on its own, destabilize a surface, and for SOS re-
laxation needs to be counterbalanced by an equivalent down-
wards motion “current.”

For surfaces whose interface width does not saturate there
are at least two distinct possibilities. Either the growth equa-
tion does not contain differential operatdesg., pure RD or,
as we will argue in a later paper, pure shadliiogit contains
an instability.

It should be clear from our earlier discussions that insta- FIG. 4. Growth rules of Wolf.
bilities can be induced in a given model by reversal of the
motion in surface relaxation processes. Such time reversdne resulting interface is smooth and the associated relax-
has the effect of, e.g., replacingby —» in Eq. (7). Clearly ~ ation downward is described by the operat¢s’h/9x?). As
reversing the sign of the four differential operators we dis-OPP0sed to this it is found that if, id"=1, moves down-
cussed earlier could therefore result in instabilities in thevards for the tie situation whegpy =2 are forbidder(Figs. 4
associated differential equation. Hence one has to examirf@d 9 and downward motion only allowed if the coordina-
carefully the permitted movements in order to ensure thalion Number is increased, we obtain a rough interfddg. 6
such movements do not ultimately lead, via self-consistency!® p4roper‘t‘|es of which are described by the operator
to terms in the associated differential equation, which makes (¢"N/9x") [5,6]. The generalization of these same rules

its solution unstable. An example of this is given later. 0 d"=2 presents an interesting situation in that for case
discussed above, this leads to predominantly downward mo-

tion only and is hence described by the operator
— k(9*h/9x* [5,6]. However, for caséb), significant up-
ward motion is also allowed which is essentially SOS in
Most computer models reported in the literature permithature. The corresponding interfagehich is rough will be
the deposited particle one move in the horizontal directiondescribed by an equation in which the downward motion is
Which direction the particle moves vertically is also deter-represented by the operaterx(9*h/dx*) whereas the up-
mined by the rules of movement. In certain cases both upward motion is described by (92%/9x?)(dh/dx)?. This is in
ward and downward motion is permitted, whereas in Othehgreement with what is found in the computer mode“ng
cases upwardor downward motion only is permitted. For [4,7]. Hence we here have a situation where the equation of

many cases reported in the literature the rules governing sufnotion, because of the permitted rules of movement, is gov-
face relaxatiorfwhich are almost invariably of the SOS type erned by the following equation:

are not even stated in this simple form, rather, in an effort to
mimic the physics, the rules are defined in terms of the co- Jh *h

ordination numbev, of the particle to be moved. In particu- s F~ s +7 (14
lar, whenv;=2 movement is not usually permitted unless

the coordination number increases—i.e., in those situationg, 4/
where the coordination would be the same at the end of the

E. Comparison of the heuristic rules with computer models
reported in the literature

1, but is described by the equation

movement as it was prior to movemetite so-called “tie” 4 2 2

L : ) dh da*h d< [ oh
situation no movement is permitted. On the other hand —=F—k— N || t7 (15
where the coordination number increases via the movement, at X X

the rule could either béa) move to the nearest-neighbor site ) ) ]
that increases the value of or (b) move to the nearest- " d’'=2. We would argue, in contrast with statements in the

neighbor site which gives the maximum valuewot Iiterature[4j that this is not an unusual situation in physical
The subtlety of these rules is that, because of the topolog}f™™M$ but is merely a consequence of the fact that the per-
of the surface(a) and (b) define different types of allowed Mitted movements i’ =1 andd’=2 are different. Equally
moves in different dimensions. For example, Kotrla, Levi,
and Smilauef4] have shown that botka) and (b) lead to
vertical motion downwards id’=1. However, ind'=2
rule (a) leads to predominantly downward motion whereas
rule (b) leads to both downward and appreciable upward mo-
tion.
We will now consider various models from this view-
point. For the well knowrd’ =1 case studied by Family2]
the tie situation occurs frequently for=2 and the rules of
movement permit the particle to move down only under
these circumstances. Correspondingly the resulting interface
is smooth—hence we are led to the conclusion that if all
moves downward are permittéahcluding the tie situation FIG. 5. Growth rules of Das Sarma and Tamborenea.
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FIG. 7. Different rules with the same result.

be associated with a given stochastic differential equation.
Consider, for example, the equation

2
+ 7. (16)

ah #*h
—=F+ v— +y
FIG. 6. Surface of the Wolf and Villain modélaken from Ref. ot X

[1)).

