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Spectral properties of weakly coupled Landau-Ginzburg stochastic models

Ricardo Schot,Joa C. A. Barat#, Paulo A. Faria da Veighand Emmanuel Pereita
IDepartamento de Bica-ICEx, UFMG, Caixa Postal 702, 30 161-970 Belo Horizonte MG, Brazil
2IFUSP-USP, Caixa Postal 66318, 05315-97@$ulo, SP, Brazil
3ICMC-USP, Caxia Postal 668, 13560-970d58arlos, SP, Brazil
(Received 25 August 1998

We study the existence of bound states in the generator of the stochastic dynamics associated to weakly
coupled lattice Landau-Ginzburg models. By analyzing the Bethe-Salpeter kernel in the ladder approximation,

these states are shown to exist if the polynomial

interaction has a negative quartic term and the lattice

dimension is smaller than 3. Asymptotic values for the masses are also obtained, giving precise relaxation rates

for even correlationd.S1063-651X99)05203-4

PACS numbdis): 02.50-r, 05.40:-a, 05.50+q

I. INTRODUCTION

is positive and Hermitian oh?(du). Clearly, the constant
functionf=1 is an eigenfunction dfl with zero eigenvalue.

In this paper, we consider some aspects for the stochasti&s mis nonzero, for smalk, there is a gap in the spectrum
dynamics of lattice systems described by an action of thef H, implying an exponentially fast approach to equilibrium

form

XeZ

1S . ;
S(e)= 2 H;l [e(x+e) = ¢(x) ] +m?p(x)?

+m>(qo(>2))] , 1)

where ¢(x) is a real continuous spin variable xa& 79, the
unit d-dimensional latticeg; is the unit vector along thith
coordinate,P is an even polynomial bounded from below,
m>0, and\=0.

Forte R denoting the time variable, the dynamics is in-
troduced by the Langevin equation

S+ 9(X,1),

2

>
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where {7(x,t)} is a family of Gaussian white noise
processes with the expectationE(n(i,t))zo and
E(n(x,t) p(X',t'))= 85z 8(t—t'). Such models can be
used to describe thépurely relaxational evolution of an
order parameter in statistical mechanical systeing].

The dynamics induced by Ed2) is associated with a
Markov semigroup and leaves invariant the Gibbs distribu
tion du=e" ¥ d¢/(normalization) defined by actiofil).
More specifically, iff is any function of the spin configura-
tion ¢={@(x)}, we define its time evolutiofi, by

f(¥)=E(f(e(1))), )

where ¢(0)= ¢ is the initial condition in Eq(2). It follows
then thatf, is determined by the Markov semigrowp "
whose generatdfl, given by

1 52 S of
Hf=—> e —— @)
2350 [de(x)? de(X) de(X)
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in the system.

It is possible and indeed desirable to associate a quasipar-
ticle structure to the operatét, which can then be viewed as
a Hamiltonian, since this structure provides information on
corrections to the exponential law of approach to equilib-

rium. Momentum operatorB are naturally defined by space
translations and commute witd. From this point of view,

the natural question to ask is about the nature of the spectrum
of (H,P).

This problem has been recently considered by Kondratiev
and Minlos[3], in the context of the stochastiY model at
high temperatures. They constructed one-particle stéves
two different species of quasiparticjeand showed that they
are isolated from the rest of the spectrum.

The existence of isolated one-particle states for the model
defined by Egs(1) and(2), which is assumed in this work,
follows by adapting standard techniques of constructive field
theory [4,7], developed to study analyticity properties of
one-particle irreducible Green’'s functions, taking as input
the convergent cluster expansion established by Dimock in
Ref.[5]. This paper intends to further our knowledge about

the spectrum of fI,P). More precisely, we analyze the ex-

istence of bound states of two quasiparticles. We remark that
the mass of such a bound state shows up directly in the
exponential approach to equilibrium for even observables.

Hence this question is of direct physical relevance.

