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Amplitude ratios and the approach to bulk criticality in parallel plate geometries
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We present analytical and numerical results for the specific heat and susceptibility amplitude ratios in
parallel plate geometries. The results are derived using field-theoretic techniques suitable to describe the
system in the bulk limit, i.e.,l{/£.)>1, whereL is the distance between the plates &ndis the correlation
length above+) and below ) the bulk critical temperature. Advantages and drawbacks of our method are
discussed in the light of other approaches previously reported in the litergB1@63-651%99)04703-0

PACS numbd(s): 64.10+h, 64.60.Fr, 64.60.Ak

I. INTRODUCTION sets in the bulk. Moreover, it has been shofif} that a
scaling description holds so that the critical exponents asso-
Since the advent of modern scaling concepts andiated with excess surface singularities may be expressed
renormalization-group techniques the study of finite-size andompletely in terms of bulk exponents. However, it has also
surface effects on the behavior of systems near or at criticabeen showrj7] that fluctuations may induce divergences at
ity has attracted the attention of a number of investigatorshe surface and in these cases local quantities and associated
[1]. exponents must be defined resulting in new scaling relations.
Fixing our interest in the case of a system confined beTherefore, in treating these quantities at the multicritical
tween two infinite i — 1)-dimensional parallel plates distant point, Neumann boundary conditions are valid only at the
L from each other, we may classify three well defined dis-mean-field leve[7].
tinct regimes in this problem. The first one, where the scaling On the other hand, in order to properly describe finite-size
variable (/§.)>1, is characterized by the dominance of effects using field-theoretic techniques in critical systems
bulk over surface and finite-size effects and the physics isubject, for example, to periodic boundary conditions
quasid-dimensional. Here¢.. specifies the critical correla- (PBC’s), Brezin and Zinn-Justir{8] and, independently,
tion length above+) and below ¢) the bulk critical tem-  Rudnick, Guo, and Jasnoy®], introduced a method in
peratureT.. The second regime, wheré/¢.)<1, the sys- which the zero-momentum component is isolated whereas
tem behaves as a quasi-{ 1)-dimensional object. Finally, the other nonzero modes are treated perturbatively. This
for (L/¢.)~1, the physics interpolates between a quhsi- method has been largely us¢t0—12 and generalized to
and a quasiq— 1)-dimensional system. A full description study different boundary conditions. More recenfl{3],
of the system should therefore unveil very interesting crosssome difficulties regarding the treatment of critical systems
over behaviors. below T using this technique have been circumvented.
According to the region and phenomenon of interest, dif- Both finite-size and surface effects are simultaneously
ferent field-theoretic techniques have been devised to deglresent, except in special circumstances such as for PBC's,
with such systems. Indeed, Diehl and Dietr[éh3] success- the surface effects of which vanish. At=T_., where Ca-
fully implemented these techniques to study critical and mulsimir forces are manifest, these contributions compete in a
ticritical phenomena near surfaces within a finite momentunvery special way, and powerful tools and methods such as
cutoff regularization scheme. The use of dimensional regueonformal invariancg14] and elaborated perturbation tech-
larization was showf¥,5] to simplify the computational pro- niques[15] have been used to study this regime and the
cedure and allowed the study of ordindi®] and special approach tor, [12-15.
transitions[3] through standardp?-field theories under Di- In this work we shall calculate specific heat and suscepti-
richlet and Neumann boundary conditiof3BC’s and NB-  bility amplitude ratios using field-theoretic arg-expansion
BC's), respectively. The former mimics very strong repul- methodg16] particularly suitable to describe systems in the
sive forces at the surface, thus preventing order afait first regime mentioned above in which bulk behavior domi-
parametec, which measures these forded, has fixed point  nates over surface and finite-size contributions. The reported
value c* =), whereas under the later boundary conditionresults complement previous studigs] and shed some
both the surface and the bulk go critical simultaneously. Thdight on the approach to bulk criticality as the distarice
special transition is in fact a multicritical poifi8], c*=0, between the plates increases.
where the two lines describing systems with repulsice (  For a system of volumeV=AL, where A is a
>0) and attractive forcexc0) at the surface meet. In the (d—1)-dimensional surfacéayered geometpy the follow-
later case, namely, the extraordinary transifibyg], the sur-  ing asymptotic scaling form for the singular part of the free-
face undergoes a second-order transition before criticalitgnergy density holdgl7]:
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|t |<d Dy eter, respectivelyZ 42, Z,, are renormalization functions*
is the dimensionless renormalized coupling constant of a

