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Stationary-state skewness in two-dimensional Kardar-Parisi-Zhang type growth
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Department of Physics, University of Washington, P.O. Box 351560, Seattle, Washington 98195-1560

~Received 6 October 1998!

We present numerical Monte Carlo results for the stationary-state properties of KPZ-type growth in two-
dimensional surfaces, by evaluating the finite size scaling~FSS! behavior of the second and fourth moments
W2 and W4 and the skewnessW3 in the Kim-Kosterlitz ~KK ! and body-centered solid-on-solid~BCSOS!
models. Our results agree with the stationary state proposed by La¨ssig. The roughness exponentsWn;Lan

obey power countingan5na, and the amplitude ratios of the moments are universal. They have the same
values in both models:W3 /W2

1.5520.27(1) andW4 /W2
2513.15(2). Unlike in one dimension, the stationary-

state skewness is not tunable, but a universal property of the stationary-state distribution. The FSS corrections
to scaling in the KK model are weak anda converges well to the Kim-Kosterlitz-La¨ssig valuea5

2
5 . The FSS

corrections to scaling in the BCSOS model are strong. Naive extrapolations yield a smaller valuea
.0.38(1), but arestill consistent witha5

2
5 if the leading irrelevant corrections to the FSS scaling exponent

are of orderyir.20.6(2). @S1063-651X~99!00503-6#

PACS number~s!: 02.50.Ey, 05.402a, 68.35.Fx
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I. INTRODUCTION

KPZ-type growth is one of the generic dynamic proces
describing the growth of crystal surfaces. It is named a
the Langevin equation introduced by Kardar, Parisi, a
Zhang about a decade ago@1–5#:

]h

]t
5n

]h2

]2x
1lS ]h

]xD 2

1h, ~1!

with h the surface height andh uncorrelated noise

^h~x1 ,t1!h~x2 ,t2!&5Dd~ t12t2!d~x12x2!. ~2!

Numerous microscopic models on the master equation l
have been studied numerically as well and are confirme
be in the KPZ universality class@2–5#. However, many prop-
erties of this process are still in question, including ba
aspects, like the precise values of the scaling critical ex
nents and the detailed structure of the stationary grow
state. Part of the problem is the absence of an obvious m
field theory. The linear, integrable diffusion, part of the KP
equation (l50) does not play the role of mean field theo
fixed point in high enough dimensions (D). The KPZ behav-
ior is governed by a strong coupling fixed point for allD, and
thus evades perturbative renormalization treatments@6#.

It is widely accepted that the dynamic exponentz and the
stationary-state roughness exponenta obey the equalitya
1z52 in all D @2–5#. These critical exponents specify ho
time and height rescale under a renormalization transfor
tion x→bx, t→bzt, and h→bah. The exponent identity
states that under renormalization the amplitude of the n
linear term in the KPZ equation does not change.l is a
so-called redundant scaling field. It plays a role similar
lattice anisotropy in equilibrium phase transitions. Increas
l simply speeds up the process, and scaling amplitudes
PRE 591063-651X/99/59~3!/2633~9!/$15.00
s
r
d

el
to

c
o-
g
an

a-

n-

g
re

proportional tol. This exponent equality links the dynam
scaling to the stationary state scaling. Therefore the focus
shifted recently to the structure of the stationary state.

The stationary growing state is trivial in one dimensi
~1D!. It is the Gaussian distribution. The up and down ste
along the surface are uncorrelated beyond a definite corr
tion length. This impliesa5 1

2 ~the random walk value!, and
from the above exponent identity it follows thatz5 3

2 . This
behavior is well established, not only by numerical stud
@2–5#, but also analytically. The 1D body-centered solid-o
solid ~BCSOS! growth model is exactly soluble@7,8#. Its
master equation is a special case of the 2D equilibrium
vertex model. In the latter representation, KPZ scaling
scribes facet ridge end points of equilibrium crystal sha
@9#. One-dimensional KPZ growth is equivalent also
asymmetric exclusion hopping processes@10#. Moreover, the
exact stationary state of the Langevin equation itself
known in 1D and is indeed the Gaussian distribution@5#.