To attack this problem, we use a functional integral rep-
resentation for the associated correlation functions and look
at the dynamical system as a quantum field theory in discrete
coordinate space and continuous time. This field theory turns
out to present nonlocal interactions. The part of the spectrum
above the one-particle states is studied through a Bethe-
Salpeter(BS) equation in a way that is similar to the methods
employed previously in local relativistic field theory. Here,
however, the discreteness of space and the nonlocality of the
interactions represent additional complications in the analy-
sis of the BS kernel. In order to simplify them, we do restrict
ourselves to the spectral analysis of translationally invariant
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states. Also, the BS kernel is computed only in the laddeso thatL, is a Schrdinger-type operator. Performing the
approximation. This procedure has been justified in casederivatives, we get

where a rigorous analysis was possifié

To state our results, we write the polynomial interactfon
in Eqg. (1) as an expansion in a Hermite batse Sec. I,
starting with the fourth power:

N

P(x)= >,

n=2

n_.y2n.

2n)! x™ (5)

with ay>0. If \ is small, we show(in the ladder approxi-
mation) absence of bound states for spatial dimensibn
=3, as well as ford<3 anda,=0. Ford<3 anda,<0,
there is a unique bound state. In dimension 1, the mass
this bound state is

2y 2
asA
M*=2M— 2 [1+0O(N)] (6)
4m
and, ford=2,
M* =2M —477m2 1+0O(N 7
=2M-exg g [1H001. (@)

Above, M is the mass of the single quasipatrticle.

L __1 i+12 O[(—A+m?)2¢](x)
A 2)26/\ 3@()2)2 8)26/\ ¢ Y
A N N
+7 2 [(=A+m?) ] ()P (¢(X))
XeA
5 NN L (2d+md)
+>ZEA 57 (¢(x)) —27 (‘P(X))_T'
of (42

In the above formula;-A is the lattice Laplacian with peri-
odic boundary conditions oA given by

<—A¢><x*>=zd¢<x*>—rz| o(y).
x—y|=1

(13

The functional integral associated with Ed.2) can be
obtained by standard methof|. If f,,...,f, are functions
of the spin configuration in, if (¢)=1 is the ground state
of Hy and for t;<t,<---<t,eR, then we have the

This paper is organized as follows. In Sec. II, we discusﬁzeynman-Kac formula
the functional integration representation and the form of the

BS equation that is suitable to handle field theories on

a

lattice. The computation of the BS kernel and the mass sped{,f;e™ "2 "WHafy e~ (n"tn-0HAf 0) 54,
trum above the one-particle state are presented in Sec. lll.

Section IV is devoted to conclusions.

Il. FEYNMAN-KAC FORMULA

Consider the Hamiltoniaf¥) on a finite hypercubd C 7°
with periodic boundary conditions:

Hof 1 52 . s of ®
A= > - > > |-
25ch Lae(¥)? de(x) de(X)
Forde,=1II;_, de(X), let
1 -S
dus(e)= z €™ dey, )
A

with S, given by Eq. (1), restricted toA with periodic
boundary conditions, and whei, is a normalization for
du, so thatfdu = 1. With this, the operatad , is Hermit-
ian on the spaceé?(du,). Next, letU, be the unitary op-
erator fromL?(du,) to L?(de,) given by

(Unf)(9) =2, %™ V2505 (). (10
A straightforward calculation shows that
LAzuAHAuglz—1 L
255h dg(x)?
+1 1( dSy )2_ 3?S,
4an (21 oex)]  ae(x)?]
(13)

=(U,Q,fre” (7 Whaf, e i baf U, Q) 2(g,
- [ fatetarolettdny (14

where the path space measdig, is given by

e_WA dVA

dpA:fe*WA dVA (15)

with

WAzfx dt >,

—%®  xeA

A N X
2P (e 0)(—A+ m?) (X, 1)

A2 A

+ 5 P (e )= 7P (e(x.1), (16

anddv, is a Gaussian measure with mean zero and variance

given by

f @(X,1)@(y,t")dvy

1 0
=2aA] f_xdpoza

peA 2

eiPo(t—t)giP-(x=Y)

+| =9 ,(1—cosp, LI
i=1 pl) 2
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In Eq. (17), |A| is the number of points im, A is the
Fourier dual lattice, p=(py,....pd) €A, and p-(x—Yy)
=3 1pi(x—Yi).

