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Ising spin glasses: Corrections to finite size scaling, freezing temperatures, and critical exponents
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We compare simulation data from different sources on two canonical three-dimensional Ising spin glasses
(ISG9: the binomial=J near-neighbor interaction ISG and the Gaussian interaction ISG. We allow for the
possibility of corrections to finite size scaling and estimate the correction expan@unsistent estimates for
the critical temperature$, and for the critical exponents for each system are obtained. The data strongly
indicate that critical exponents in the two systems are significantly different from each other. These results thus
confirm a breakdown of standard universality rules in Ising spin glagS&863-651X%99)01503-2

PACS numbsgs): 05.50+q, 75.50.Lk, 64.60.Cn, 75.40.Cx

l. INTRODUCTION Ty, 7, andv can be estimated from a scaling plot. Right at

T, for dimension 3 we should find
The values for the universal exponents at canonical

second-order transitions are well establisfid recent work L{(g?)ocL =7 (3)
has only modified very slightly the accurate estimates for the

dimension-3 exponen{g]. In contrast, for spin glass models
accurate values of the freezing temperafligeanda fortiori

of the critical exponents have been very difficult to estimate

and therefore a linear relation on a log-log plot.
The Binder cumulant is defined by

numerically because of the intrinsic slow dynamics close to 4
the transition. g 1 3_ (@ @
Large-scale dynamic simulations on thel 3sing spin ) (g?)? '

glass(ISG) with binomial +J near-neighbor interactions by
Ogielski[3] led to estimates of; and the whole set of static pjnder plots for fixedL should all intersect aT, and the

and dynamic exponents. Recently extensive simulation datginger cumulant values should follow a scaling form
analyzed using finite size scaling have been reported on the

same systerf¥]. The authors relied principally on the Binder g =g(L¥(T-T,)) ®)
cumulant method to evalualg and estimated a significantly L 9z
lower value than that of Ogielski. However, a different scal-
ing method[5] led to a value agreeing with the Ogielski
estimate. Simulations have also been carried out on the 3
ISG with Gaussian interaction$,5].

We have reviewed the data in order to establish if and ” "
when correction terms should be included in the finite size Xse=L" "H(L(T—Ty))
;caling an_alyses, al_nd we try to obtain a cons_istent overall X[l_L—WfL(Ll/V(T_Tg))+O(L—ZW)] (6)
interpretation. Our final aim is to check our earlier statement

5,7] that critical parameters vary between systems with dif- . - . .
[5.7] P Y Y nd there is a similar expression fa*). At small sizesg,

ferent sets of interactions, meaning that conventional univerd” o /
sality does not hold in I1SGs ¢ will be modified through the corrections to botq?) and

(q%. For the 3l Ising ferromagnet, the correction to the
scaling exponentv is 0.87+0.09, while for the 8 site per-

[l. SCALING RELATIONS colation problemw is 1.62+0.13[9]. High values ofw im-
ply that deviations from scaling drop rapidly Bdncreases;

theV\;en;\I””sifgisst] riia;! S?\?;'Qgsirze;agggst;m'C;]r;\tlﬂlrgetﬁze: 'Si_however, it has been suggested that whes large, sublead-
y ' 9 P ’ q ing terms can be expected to play a role d18d.0]. Up to

librium spin glass susceptibility is related to the second mo- . ;
ment of the fluctuations of the autocorrelation functapft) now, the exponents has not been estimated numerically for

through ISGs.
9 We can also obtain independent estimate$ pf 7, andz

4 using the method introduced by Bernaedlial.[5,7]. First, as
Xsc=LYq%) (1) the ISG is quenched from an infinite temperature configura-
tion to Ty, the spin glass susceptibility increases with time
(L is the linear size of the system adds its dimensiopand ~ ast" with [11,12)
its standard finite size scalingS9 formula is

However, Eqs(1)—(5) ignore possible corrections to FSS.
When these are included, the expression for the spin glass
susceptibility becomes

xsa=LZ H(LI(T-Ty). @ . @
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Second, if we measure the decay of the autocorrelation func
tion q(t) for a well annealed sample &, the initial decay © ay
with time is ast™* with [3] 1r U 4