The stationary state is not simple inD.1. The stationary-
state roughness exponenta takes a nontrivial value and i
actually not very well known numerically. For example,
2D the reported values vary betweena50.37 and 0.4
@3,4,11–13#. Lässig made an important analytical brea
through last year@14#. He proposed the likely structure of th
stationary state by studying the operator product expan
of the ~height variable! correlation functions. Under the as
sumption that the algebra closes and contains only one s
ing field operator, La¨ssig obtained a quantization conditio
for the exponents. One of these solutions,a5 2

5 , is close to
the above 2D numerical values. The moments

Wn5^~hi2h̄!n& ~3!

of Lässig’s stationary-state distribution obey power cou
ing; i.e., the exponents in the scaling relations

Wn~N21,t21!5banWn~bN21,bzt21! ~4!
2633 ©1999 The American Physical Society
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2634 PRE 59CHEN-SHAN CHIN AND MARCEL den NIJS
are related asan5na. The distribution lacks multiscaling
Moreover, for the closure of the algebra it is important th
the stationary state be skewed. The odd moments, in par
lar the third one, must be nonzero.

In this paper we report a detailed numerical study of
stationary state in 2D for the Kim-Kosterlitz~KK ! @11# and
the BCSOS model. We determine the finite-size scaling
havior of the second, third, and fourth moments.

In Sec. II we review the properties of stationary-sta
skewness in 1D KPZ growth, and list the possibilities
higher dimensions. Section III contains our numerical res
for the KK and BCSOS models. The third moment is inde
nonzero and the second, third, and fourth moments ind
obey power counting. We find strong evidence that the a
plitude ratios of the moments are universal,R35W3 /W2

1.5

520.27(1) andR45W4 /W2
2513.15(2). The amount of

stationary-state skewness is the same in these two mode
1D skewness is tunable, but appears not to be so in 2D.
values of these amplitude ratios are the major new result
this paper.

One of the major differences between this and most e
lier numerical studies of KPZ-type growth is our detail
corrections to the finite-size scaling~FSS! analysis. This al-
lows us to address in Sec. III whether the differences
tween the previous reported values ofa for the KK and
BCSOS models can be attributed to FSS-type correctio
The leading FSS scaling corrections to the scaling expon
are large for the even moments and in the range of va
predicted by naive power counting.

To check more directly whether skewness is tunable
not, we introduce a temperature-type parameterK in the BC-
SOS model. In the KK model it is known thatl changes sign
with K @12#. In Sec. IV we give an intuitive explanation fo
why this happens.~It is related to preroughening phenome
in equilibrium surfaces.! In the BCSOS modell does not
change sign. In Sec. V we present Monte Carlo~MC! data
for the K dependence of the roughness exponents and
amplitude ratios. Both show some systematic drift, but mu
smaller than expected if they would vary withK.

II. STATIONARY-STATE SKEWNESS

This study was actually not motivated by La¨ssig’s recent
results. It was conceived as a generalization of an ea
study of stationary-state skewness in 1D@15#. The KK model
is a special point in the restricted solid-on-solid~RSOS!
model. We varied its adsorption and evaporation probab
ties in the 1D model by making them dependent on the lo
nearest-neighbor heights. That led to five independent
rameters. Surprisingly we were able to construct the ex
stationary state in a four-dimensional subspace. Its struc
is simple. The steps in the interface are completely unco
lated. Only the step density varies. This state has zero sk
ness. It is a Gaussian and has particle-hole symmetry.
side this exact soluble subspace the stationary stat
skewed. This means that in general KPZ-type growth in
has a nonzero third momentW3 in its stationary state. Fo
example, the KK point lies outside the nonskewed subsp
On the other hand, the stationary states in the exactly sol
BCSOS model and also the Langevin equation itself are n
skewed. Stationary-state skewness is distinct from temp
t
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skewness. Most initial states develop into skewed structu
at intermediate time scales~temporal skewness! even if the
stationary state is not skewed@16#.

So in 1D, KPZ-type stationary states are typically skew
and its amplitude is tunable. This raises the immediate qu
tion of whether skewness affects the scaling exponents.
us refer to the operators leading out of the nonskewed s
space asOsk and to their conjugate coupling constants
usk. In 1D, a KPZ-type fixed point with zero skewness e
ists. The question is whether this fixed point is stable a
whetherOsk is a relevant, marginal, redundant, or an irre
evant operator. Suppose the nonskewed KPZ fixed poin
stable. The moments should scale then with system size

Wn~N21,usk!5banWn~bN21,byskusk!, ~5!

with an5na andysk,0. All even moments scale as

Wn.ANan1•••, ~6!

with universal amplitude ratiosRn5Wn /W2
n/2. All odd mo-

ments scale as

Wn~N21,usk!5NanFn~Nyskusk!