The thermodynamic limit\ —Z can now be taken in Eq.
(14). The corresponding limiting expressions for E¢k2)—
(16) are easily obtained. The normalized sum|A1)=;_%
in the propagato(17) is replaced in the limit by an integral
[1/(2m)"]/+,d% over the d-dimensional torus Tq
=[—m,m]% That the limitA—Z9 exists, at least for small
\, follows from a cluster expansion arguméaee Ref[5]).
Dropping hereafter the subscript for the infinite-volume
quantities, we have the representation
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(Q,p(x)e” 27 WHp(xp) e~ I "n-DMgp(x,) Q)

- f (1 ta)" @ () dp= S (Kot o ),

(18)
where the inner produdt,-) on the left-hand sidélhs) is
taken on the physical Hilbert spaté(du), ¢(x) is the zero

time field atxe 79, andt;<t,<---<t,eR. Since the infi-
nite volume theory is translational invariant, we can intro-

duce momentum operatol%, commuting withH, such that
[writing ¢(0)= ¢]

(Q,p(x)e" " WHg(xy)- e~ tn-DHp(x ) Q)

_ (Q,(}e—(tz—tl)H#—ils-()?z—il)(}, } ,e—(tn—tn,l)H+iﬁ-(in—>2n,l)€DQ)_

For p=(po.p), Poc R andpe Ty, let

52(p)= fi

dt> S2(0,0:%,t)e (Pot+FR_ (20)
w74

xeZ

It follows from Eqgs.(18) and(19), and the spectral theorem
that

32 - 2E dsca_n - N
S7(p)= == (2m)76(q—p)d(Q, ¢&(E,q) ),
0 TdE +p0
(21
whereE(E,f)) is the spectral projection associated with the

operators H,ﬁ). The integral oveE runs from 0 toc and
that overq is on T4. We can write Eq(21) in the form

o

><p>=f0

where the positive measurbm(E,ﬁ) is supported on the

spectrum oH restricted to the odd states with momentpm
When\ =0, we have from Eq(17)

2E
E2+ p2
0

S dn\(E;p), (22)

>g)l

d
s 1
Eo(p)= 21 (1—cosp;) + Emz.
(23

Eo(f)) is identified with the energy of an elementary excita-

tion (quasiparticle with momentumﬁ and massEo(ﬁ)
=My=m?/2 in the free, i.e., th&. =0, case.

When is small, S?)(p) has the representatigsee Sec.
1

[

‘.

S&z)(p)_ C)\(ﬁ)

4 (E;p). (24)
== —— 5 an P).
p2+E\(p)? 2=

MoE2+p§

(19

Ek(|5) is the dispersion function in the interacting theory
and, as will be shown in the next section, it differs from

Eo(p) by O(\2). Thus, ifmis large,E, (p) is isolated from
the rest of the spectrum. The mass of the interacting quasi-
particle isM, =E, (0) =M+ O(\?).

To study the spectrum dfi on even states, consider the
truncated four-point function

. 4
D)\(Xl !XZ 1X3 1X4) = Sg\ )(Xl !XZ 1X3 !X4)

—S?(x1,%2)SP(x3,%4), (25

wherex; = (t; ,ii). From translation invarianc®), depends
only on difference variables. Lef=x,—X;, 7=X;—Xz,

and 7=Xz— X,. Writing §=(§0,§), etc., it follows from Eq.
(19) that if 60: o= 0,

D,(&,7.7)=(0(—&),e” 1 MePTa( 7)), (26)
where
0(7)=0(0)e(7)Q—(Q,0(0)p(HMQ.  (27)

Let f:7Z9—C be an arbitrary function vanishing outside a
finite set and Ien‘(ﬁ) and D, (p,q,k) be, respectively, the

Fourier transforms of(i) andD, (¢, n,7), defined as in Eq.
(20). A simple calculation shows that

f f:f dedﬂp o2 T(EIT(@)DA(p.a,K)

-],

x 8(q—K)d(o(f ),&(E,q) (),

2E
k3+E?

(277)3d+2

(28)

where
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Diagrammatically,K is the sum of all one-particle-
irreducible Feynman graphs with two external legs. This im-

pIiesK and henc&k to be analytic onlm pg|<2Mj for real

p. Also, sincek, is O(\) near the zero§=iEy(p),p) of
I'o(p), it follows thatI"y (p) has zeros nearby, which we call
(+iE(p),p) with E,(p) —Eq(p)=0O(\). That these zeros
can only be located on the imaginary axis follows from gen-
Qaral principles, see Eq21). The representatio24) with

c)\(|5)=1+0()\) follows immediately from the above
facts. Actually, we haveE,(p)—Eq(p)=0(\?) since
TR T (a/ax)fx(p)h:o:o by explicit computation.
(fDo(ko,k=0)T )2 We next study the truncated four-point functi@b) us-
ﬁ(ﬁ) +“f(_ 5)|2 ing the Bethe-Salpeter equation

0(f)= 2 f(X)0(~X). (29)
xe7d
Formula(28) is similar to Eqg.(21). The singularities in

ko, for fixed K, of the Ihs of Eq(28) give direct information
about the spectrum dfl on the even subspace of states with

momentumk. To test for the presence of bound states, it is
sufficient to study the spectrum on the subspace of zer
momentum states.