_ oS
2z 2 ©
L <q™> <
Combining these measurements at a set of test temperaturt &
nearTy gives us a first set of effective valueg(T). Inde- oL
pendently, the equilibrium spin glass susceptibility as a func- ot
tion of sample size. at T near T, gives us another set of at
effective valuesy,(T). Consistency dictates that the trlig
and » must correspond to the intersection point of the two P a— ™ o 35 = 5 2
independenty(T) plots. This method allows us to estimate L™(T-T)
Ty, 1, andz _ o
We can comment on the practical application of these FIG. 1. Scaling plot ofq®) with To=1.11, »=—0.35, andv
methods. First, a scaling plot far has three free parameters = 1.7 for the=J Ising spin glass modgH].
(Tg, », andv). If the scaling is poor for a given set, then ) , i
that set can be ruled out; on the other hand, two different sefst-19:~0.22,1.33, consistent with[3,5], we find equally
may give equally good scaling so the method is not alway9©0d scaling, Fig. 2. X _
discriminatory. The Binder cumulant technique should in | we now plot logio(L(q%)) against logg(L) at the tem-
principle lead to a clear value &, ; however, for the par- Perature 1.195 including results far=3 and 4, the data
ticular case of 8 ISGs, the Binder cumulant curves near the ShOW @ bend at small and a straight line at large, Fig. 3.
estimatedT, lie very close togethef4,6], so any residual This is consistent with &, closg to 1.195 toggth_er with
statistical errors or corrections to FSS can have a drastigo"ections to FSS for smaller sizes. In fact, similar down

effect on the precise position of the crossing points betweeff€nding can be seen at the other temperatures as well when
the curves. the data are plotted in this way. The effect is clearesT at

The 74(T) in the Bernardet al. method is obtained using = 1-195 as this is the lowest temperature where data extend
large samples and so should not be subject to finite sizE L =24, giving a good estimate of the large size limiting
corrections. behavior. Assuming that only the leading term in the correc-
tion to finite size scaling is important, we can fit the points
with Eq. (6) ignoring theO(L ~2%) term and replacing the
function f, by a constank. The curve in Fig. 3 corresponds

We will now discuss the binomial case. Ising spins on at0 #=—0.22 andw=2.8. If we make the approximation
simple cubic lattice are coupled through random binomiathat, in the range of temperatures covered by the simulations,
(+J) near-neighbor interactions. Ogiel§&i carried out dy-  the correction factor is temperature independert, we set
namic simulations on samples with up to 64. From the the correction scaling functiofy to k everywhere as other-
divergence of the susceptibility and relaxation time he estiwise we would have too many uncontrollable free param-
matedT,=1.175+0.025. Bernardet al.[5] obtained a scal- €ters, we can generate a set of “correctedj®) values for
ing value forT, in agreement with Ogielski. Kawashima and all theL andT:

Young[4] carried out very high quality numerical measure- 5

ments down tdl'=0.96 for sample sizels from 6 to 16 and (2)* = (a9 ©)
down to T=1.195 forL=24. They measured the moments 1—kL™W

of the equilibrium fluctuations of the autocorrelation func-
tion, (g?) and(g*). From the estimated intersection point of
the raw Binder cumulant curves, they deduced a value for o
Ty=1.11+0.04. With this value ofl 4 in hand and the scal- @n
ing relations, they further estimated the critical exponents. %q%

They have generously put their spin glass susceptibility date 1 @@%

at our disposal. We have completed their series of data witt ey
measurements taken at the same temperatures and wiL "<q> ® o
smaller sizesl. =3 andL=4. Kawashima and Youn{4] A
pointed out that their data could be subject to corrections tao a
finite size scaling, as their scalings for the Binder parametet
and for (g% did not lead to fully consistent estimates
for v.

We will proceed by steps, starting with thg?) data
rather than the Binder cumulant. First, if we accept the pa-
rameter set[Ty,7,v] quoted in Ref. [4] ie., [1.11,
—0.35,1.7, the (g?) data forL=6 to L=24 lead to the FIG. 2. Same type of scaling plot as in Fig. 1, but wifh
scaling plot in Fig. 1. If we choose instead the parameter set1.19, »=—0.22, andv=1.33.
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temperature for the-J ISG model. According t¢5], the intersec-
tion point between the twg(T) curves gives an estimate of and
7. we obtainedT;=1.20=0.01 andn= —0.21+0.02. This figure
also includes another estimate pfand T, from [3], full diamond.

FIG. 3. L{(g? versusL plot for the raw =J ISG data[4]
(circles with its corresponding fitline) (7= —0.22 andw=2.8)
taking into account the finite size scaling correctipig. (6)]. The
stars mark the “corrected’L(g?) data. This figure clearly shows
that the corrections to FSS are still present at sizes up-t8. second set ofy,(T) from the slopes of the |qu(q2>)

against logy(L) plots at largel (the data of4]), Fig. 5. The
intersection point between the twg(T) curves gives ug,

We can now make a new scaling plot, Fig. 4, using the=1.20+0.01 andn=—0.21+0.02. Thus the two indepen-
corrected{g®)* values. With the same scaling parameter setlent estimates of ; and 7, from Ogielski’'s dynamic data,
[Ty, 7, andv] as before, the new scaling pl¢Fig. 4) is ~ and from the Bernardét al. method, are in good agreement.
now of excellent quality, implying that the analysis is self- The(g?) scaling of Fig. 4 is also consistent with this analy-
consistent. sis.