5Nan@Fn~0!1F n8~0!Nyskusk1•••#

;uskN
an1ysk, ~7!

with Fn(0)50 because the fixed point has no skewness. T
odd amplitude ratios are proportional tousk; i.e., the skew-
ness varies continuously.

Numerical~transfer matrix finite size scaling! results con-
firmed that the nonskewed KPZ fixed point is stable in 1
We foundysk.21. Moreover, the amplitude ofW3 ~at, e.g.,
the KK point! is indeed roughly proportional to the skewne
coupling constantusk, in accordance with Eq.~7!.

We performed a mean-field-type analysis of the mas
equations@15#. This identifies the crossover operatorOsk
with interactions like (]2h/]x2)2 that break particle-hole
symmetry. The latter interaction has as naive scaling dim
sion yir522 ~by power counting witha5 1

2 and z522a
5 3

2 ). This is smaller than the observed value. We failed
find an operator in the KPZ equation with power-counti
scaling dimensionyir521. The origin of the corrections to
scaling with yir521 remains therefore somewhat of
puzzle. However, there is room for additional irrelevant o
erators not represented in the Langevin equation. For
ample, the combination of the discreteness of the height v
ables, the lattice, and the RSOS restriction gives rise to
additional order parameter, the step density, besides the
slope in the mean field analysis@15#. We found that the step
density is a massive field with a definite short relaxation ti
scale, and therefore can be integrated out. However, it ca
the origin of additional irrelevant operators.

Skewness is negative at the 1D KK point. On average
tops are wider~flatter, less sharp! than valley bottoms. Such
a statement is meaningless without the specification of a
off. The definition of what constitutes a mountain and wh
represents a local hump depends on the length scale at w
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the surface configuration is being viewed.~Humans do not
interpet every grain of sand as a hill.! Skewness is a scale
dependent property. The asymptotic scaling of the mome
tells us how asymmetric the hills and valleys are in the la
length scale limit. In 1D this skewness persists all the way
microscopic length scales. We calculated the surplus of sh
valley bottoms over sharp hill tops at the microscopic~the
grains of sand! level. This expectation value has the sam
sign as the macroscopic skewness and is also roughly
portional tousk. This invariance of the surface structure ov
all length scales is related to the rather trivial nature of
fixed-point stationary state~Gaussian distribution!.

The tunability of the skewness at the microscopic len
scale is easy to understand. Consider the 1D RSOS m
with deposition only, with three parametersph , ps , andpv
@15#. The density of local sharp hill tops is set by the dep
sition probability ph of particles on local flat surface seg
ments. The sharpness of these local hill tops is set by the
at which they broaden, i.e., the probability with which pa
ticles adhere to existing steps,ps . The density of local sharp
valleys is set by the rate at which single-particle puddles
up, pv , compared to the rate at which they are created, 2ps .
These processes balance exactly inside the subspace w
the stationary state is trivial and has zero skewness. At
KK point ph5ps5pv51, the balance is imperfect and th
dynamics creates a backlog of ‘‘to-be-filled-up’’ local va
leys. Newly created local hill tops broaden readily, a
therefore are flatter@15#.

Is the skewness tunable inD.1 as well? Is there mayb
a line of KPZ-type fixed points with continuously varyin
skewness? A varying exponenta would explain the curren
numerical spread in its value. Is it possible to change the s
of skewness without changing the sign ofl in Eq. ~1!? Or is
there one single KPZ stationary-state fixed-point distributi
with a universal amount~and sign! of skewness? In that cas
we need to explain the numerical spread ina ’s in terms of
strong FSS corrections. These are the issues we addre
this paper.