When\=0 andl2=0, a direct calculation shows that

_T d+1 | qd
_Z(Z’F) d% 1 , , ,
h Eo(ls)[Eo(F;)z‘FZkS} D, =D3+DyK,Dy, (39

(30) where D,, etc., are operators defined by the kernels
D\ (X1,X2:X3,X4), €tc., and
where the Ihs of Eq30) is a short notation for the lhs of Eq.

(28). The right-hand sidérhs) in Eq. (30) is analytic ink, DY (X1,X2;X3,Xa) = S\ (X1,X3) S\ (X5, X4)
for [Imkg|<2Mq. Then, for the free X=0) theory, there is (2) 2)
no energy spectrum in the interval (8)3) for even states + 87 (x1 ) S (%2 %) (39)

with zero momentum, as it should be.

We will show in the next section that, K>0 and the
(normal ordereglinteracting polynomial has a negative quar-
tic term, then the left-hand side of E@®8) has a singularity
on the positive imaginary axis belowVg, if d=2. There-
fore, in this case, we do get two-particle bound states.

The Bethe-Sapeter kernkl, (X, ,X5;X3,X,4) is the sum of
all connected Feynman diagrams with fqamputatet ex-
ternal lines that aréchannel two-particle irreducible. Intro-
ducing the relative coordinates », and r as in Sec. I, it
follows that the Fourier transform of the kernelsf , D?,
andK, satisfy an equation similar to E¢34):

IIl. ANALYSIS OF BOUND STATES ~ ~ _ ~ N ~
D, (k)=D(k)+(2) 2@+ IDY(k)K, (k) D, (K),

The analysis of bound states in local relativistic field theo- (36)
ries using the Bethe-Salpeter equation is well known. In our
particular problem, we deal with a Sl|ght|y nonlocal field Where, egﬁ}\(k) is defined by the kernd‘yD)\(p'q'k), i_e_,
theory on a lattice space. The nonlocality makes the Bethe-
Salpeter kernel more complicated and the lattice makes un- - % -
suitable the use of canonical relative coordinates, as in, e.g., (D (K)f )(p):f d%f d% Dy (p,a.k)f(q). (37
Ref. [6]. Nevertheless, using the coordinatés#, and 7, o Ta
tdheglZ(ta;nzg%rsvg]yl.z$ﬁg)rerz?§i Sjgrﬁil?gzlﬁli‘céf an be done in The Iagder approximation that we adopt here consists of
For ease of computation, the interacting polynonfialis ~ replacingK, by its first order termL, in the perturbation
written as an Hermite expansion, with the generating funcexpansion. Explicit calculation shows that
tion for the monomialsx®: given by

~ 3 N R L -
Ly(p,a,k)=— Zaz)\[Eo(p)+Eo(Q)+Eo(p_k)

:ei ax. :ei sze—(1/2)a2C (31)

whereaeR and +Eo(d—K)]. (39

1 Joo g 1 25 2 At zero total momentum,
C=——471 d f dp———=== 0,0;0,0).
(277) +1 . Po T, ppg+E0(p)2 ( ) ~ ) 3
(32 Lx(p,q,(ko.o)):—Eaz)\[Eo(p)+Eo(Q)]- (39
Let T, (p)=S®(p) ! and letk, (p)=To(p)—T,(p), SO ~ R
that Dysxcfrﬁ)’)s eﬁAueft?czn A(P)=To(P)=T(P) We see thaLA(I.<°,0) is a.rank two (_)perator, in contrast with
what happens in a genuine local field theory, where the rank

~ ~ ~ (o = is just 1.
Sg\z) _ ng) n ng)kxsg\z) (33) J

Equation(36) with Rx replaced byl~_A can be solved for

is satisfied. D, to yield
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D, (K)=[1—(2m) 24+ DDY(KO)L, (k%] DY(K°)
=DOKO)[1—(2m) 24+ VL, (k9)DI(KY)] L,
(40)
whereD, (k% =D, ((k°,0)), etc.