The large value ofv is entirely consistent with quite in- ~ What about the Binder cumulants? Likg?), (q*) val-
dependent series results on thel ISG [13]. In the series ues are also subject to corrections to FSS. Figure 6 shows the
work, corrections to scaling are represented by the parametéf(q?) data as a function of. again at the temperature
A;, whereA,;=wv. The series results lead ta {~3) in 4d 1.195. The curve is a fit of the same form as for the equiva-
and (A;~4) in 3d (it is expected that\; gets larger as the lentL(g?) plot. The fit parameters are a higrslope of 0.44
dimension decreases below the upper critical dimensiofequal to—27 if we are atT ) andw=2.0. We can note that
[13,14)). Thus in 31, the series resulk;~4 and the present the two fitting values ofw for (g% and for (g*) are not
simulation resulwvy~ 3.7 are entirely consistent. identical whereas scaling theory tells us that they should be

From new simulations we have obtained more accuratéhe same. However, the exponents we are quoting are only
data for the effective values of the Huse paramb(dn as a  “effective” exponents; as was pointed o{#], whenw is
function of temperature in the region nebg. Combining  high, subleading terms cannot be ignored. We surmise that
theseh(T) values with the effective power-law relaxation the true leading term value of is close to 2.8, but that the
exponent valuex(T) from Ogielski’s relaxation work3], (q*) is affected by subleading terms so the apparent value of

we obtain a first set of effective valueg(T). We obtain a W appears a little different. We have used the fit curves of
Figs. 3 and 6 as providing empirical size-dependent correc-

10
(o' @
A@}%%
1 %E
%%
L1+n<q2>
oy 2 4
A L'<q> *
< *
OL=086 4
OL=08
O L=12
AL=18 <1
<qL=24
04 . . . . . . ) .
20 -5 10 -05 00 W 0.5 1.0 15 20 25 30
L™(T-T) 1

L
FIG. 4. Scaling plot of the corrected data of Fig.(2%)*) with

Tg=1.19, »=-0.22, andv=1.33. The quality of the FSS plot has FIG. 6. Same type of plot as in Fig. 3, but with the rad(q*)
improved and is not degraded if we include sites3 and 4. data[4]. Here, = —0.44 andw=2.0.
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FIG. 7. Scaling plot ofg?) with T4=0.95, »=-0.36, andv FIG. 8. Same type of scaling plot as in Fig. 7, but with an
=2.0 for the 31 Gaussian Ising spin glass modél. improved set of parameter$;=0.875, 7= —0.49, andv=1.65.

tion factors for the range df studied. With correctedq®)

and(qg?) values we can generate a set of corrected Bindeinteraction systenicompare Figs. 3 and)9

cumulant values. The corrected Binder cumulant curves all Now having the Marinaret al. (g®) data up toL =16 at

intersect neail =1.19. hand[6], it is possible to give accurate values for the set of
We are not suggesting that this is a water-tight procedureffective 7,(T) from log,o(L{g?)) against logyL) plots.

for estimating T, accurately. The point is that the data Hence the estimates for this system from the Bernetdil.

clearly show that there are correction terms present. A plautechnique can be improved, Fig. 10. It can be seen that there

sible procedure for allowing for corrections modifies the ap-is a clear intersection point correspondingTtg, » equal to

parent “Binder” T,4. But because Binder plots are highly 0.86+0.02,-0.51+0.02. The(g?) scaling analysis and the

sensitive to the precise correction terms, alternative techBernardiet al. technique give consistent results.

nigues should be preferred for estimatifigwhen correction Finally we can examine the Binder cumulant data. A stan-

terms are present. In fact, without going into the procedurelard plot forg, (T) with the data which can be read off the

we have just outlined, a simple qualitative check on the corMarinariet al. plots[6] is shown in Fig. 11. The intersection

rect Binder cumulant intersection point can be obtained byof the curves occurs at=0.91+0.04 giving a value off

concentrating attention on the rayy(T) curves forL=16  which is essentially consistent with théq?) scaling and the

andL =24, Fig. 2 of Ref[4]. As these are the largest sizes, Bernardiet al. method.

the curves should be the least affected by corrections to FSS.