continuous(bulk) ¢* theory at the fixed pointg is a (d
+ Sf(L|t|"/a), (1) —1)-dimensional wave vector along the direction parallel to
. . the platex;=mj/L are the eigenvalues of the kinetic energy
wheret=(T—T,)/T¢, v is the bulk correlation length ex- operator satisfying proper boundary conditidisee belowy
ponent anda is the only nonuniversal metric factor. Using andl, e 1+ (e/2)]+O(e) is the one-loop integral of
the hyperscaling relatiodv=2— «, one identifies the first a bulk ¢4 theory evaluated at the symmetry point using di-
term (proportional tay,) as the bulk contribution, the second mensional regularization, where =4—d. Notice that tak-
one (proportional toys) as the excess surface term and themg the limL— o in Eq. (4) one obtains the standard expres-

last one as a finite-size correction term. In the limgt. (L) gjon for the d-dimensionalé* one-loop renormalized free
<1 one expects exponentially small corrections fréin ergy.

whereas for {.. /L)>1 it compensates the bulk and surface |, "geriving F(t,M:L) we have considered that the local
contributions and gives rise to the Casimir effet8—13 at {414 of a #* theory may satisfy periodic, Neumann, or Di-

1 d
FthL) ~ 2 Y(LIt"a) =yu[t] " +s

T=T,.

From the above scaling assumptions the specific heat ar{JJChlet boundary conditions, defined b¢(p )= ¢(p z
susceptibility should behave as +L), (dl02,- o)d)(P,Z) (9l92],-) (p.2) =0, and
#(p,z=0)=¢(p,z=L) =0, respectively, wherg is a (d
C(t,L)~[t|"“AL(L[t]"7a), (2 —1)-dimensional position vector perpendicular to #idth)

direction. It then follows that the sum in E¢) has values
x(t,L)~[t|~"C.(L|t]"/a), 3 j=0, *1, +2,..., forPBC’s,j=0,1,2 ..., for NBC's,

andj=1,2,..., forDBC's, respectively. The local field is

wherea and y are the bulk critical exponents, but even in Fourier transformed in the fort6]
the regimeL|t|”>1 one expects that excess surface and
finite-size contributions modify their critical amplitudes in a e - -
non-trivial manner. In fact, the ratio of these amplitudes are b(p.2)=2 (Zﬂ)l_df d* ‘gexp(iq- p) #j(a)u;(2),
quite sensitive in identifying the universality class of a criti- ' (5)
cal system, particularly in numerical simulatiofis3] where
one has to control both corrections to scaling and surface a
finite-size effects.

In Sec. Il we explain our method and derive both the
renormalized free energy and the equation of state fro

which the above quantities can be calculated. Finally, in Sec. I |st;chuts_ theiheﬁﬁctatlonlvaluetoftthe Ioca;l fleldfktaﬁove. We
[l a discussion of the results and conclusions are presente&a attention that the usual counterterms of a biitktheory
are used to renormalize the free energy and that the boundary

conditions are implemented on the bare vertex functions. De-
tails of the Feynman rules involving propagators and vertices

r\ﬁhereqﬁj(ﬁ) are plane waves parallel to the plate anz)
are eigenfunctions of the Kkinetic energy operator
—d?/dZ%) with eigenvalues<?. The bare order parameter

II. SPECIFIC HEAT AND SUSCEPTIBILITY

CRITICAL AMPLITUDES can be found in Ref}16].
In this section we shall use field-theoretic and
renormalization-group techniques to calculate the amplitude B. Specific heat amplitude ratio

ratios of C and y in layered geometries. We shall keep close
contact with standard bullp*-field theory[19] and when-
ever necessary to deal with the finite size of the system w
employ method$16] which are particularly suitable in the
regime L/&.)>1.