III. SCALING OF THE STATIONARY-STATE MOMENTS

We perform a systematic numerical study of t
stationary-state properties in the 2D KK model and the B
SOS model. In both cases we allow only particle deposit
~no desorption!. Consider a 2D square lattice with a heig
variableh(r )50,61,62, . . . ateach lattice site. We apply
periodic boundary conditions. In the KK model, neare
neighbor columns are allowed to differ by at most one u
dh50,61. Choose a site at random, and deposit a part
h→h11, with probabilityp51, unless such a move woul
violate the above restriction.

In the BCSOS model the square lattice is divided into t
sublattices. The height variables are restricted to be eve
one of them,h(r )50,62, . . . , and to be odd on theother,
h(r )561,63, . . . , such that nearest-neighbor columns
ways differ in height by onedh561. Choose at random
site, and deposit a particle with probabilityp51 if the move
does not violate thedh561 constraint. In Sec. V we con
sider also the generalization where the BCSOS depos
probabilities vary with the local configuration by means o
temperature type parameter,p5min„1,exp(2DE)…. HereDE
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is the energy change if the adsorption would take place.
energy

E~$hi%!5(
^ i , j &

1

4
K~hi2hj !

2 ~8!

has a tunable parameterK and the summation runs over a
next nearest neighbors. This rule is identical to that in st
dard Metropolis MC simulations, except that desorption
forbidden. The latter breaks detailed balance and leads to
nonequilibrium growing stationary state.

We determine the second, third, and fourth moments
the stationary states. The MC averages in this section invo
.23106 MC steps, after.43103 initial MC configura-
tions, to allow the surface to reach its stationary state. T
square lattice sizeL2 varies as 12<L<128.

First consider the KK model. Figure 1 shows the seco
momentW2 . It scales asW2.ALa2. The slope of the log-
log plot gives the exponenta2 . It is a mistake to apply a
least-squares-type fit to the slope at largeL. One should de-
termine the slope at various system size intervals and
form a FSS analysis. Figure 2 represents such an analys
shows FSS estimates fora2 from the same data, defined a
a2(L)5 ln@W2(L2)/W2(L1)#/ln@L2 /L1# with L2.1.2L1 and L
5 1

2 (L11L2). Such a FSS scaling analysis is only bare
feasible at large system sizes due to the intrinsic MC no
Figure 2 is indeed rather noisy at largeL. The MC scatter
increases with system size, since the stationary state is in
sically critical and therefore subject to a critical slowin
down. We opted for running many lattice sizes instead
fewer but longer MC runs. The solid line is obtained b
averaging thea2(L) locally, overL27<L<L17. The data
in Fig. 2 converge by eye toa250.80(2), consistent with
the valuea5 2

5 proposed by Kim and Kosterlitz from thei
earlier numerical results@11,12# and with Lässig’s @14# sta-
tionary state. The FSS corrections to scaling in the K
model are small compared to the MC noise.

Figures 3 and 4 show the same FSS analysis for the t
and fourth moment exponentsa3 anda4 . They converge by
eye to a351.20(4) anda451.60(5). The corrections to

FIG. 1. Stationary-state second momentW2 of the 2D Kim-
Kosterlitz ~KK ! model as function of lattice sizeL2. The solid line
with slope 0.8 is shown as reference.
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FSS are again small compared to the MC noise. The sur
is skewed and power counting,an5na, is satisfied within
the numerical accuracy.

Figures 5 and 6 show the amplitude ratios~the circles! of
the third and fourth moments compared to the second o
Rn5Wn /(W2)n/2. The fact that these ratios convergen
gives additional evidence of the validity of power-countin
Actually, they do so much smoother than the exponentsan ,
suggesting that the MC fluctuations tend to preserve
power counting property better than the precise value ofa.
The amplitude ratios converge smoothly toR3520.27(1)
andR4513.15(2). Skewness is negative,R3,0. It is prob-
ably wishful thinking to guess thatR45p. (R453 in
Gaussian distributions.!

The above results demonstrate that in 2D the amplitu
Fn(0) in Eq. ~7! do not vanish for the odd moments. In 1D
the KPZ fixed point lies at zero skewness; in 2D it has n
zero skewness. This agrees with La¨ssig’s @14# stationary
state. However, the amplitude ratios must be universal if

FIG. 2. Finite-size scaling approximants for the surface rou
ness exponenta2 of the second moment,W2.ALa2, in the station-
ary state of the 2D KK model.