dh
IX

The termsF + » imply that the initial deposition is SOS
o . and is pure RD. The second term represents movements hori-
we yvou_ld argue(1] _that it is not true that the equation of zontally and vertically downwards. Similarly the term
motion is the same id" =1 andd’ =2 but that the crossover  5/,x)2 implies relaxation vertically upwards with the par-
has not been seen af =1. , ticle being moved up the side of a column until it was
Consider next the model of Lai and Das Safi@k These 59 placed level with the top of iti.e., non-SOS vertical
authors considered a similar modeldn=1 to the one of  yqtion, which creates vacancies in the systémsummary,
Wolf and Villain [5] and Das Sarma and Tamborerl€ e would expect that Eq16) represented RD following by
However, in the case of tie with;=2 the particle was gyrface relaxation in which the process involves both down-
moved to the nearest neighbor site with the smaller heighyard and upward motion. It comes as somewhat of a surprise
d|fference_(|.e., sometimes upwards and ‘sometimes downsperefore to find that Eq16) is apparently applicable id’
ward motion occurred For the case of a tie withj=1 the  _1 {5 pure BD. If anything we might have expected that the
particle was allowed to diffuse to higher bonding within a |atter corresponds tépure RD followed by limited vertical
distancel—i.e., ford’=1 downward motion could also oc- ygyvement upwards along the side of higtieeighboring

cur for this situation. Given that these rules are all SOS tyP@olumns—i.e., one might have expecté@lire BD to have
and that significant amounts of upward and downward MOypeyed the equation

tion is occurring, we would expect that the resulting equation

is the fourth-order nonlinear equation appearing in @®). oh oh\?2
This is precisely what Lai and Das Sarfi@] found. i F+ 7(& +7.
In view of our earlier comments we would envisage an
interesting situation developing if, in the case of tie with A possible resolution of this paradox would tes indi-

=2, the downward motion was forbidden and Only the Up-cated by our previous reason)r[@at(pure RD followed by
ward motion was allowed. For such a situation we couldsyrface relaxation in both the downward and upward direc-
anticipate an instability could develop in the system sincejon is mathematically indistinguishable from pure BD. This
such upwards motion is not counterbalanced by an equivgsroblem will be addressed in future publications. For the
lent downwards motion “current.” This is precisely what present we note that, in graphica| terms, what we are sug-
happens in the model of Park, Provata, and RefBlenhere  gesting is that the situation depicted in Figa)7(appropriate
no saturation of the interface width was found for systemso “pure” BD) is ultimately physically indistinguishable
larger than a critical size. from that depicted in Fig. (B), i.e., RD plus surface relax-
As a final example we consider model 1 #1=2 of  ation in the downward and upward direction. Alternatively
Kotrla, Levi, and Smilauef4]. This model is a straightfor- e could argue that we need both a downward and an up-

ward generalization of the Wolf and Villaif5] and Das  ward current of particles to obtain a stable interface.
Sarma and Tamboreng@] model in that if there is a neigh-

poring site with a higher value af; the pa_rticlg relaxes to it Ill. CONCLUSION

in either the upward or the downward direction. In the case

of a tie the particle remains where it is. It should be obvious In the present paper we have presented arguments to the
from our previous discussion that once again we have SOS8ffect that observation of universality classes in computer
relaxation in the upward and the downward direction andsimulations of surface growth is a consequence of the limited

that the fourth order nonlinear equation, i.e., Ef5) will number of horizontal moves that a given particle is permitted
describe the evolution of the surface. This is exactly whato make.(Conversely, if the particle was permitted to make
Kotrla, Levi, and Smilauef4] found. any number of moves up to a maximum value determined to

Given the success of our heuristic rules we could therbe equal to the substrate size, then interface roughness would
invert the problem of predicting the permitted movements tanever develop in the sense that growth would be of the layer
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by layer typel Given the limited number of horizontal operator will again be determined by the rules of movement.
moves, the universality class is then determined by the naf the upward motion is of the SOS type then it is described
ture and extent of the vertical motion. This ultimately is con-by the operatow?/dx?(dh/x)?. However if it is non-SOS
trolled by the rules associated with the coordination numbetype (i.e., it leads to the creation of vacangidas will be
v; taken in conjunction with the dimensionality of the  described by the operatostf/x)>2.
surface. In particular, rules may be defined that in effect We have shown, in the body of the text, that these heu-
allow, for example, ristic rules are consistent with many standard results reported
(a) downward motion only in botld’=1 andd’=2 or in the literature. Furthermore we have presented arguments
(b) downward motion inrd’ =1 but both downward and up- to show that the nature and extent of the permitted vertical
ward motion ind’ =2. motion can lead to situations where, for example, initially the
If downward motion only is allowed and this is of the growth contains no vacancies and is described by a particular
SOS typd(i.e., a particle has another particle beneath it at thalifferential equation. However, eventually vacancies will en-
beginning and end of the motiprthen the degree of the ter the structurdas a result of the rules of movemgmind
differential operator, i.e.9?h/dx? or 9*h/9x* is determined  subsequently for this situation, the growth is described by a
by the rules of motion associated with the tie situation. Ifdifferent differential equation.
motion downwards is allowed in the tie situation, then the Further substantiation for the validity of these arguments
second order differential operator is appropriate since thigvill be presented in a series of subsequent papers where we
corresponds to all moves downwards being permitted. On theill also address the question of the apparent anomaly of the
other hand, if motion downwards is forbidden in the tie situ-equation of motion for pure BD, and the question of the
ation, then the fourth order differential operator is applicableuniversality class when thg; is chosen to have different
since such an operator is appropriate for the situation wherealues for the different move typés
only a fraction of the moves that can occur are permitted to

occur. Similarly, if both upward and downward motion is ACKNOWLEDGMENT
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In the case of upward motion the form of the differential Stiftung.
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