Since the vertex functiofi(°? is additively renormalized,
the critical behavior(singular part of the specific heat is
Balculated using the expressipio]

14
C=AJt|"*=——B(u*)-T?, (6)
A. Renormalized free energy and boundary conditions

We start by writing the expression for the one-loop renor-Where B(u*) is the inhomogeonz?ous term of the
malized Helmholtz free-energy density at the fixed point asfenormalization-group equation fore- and

sociated with the bulk critical behavior of the system: )
J
1 . IR?=—F(tM;L). )
F(t,M;L)=%tM2+Eu*M“+%(t2+u*tM2+%u* Mg, ot
ForT>T,, M=0, and we find, using Eq$4) and(7),

1
T fddflqln[1+(1/2)
2L5

dd l
TO2(T>Ty)=— J—+1| , (8
XU*M2/(G2+ k2 +1)]. (4) (T=Te) ZLE (@+rf+t? © % ®

In the equation abovg M(ty=Z 42t,Mo= Z”ZM) are the  whereas folT<T, we use the value dl at the coexistence
renormalized(bare reduced temperature and order param-curve, namelyu* M2 —6t, to obtain
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PO2(T<Ty=—— - 2% f . Y (0= 2 027 — B2, (19
: - _ = ) =5 LT — Ty '
R o LT (@2t 3
€)
The one-loop integrals are evaluated using dimensional S 7 1— 1 16
regularization and some useful formuld$,20 to sum infi- a(X) = T3x E ' (16)

nite series. We thus obtain for the boundary conditions of
interest:

and x=L/&, with £=|t|"Y2 For x—», we can use the

dd—lq
(q°+ Kl-2+’f)2

=

~ 1 €
_¥-el2_|q1__
t E(l -

2 d—4
+2w—1’2(T7T) r'(dr2)

LT6-d2
XT'[(5—d)/2)]sin[#(5— d)/2]f(5d),2{ —l

2%
771/2 -
+TTF(d/Z)F[(S—d)/2][t(d_5)/2/L], (10)
where S;/(2m)9=1, S; being the area of the
d-dimensional unity sphere,=t+ (1/2)u* M?=t(t=2|t|)
for T>T, (T<T.), o=1 for PBC’'s, 0=0 for both

asymptotic limit[16,2Q for f,(a) in Eq. (11) and write
f(x) in the more simplified form

21-7(2m) Y exp(—21 %)
3 { (21—0)()1/2
_exp(—ﬁzlﬂfx)

(\/Ezlfa'x)l/Z !

f(x)=

X—0,

(17)

C. Susceptibility amplitude ratio

Using Eq.(1) we obtain the following renormalized equa-
tion of state:

NBC's and DBC’s, r=0,+1,—1 for PBC’s, NBC'’s, and ok 1 3.1 N )
DBC's, respectively, and HR—W—”V'JFEU*M +3U*M(t+3u* M%)
=(u?—a?) " “du 1 dé-1q
fa(a):f —————, a<l. (11 X | 1gp— —f .
a exp2mu)—1 P 2 L) (24 k) (g2 + k2 +t+ L u*M?)

The above representation is particularly suitable in the bulk
limit, L/&.>1, but difficulties arise aa—0 (L/¢{.<<1) in
Eq. (11), as will be later numerically evidenced. A represen-
tation allowing access to both regimes, but not without some
problems forT<T., was formulated by Krech and Dietrich
[15] and used to study films at bulk criticality.

Now using thee expansior{19] for the nonsingular part
of the specific heat,— (v/a)B(u*)=(3e)+(295/108)
+O(e), we find the amplitudes above and beldw:

1
R

A 3, 4T 22—0f Lt LT =
T e2 €547 T3 1 5o | TS an
+0(e?), (12
6 7 22—0’ \/§L|t|l/2
A,—Eza 1_E§+E 3 fl/Z( 20_77
+ Ty 0(e?) 13)
e ———— e”),
3\/EL|t|1/2

wherea= e/6+O(e?).
From the above equations we finally obtain the specific
heat amplitude ratio:

A, 2¢ )
Z[l-l— e f(X)+ e Sa(X)]+O(€7),

A (14

(18

The one-loop integral is calculated similarly as for the
specific heat:

ddflq
f (q%+ Kl-z)(qz-i- Kj2+T)

%r[z—(elz)]r(e/z)fldx(“fx)—éf2
0

o

o\ d—4
—) I'(d/2)

+27T_1/2( 3

XT[(5—d)/2]sin m(5—d)/2] foldx fs_ a2

1/2

L(Tx)(6-9"2
|+ T (d2I(5-d)/2]

2%

X f lo|x[(“fx)<d—5>’2/L]. (19
0

By noticing that the first term in the right-hand side of Eq.
(190 may be written ag e ~'—(1/2)Int], and using the

€ -expansion representation fty,, we obtain, to first order

wheref(x) andS,(x) are given by in e,
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Hg=tM+ 2u*M3+ tu*Mts (1+Int)

112
L

L(y"f)lIZ

. (20

1
—zf dy fi
0

whereu* =(2/3)e + O(e?) andt=t+ (1/2)u* M?.

The susceptibility amplitudes are then readily calculated

from

dHg

=T =R =— (2D

As before, forT>T,, M=0, and for T<T, we use
u* M2=—6t. The amplitudes above and beldvw thus read
Cc.=1 EJrefld f v telio(e?
=logtg) e ot ey (e9),
(22)

X( 2y) 1/2
2%

c =M1 Siatin2 Efldf
-=3 —g(+n)+§0 Y fup

+0(e?), (23

T
S
6\/§x
wherex=L/¢.

Using Eqg.(11) and performing the integrations i we
find the susceptibility amplitude ratio:

C+
c -2 IE+ eh(X)+eSc(x)+0(e?), (29
where y=1+(e/6)+0(e?), B=1/2—(el6)+0O(e?)
and
20+l 1—
h(x)= 3 ( \/—) f dug(a/u)
+¢§qu g(b/a)|, (25)
b
T 1
sc(x)=r§(1—5>, (26)
with a= \2x/2°7, b=x/2"r, and
g(c/u)= u cog arcsir(c/u)] 27

exp2mwu)—1

Ill. DISCUSSION AND CONCLUSIONS

First, we should point out that the main step in our ap-
proach is the representati¢h6,2q used to evaluate the dis-

crete sums in Eq$10) and(19). It has proved very useful in
different field-theoretic contex{20] and here it clearly helps
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FIG. 1. Amplitude of the excess surface contributitsolid
line), from Egs.(16) and (26), and scaling functionsg, (dashed
line) and fy p (dotted ling for periodic, Neumann, and Dirichlet
boundary conditions, respectively, numerically evaluated using Egs.
(15 and(11) in d=3, as functions ok=L/&.

though its range of effectivenes precludes direct access to the
Casimir effect.

Second, our starting renormalized free energy, &,
does not consider any distortion of the order parameter pro-
file, i.e., our description is restricted to calculating the effect
of the boundary conditions on bulk quantities as a result of
fluctuations, i.e., in the amplitude ratios, E¢4) and (24),
excess surface and finite size contributions areD¢k ).
Nevertheless, we observe that if the excess surface contribu-
tions for NBC'’s in Egs.(12) and (13) are isolated, we find
(A, IA_)s=2"%2+O(e), which is the same result derived
in Ref.[5] for the special transitiofthe excess surface spe-
cific heat exponent i&g= a+ v). This is so because in this
particular case there is no distortion of the order parameter at
the mean-field level. Notice also that, above
Te, (Ad)sp/(As)org=—1+0(e 2)1 where A\ )sp orq re-
fer to the specific heat amplitudes at the spe@C’s) and
ordinary(DBC'’s) transitions, a result already derived in Ref.
[4]. As for the excess surface contributions for the suscepti

0.03 - SN

. -
..
R ~———

to split the bulk, surface and finite size contributions, as re-

quired by scalingsee Eqgs(1)—(3)], in a rather simple way,

FIG. 2. Same as in Fig. 1 for2x=<7.
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FIG. 3. Scaling functiond, (dashed lingandhy p (dotted ling
for periodic, Neumann, and Dirichlet boundary conditions, respec-
tively, numerically evaluated using Eq®5) and (27) in d=3, as
functions ofx=L/&.