FIG. 3. Finite-size scaling approximantsa3(L) for the surface
roughness exponenta3 of the third moment,W3.ALa3, in the
stationary state of the 2D KK model.
ce

e,

.

e

s

-

e

KPZ scaling behavior is described by one single fixed po
To check this we repeat the same analysis for the BCS
model.

Consider the BCSOS model atK50. Figures 7, 8, and 9
show the same type of FSS estimates for the exponentsan .
The finite-size corrections to scaling are much larger than
the KK model. The data converge by eye systematically
smaller values than in the KK model:a250.77(2), a3
51.16(3), and a451.54(4). This is consistent with the
value fora2 reported in the literature@4,13#. Thesean’s are
mutually consistent with power counting. Power counting
again more stable than the values of the exponentsan . Most
importantly, the amplitude ratios in Figs. 5 and 6~diamonds!
converge to the same values as in the KK model~circles!.

Is a really smaller than in the KK model and differen
from the Kim-Kosterlitz-Lässig~KKL ! value? The finite-size
scaling corrections in the BCSOS model are several order
magnitude bigger than in the KK model. Is it believable th
these apparent differences are due to corrections to sca

- FIG. 4. Finite-size scaling approximantsa4(L) for the surface
roughness exponenta4 of the fourth moment,W4.ALa4, in the
stationary state of the 2D KK model.

FIG. 5. Finite-size scaling behavior of the skewness amplitu
ratio R35W3 /W2

1.5 in the 2D KK model ~circles! and theK50
BCSOS model~diamonds!.
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only? The above FSS extrapolation ‘‘by eye’’ presumes i
plicitly that all an converge approximately linearly inL21.
This looks reasonable from the data, but is too restrict
Corrections to scaling originate from so-called irreleva
scaling fields. The corrections to scaling exponentsyir,0 in
Wn.AnNan@11BnLyir1•••# are universal properties of th
stationary-state fixed point. The amplitudesBn are not uni-
versal. They depend on the ‘‘distance’’ of the model to t
fixed point and the quantity we are looking at. Assume t
one correction to scaling term dominates, i.e., that all ot
operators scale with much more negative values ofyir . The
same exponentyir should then appear in all moments. Th
only exception is that in specific quantities the leading te
might have zero amplitude by symmetry. For example,
even moments might show a different leading exponentyir
than all odd ones. This actually happens here.

Suppose we force our BCSOS data to converge toa
5 2

5 . We made plots ofWn /Lna with a5 2
5 versusLyir for a

range of values ofyir . This should be a straight line at th
properyir . From this we estimate thatyir.20.6(2) for the

FIG. 7. Finite-size scaling approximants for the surface rou
ness exponenta2 of the second moment,W2.ALa2, in the station-
ary state of the 2D BCSOS model.

FIG. 6. Finite-size scaling behavior of the fourth-moment a
plitude ratioR45W4 /W2

2 in the 2D KK model~circles! and theK
50 BCSOS model~diamonds!.
-

.
t

t
r

ll

second and fourth moments, andyir.21.7(3) for the third
moment. These straight line fits are satisfactory stable. So
KKL value for a is within the realm of possibilities for the
BCSOS model. Still, it remains a leap of faith, because
curves in Figs. 7, 8, and 9 are bent to the limit.

It would be much more convincing if the corrections
scaling exponents were known analytically and/or ta
simple values. At the core of La¨ssig’s result is the assump
tion that the operator content of the system is simple. The
fore one would expect that the irrelevant operators h
rather trivial critical dimensions, like integers, multiples
a, and combinations of both. The above numerical values
yir do not look that simple, but are of the same order
magnitude as we might expect. Simpleminded power cou
ing in Eq. ~1!, with a5 2

5 and z1a52, suggests that the
corrections to scaling are strong and that the curvature
erator]2h/]x2 is irrelevant, but not by much,yn52a. The
corrections to FSS in the third moment are much smal
The curvature operator]2h/]x2 does not affect it and prob
ably all other operators that change sign underh→2h ei-
ther. One of the leading remaining candidates is (]2h/]x2)2

-

FIG. 8. Finite-size scaling approximants for the surface rou
ness exponenta3 of the third moment,W3.ALa3, in the stationary
state of the 2D BCSOS model.

FIG. 9. Finite-size scaling approximants for the surface rou
ness exponenta4 of the fourth moment,W4.ALa4, in the station-
ary state of the 2D BCSOS model.