Already in the raw dat§4] the intersection point of the two

g.(T) curves for these two sizes was at a temperature of

aboutT=1.195, indicating that this temperature is close to We can draw a first conclusion on the technical level. For

V. COMPARISONS AND CONCLUSIONS

Ty- systems like 8 ISGs where Binder cumulant plots for dif-
IV. 3D GAUSSIAN ISG MODEL 4
O T=0.90
We now turn to the 8 ISG with Gaussian interactions. O To100
Early work suggested;=0.9+0.1 [8]. Bernardiet al. [5] o Te140

estimatedrl' ;= 0.88+0.05. Recent large-scale simulations on
sizes 4 to 16[6] were interpreted as showingy=0.95
+0.04, v=2.0, and »=-0.36:0.06. The authors have
kindly provided us with their susceptibility data. We have
completed the(g?) data sets with results dt=3. In the
discussion we will follow the same series of steps as for the
binomial case. ArL{g?) scaling plot with the parameter set
[Tq.v,77] given by[6] is of poor quality, Fig. 7. With the
parameter sef0.875,1.65;-0.49] the quality of scaling is
much improved, Fig. 8. This suggests tfigtis near 0.88.
Direct log-log plots ofL{g?) againstL give an excellent 1 10

straight line atT=0.90 over the whole range df, Fig. 9, L

while the plots are curved for high at temperatures above FIG. 9. Log-log plot ofL(g?) versusL for the raw Gaussian
this value. This shows that for this systeffy, is near or |SG data[6], at different temperatures close Tg. The Gaussian
below 0.90, and that the corrections to FSS are indiscernablgG model exhibits no relevent corrections to H§8mpare Figs. 3
for (g?), much smaller in any case than in the binomialand 9. The lines are to guide the eye.

L<q2>
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08 ' ' ' ' TABLE |. Estimates ofTy, 5, and v for the 3d 1SGs with
binomial and Gaussian interactions using different technidses
main body of text
+J ISG Ty 7 v

0.6 |
Corrected FSS 1.19+0.01 —0.22+0.02  1.33:0.05

m Bernardiet al.
method 1.26:0.01 —0.21+0.02

o4 Ogielski[3] 1.175:0.025 —0.22+0.05 1.3:0.1
Gaussian ISG Ty 7 v

02 . . . . Fsg 0.875:0.01 —0.49+0.02 1.65-0.05

"0.60 0.70 0.80 0.90 1.00 1.10

Temperature .
P Bernardiet al.

FIG. 10. 7,(T) (squares and 7,(T) from [6] (circles versus  method 0.86:0.01  —0.51+0.02
temperature for the Gaussian ISG model. The intersection point
between the twon(T) curves givesTy=0.86+0.01 and = : >
—0.51+0.02. This figure also includeglus symbol the estimate ZUs!ng(q2> data from Ref[4].
of » and T, from the(q?) scaling plot:T,=0.875+0.01 andyp= Using (q°) data from Ref[6].
—0.49+£0.02. The lines are to guide the eye.

FSS, the ordering temperatures, and the various critical pa-
ferent sizes lie very close together négr, and are sensitive rameters for the canonical ISG systems with binomial and
to deviations from FSS and possibly other systematic probGaussian interactions.
lems, estimates of; from Binder cumulant curve intersec-  We estimate the correction to the FSS scaling exponent
tions have to be treated with great caution. When accuratfor the binomial ISG to bav~2.8 in good agreement with
data to largeL exist, scaling plots foKq?) appear to be series result§13]. For the Gaussian case, deviations from
reliable as they are less sensitive to systematic errors, pasealing for the susceptibility are very small.
ticularly to deviations from FSS. However, a scaling collapse We give estimates in tabular form for the critical tempera-
may not be discriminatory as three parameters are involvedures and exponents, Table I. With the valuesTgfin the
The method of Bernardit al.[5], combining nonequilibrium  table, the ratiol y(Gaussiai T4(binomia) is in good agree-
scaling, dynamic scaling, and finite size scaling, is not senment with Migdal-Kadanoff15,16 and seried17] ratios.
sitive to deviations from FSS and leads to precise and reliThere appear to be no basic inconsistencies among the esti-
able estimates off; and the exponents. Once deviations mates from the diverse numerical techniques, and the values
from FSS are allowed for, the different methods appear to bef Table | should be reliable. Clearly, in confirmation of
consistent with each other. conclusions drawn if5,7], the exponents), z, and perhaps

Having gone through the procedure outlined above, we, appear to be significantly different for the twal 35G
can summarize the conclusions concerning the corrections tystems. With the present valuesTgf at hand together with

the Binder cumulant valueg (T,) for the largestL in each
0.90

system[4,6], the critical g, values are 0.690.01 for the
0.80
a
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FIG. 11. Binder parametey_ plotted against temperature for
sizesL=4, 8, and 12 read off Marinaret al. [6] gives a clear FIG. 12. Scaling plots ofq?) for both the 21+J ISG and the
intersection atTy=0.91+0.04. The error bars foL =16 being  3d Gaussian ISG model. The two scaling functions are clearly dif-
much bigger, we have not included these points. ferent.
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