FIG. 4. Differencegapart from a minus sigrbetween the excess
surface contribution and the scaling functibg for the Neumann
boundary condition as a function &f=L/¢.

bility amplitudes we also notice that the last term in E2R) deal with this issue in a more quantitative way, thus

is consistent with the result found in R¢T] for the special  gjgencing the advantages, limitations and drawbacks of the
transition aboveT.(ys=vy+v), since again no distortion ethod.
of the order parameter is necessary in this case. Below g, comparison, we also plot in Fig. 1 the excess surface

Tc, however, the order parameter profile differs from conpinytion for the cases of both NBC's and DBC's, i.e.,
the bulk value as one approaches the surface of the plat (x)|=|Sc(x)|=S(x). As clearly seen from Figs. 1 and 2

and therefore no comparasion can be made since our meth @x—mo these contributions are the leading orfad,15

excludes this feature as a starting point. _ _modifying the amplitudes of both the bulk specific heat and
From the discussion above and the derived results iiy,qcantipility. Notice that they have the same magnitude and

Sec. Il, particularly Eqs(14)—(17) and (24—(27), it IS gecay asx~ 1 [this is fortuitously true only because these

clear that in the regimé./¢.>1, and to first order in an  ofects are treated as fluctuation contributions to the bulk
e expansion, the specific heat and susceptibility displayjmit see Eqs(16),(26)].

singularities well described by bulk exponents, but with Finally, in Fig. 4 we plot the difference between the ex-

amplitudes sensitive to the boundary conditions, which.egq s rface contribution and the scaling function for NBC's.
manifest as excess surface and finite-size contrlbutlongNe see that this difference “almost” saturatesxas 0. as

Notice also that these fluctuation effects result quiteg,necteq in the Casimir effect, but lastly it diverges for very
effectively from the difference between the amplitudes of thesmall values ofx (an x~ dependence is in fact expected

correlation length above and beloW, which satisfy — qn, Eqg. (11) asx—0, but an extra Inx contribution pre-

(éo.+ /5.0,7): V2+0(e). i i cludes a good description of the Casimir effect

In Figs. 1, 2, and 3 we plot the scaling functioh&) In summary, we have presented a field-theoretic descrip-
and h(x), numerically evaluated ird=3, as defined by ton of the approach to bulk criticality in parallel plate ge-
Egs. (11),(15),(25—(27). They both decay very rapidly 0 ometries, in which excess surface and finite-size contribu-
zero ax=Lt"*increases, in agreement with the asymptoticjons appear as a result of fluctuations and are controlled by
result[16,2Q for fi(x), x—. In fact, for PBC's and  the poundary condition imposed on the system. Despite the
x=7 we find f,(x)=2.7x10"* either by using the fact that other more general methods to deal with finite sys-
numerical estimate or the asymptotic result predicted byems do exist, our approach is probably the simplest one and

Eq. (17). For this value ofx it is indeed expected18] 5 fajr description, at least t@(e), in the regimel/¢.
that these corrections to the bulk limit are indeed negligibles, 1

Notice also that for DBC's and NBC’s the magnitude of
the scaling functions are the same in our one-loop
approximation, in agreement with Refl5], although a
two-loop calculation showg15] that they differ slightly

if the same regime of validity applies. However, @s>0 We thank A. M. Nemirovsky for collaboration in an
our approach does not correctly describe the Casimir effectarly stage of this work and several fruitful discussions.
as shown in Figs. 1 and 2f(x) diverges andh(x) M. M. L. acknowledges FAPESHState of Sa Paulo
approaches zero, whereas in a correct treatni28t15 Foundation for financial support under Grant No. 96/
both tend to a constant value, the Casimir amplitude®©3546-7. M.D.C.-F. and M.S. acknowledge FINEP, CNPQ,
for each case. This failure for<1 has already been pointed CAPES, and FACEPHEBrazilian agencigs for financial
out by Nemirovsky and Freed16]. Here, our results support.
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