-
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which we associated with skewness in the 1D model~see
Sec. II!. It gives rise toysk522.

IV. TEMPERATURE-DEPENDENT TRANSITION
PROBABILITIES

In Sec. V we vary the temperature-type parameterK in
the BCSOS model, to study the universality ofa and skew-
ness issues raised in Sec. III in more detail. We do this o
for the BCSOS model, not the RSOS model.~The KK model
is a special point in the phase diagram of latter.! From earlier
studies it is known that in the RSOS model the KPZ nonl
ear terml changes sign withK @12#. This creates strong
Edwards-Wilkenson-~EW-! type corrections to scaling an
will obscure the skewness property, because the EW sta
ary state atl50 is nonskewed~the Gaussian distribution!.
Such a change inl does not take place in the BCSOS mod

The following connection with preroughening phenome
in equilibrium crystal surface explains whyl changes sign in
the RSOS model and not in the BCSOS model. Imagin
two-dimensional phase diagram, withK;T21 the tempera-
turelike parameter and a parameters representing the asym
metry between particle deposition and evaporation.s50 cor-
responds to MC-equilibrium-type dynamics ands51 to the
above pure deposition model without evaporation. The eq
librium surface undergoes a roughening transition. T
rough phase is the EW stationary state. The scaling pro
ties of the equilibrium~stationary! state are described by th
Gibbs distribution of the sine-Gordon model:

E5E dx dyFK

2
~¹h!21u2 cos~2ph!1u4 cos~4ph!G .

~9!

It is known thatu2 varies with temperature and changes s
inside the equilibrium rough phase in the RSOS model
above the roughening transition. This follows from an ex
duality transformation@17#. The location of thisu250 point
at s50 agrees qualitatively with the numerical value of t
l50 point ats51. Those values do not have to be identic

FIG. 10. Finite-size scaling approximants for the surface rou
ness exponenta2 of the second moment,W2.ALa2, in the station-
ary state of the 2D BCSOS model as function ofK.
ly

-

n-

.
a

a

i-
e
r-

t
t

.

They only need to be of the same order of magnitude. T
following arguments suggest that a line ofl50 points
emerges from theu250 point ats50 into thes direction.

u2 is negative at the high-temperature side of theu250
line. There, the rough stationary-state surface takes loc
the so-called disordered-flat-type structure with alternat
up and down steps and local half-integer surface height@18#.
This is the same surface structure as in the BCSOS m
~but not close packed withdh561 kinks!. The nonlinear
term in the KPZ equation controls the local growth veloc
at sloped sections of the surface. Growth at slopes is s
pressed in BCSOS-type rough structures, and thereforl
,0. At the opposite, low-temperatureu2.0 side of theu2
50 point, the local rough RSOS surface is smooth, and
on the local level integer average surface heights. In s
structures, growth at sloped parts of the surface is enhan
and thereforel.0.

The location ofu250 can be controlled by introducing
further neighbor interactions. This point transforms into t
preroughening transition point when it moves below t

- FIG. 11. Finite-size scaling approximants for the surface rou
ness exponenta2 of the second moment in the stationary state
the 2D BCSOS model atK560.25 and 0.

FIG. 12. Finite-size scaling approximants for the surface rou
ness exponenta3 of the third moment in the stationary state of th
2D BCSOS model atK560.25 and 0.
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roughening temperature@18# ~but only atsÞ0, because the
driven nonequilibrium surface is always rough!.

Such a change inl does not take place in the BCSO
model. Its equilibrium stationary state~at s50) is exactly
known for all K from the exact solution of the six-verte
model @19#. u2 is negative at all values ofK in the s50
equilibrium surface. Therefore there is no reason to expe
change ofl as a function ofK in the pure deposition mode
at s51. This makes the BCSOS model a suitable test
ground for the tunability of 2D skewness and the universa
of a.

V. TEMPERATURE-DEPENDENT DEPOSITION
RATES IN THE BCSOS MODEL

In this section we study the universality of the stationa
state roughness exponenta and the skewness by varying th
deposition probabilities in the BCSOS model. This sho
clarify whether the skewness is truly universal or a tuna

FIG. 13. Finite-size scaling approximants for the surface rou
ness exponenta4 of the fourth moment in the stationary state of t
2D BCSOS model atK560.25 and 0.