From Eq.(35), one can show that the action f(ko) on
functionsf(p) depending only orﬁ is

(D(KO)f )<p>=<2w>d*1ﬁz><p>§2><k—p)[f(5)+f(—?)]i
41

Therefore, iff depends only orﬁ, we have

(LA (K9)D,(K)f )(p)
= —3a,\(2m) " po(f )+ pa(F)Ee(P)],
(42)

where
pn(f)= %fT d%q G(q,kO)Eo(q)"[f(q) + f(—q)];
d

n=0,1, (43

and

G(q,k%) = f ddo S?(SP (K~ do,0). (44
It follows from Eq.(24) and from a simple analytic continu-
ation argument thaG(q,k°) is analytic on|im k% <2E,(0).
This result depends on the fact tHag(0)<E,(p) for any

pe Ty, which holds becauss{®)(x,y)>0.
Recall, from Eq.(28), that the basic object we want to

analyze is(f,Bx(kO)f ), which has the form
(f.DA(K)f)=2(2m) " J d¥pF(B)G(p,k)g(p,k?),
- (45)
where
g(- k) =[1~(2m) 2@ VL, (k)DUKY)] M. (46)
The only singularities of Eq(45) on |Im k°|<2EA(6) must

come from those ofy(-,k%, which in turn come from the
zeros of + u.(k%, whereu . (k° are the eigenvalues of

(2) 2@+ DL (K9)DO(KY) on the space generated by the

functions 1 ancEq(p).
We find

p=(K)==3a\ (2m) " TV (a(k) = [B(K) ¥(k) 1Y),
(47)

where
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a(k®)= fT Eo(q)G(0.k%d%,
d
B(K®) = f G(q.k%d%,
Ty
Y0 - | Egdre(@ it 48)
d
Now, from Eq.(24), G(q,k° can be written as
N\ 2
G(EK)= 3 L Gy (G0,
EA(@[Ex(d)% 7(K)?
(49)

whereG,(q,k°) is analytic on|Im k%<E, (0)+2M,.

From general principles, the singularities of E45) can
only be located on the imaginakP axis. Writing k°=i y
with =0, it is possible to showusing an explicit formula
that G(&,iX)>O for 0= y<2E,(0). It follows then that
a(ix), B(ix), and y(ix) are positive and, by Schwarz’s
inequality, a<[ B8y]*? on 0< y<2E, (0).

For space dimensioth=3, thena(ix), B(i x), andy(iy)

increase to a finite limit a§—>2E)\(5) because the singular-

ity generated byG(a,iX) is quadratic and therefore inte-
grable. Thus, if\ is small enough, *+ u.(ix) cannot be

zero on X y< 2EA(5) so that, in the ladder approximation,
there are no bound states.

If d<3, a, B, and y diverge asX—>2Ex(5), but «
—[By]*? remains finite. This yields the nonvanishing of 1
—p_(ix). Finally, 1— . (ix) is nonzero ifa,>0, and has

a unique zero on the intervakOy < 2E)\(5), if a,<0. This
implies the existence of one bound state for the last case.

Let M, = Ex(ﬁ) be the mass for a single quasiparticle in
the interacting theory. The mabt* of the bound state is the
solution of (assuminga,<0)

_(27T)d+l

FOLIM*) = —

(50)
where F(\, k%) =a(\, k%) +[ BN,k y(\ k9% and we
have made explicit tha dependence o, B, andy. Let £
=2M,—M*. Performing an asymptotic analysis of the co-
efficientsa, B, andy we find

2

9%,
7 2ax(1+0(N));

7 if d=1

CIVE - (50
eX[{—m(ﬁ'O()\)) ; if d=2.

IV. CONCLUSIONS

In this paper, we have analyzed the existence of bound
states for the generator of stochastic dynamics in purely re-
laxational lattice Landau-Ginzburg models. This problem is
directly related to decay rates of some observables.
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We have shown the existence of a bound state for smakpproximation, which proved to be quite reliable in cases
coupling if the polynomial interaction has a negative quarticwhere a rigorous analysis could be perforniéd
term and the space dimension is 1 or 2. This result was
obtained by analyzing the Bethe-Salpeter kernel of the non- ACKNOWLEDGMENTS
local lattice quantum field theory associated with the sto- This work was partially supported by CNPg and
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