FIG. 14. Finite-size scaling behavior of the skewness amplit
ratio R35W3 /W2

1.5 in the stationary state of the 2D BCSOS mod
at K560.25, and 0.
a

g
y

-

d
e

parameter. We can control the microscopic particle-h
asymmetry explicitly.

Figure10 shows the variation of the second-moment
ponenta2(L) with the temperature parameterK. This plot is
more qualitative than the ones in Sec. III. The system si
are smaller~up toL580) and the MC runs an order of mag
nitude shorter~up to 105 MC steps, after 2500 initial MC
steps!. The curves have a definite slope at small system si
but these disappear with system size. At temperatures
yondK.1 the surface becomes very flat and inactive. Co
pared toK.0 the system size is effectively much small
and the MC runs effectively much shorter. This explains
decay in the approximants at largeK. At the opposite side,
beyondK.21, the surface becomes quite faceted at sh
distances and the dynamics slows down again. Faceted s
tures havea51. This explains why thea2(L) curves drift
upward on the left hand side in Fig. 10. Herea3 anda4 vary
also only weakly with K. The amplitude ratiosR3

-

e
l

FIG. 15. Finite-size scaling behavior of the fourth moment a
plitude ratioW4 /W2

2 in the stationary state of the 2D BCSOS mod
at K560.25 and 0.

FIG. 16. The difference in the expectation value of local sh
hill tops and of local sharp valley bottoms as function ofK in the
2D BCSOS model along 1D cross sections through the surface.
diamonds~circles! are for lattice sizeL536 ~64!.
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5W3 /W2
1.5 andR45W4 /W2

2 do not vary significantly withK
either.

We performed quantitative MC runs atK560.25,60.1
for system sizes up toL560 ~with 23106 MC step runs
after 43103 initial MC steps!. Figures 11, 12, and 13 show
the an(L) approximants as function of 1/L at K560.25.
The K50 data are included as reference. The correction
scaling in the even moments increase withK, and are an
order of magnitude smaller atK520.25. The three curve
are consistent with convergence towards the same value
a2 anda4 . Naively these values point to ana smaller than
2
5 , but still consistent with the KKL value if the crossove
scaling exponent is large~see Sec. III!. The corrections to
scaling in a3 are less clear-cut. At first glance the thr
curves seem more or less parallel~which would suggest a
continuous variation ina3 with K), but they actually con-
verge to indistinguishable values fora3 given the error bar
from the numerical MC noise.

The amplitude ratiosR35W3 /W2
3/2 andR45W4 /W2

2 are
shown in Figs. 14 and 15. As before, these amplitude ra
are more stable than the numerical values ofan . The data
confirm universalK-independent values ofRn ~althoughR4
drifts off by a few percent atK50.25).

In 1D the skewness amplitude is tunable and directly
lated to the amount of particle-hole symmetry breaking at
microscopic level. Figures 16 and 17 show how the mic
scopic particle-hole asymmetry varies as function ofK in the
2D BCSOS model. We measure several local quantities.
ure 16 shows the density difference ratior5(rh2rv)/(rh
1rv) between local sharp hill topsrh and local sharp val-
leysrv as seen along 1D cross sections of the crystal. Fig
17 shows the density differencerhv between local sharp hil
tops and local sharp valleys bottoms in the 2D surface
also the difference between sharp ridges versus sharp
yons r rc as defined in Fig. 18 . All three quantities va
dramatically withK. This demonstrates that the local ske
ness coupling constantusk varies significantly withK, suffi-
ciently to expect a large variation inR3 if ~macroscopic!

FIG. 17. The difference in the expectation value of sharp
tops and of sharp valley bottoms,rhv , and local sharp ridges an
canyons,r rc , as function ofK in the 2D BCSOS model. The dia
monds~circles! are for lattice sizeL536 ~64!.
to
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skewness is tunable. Since this not the case,R3.20.27 is
most likely a universal property of the stationary state.

The curves in Fig. 16 and Fig. 17 have kinks atK50.
These are caused by the definition of the deposition pr
abilities, p5min„1,exp(2DE)…. The probabilities are tem
perature dependent for some configurations but constanp
51, for others. At K50 they are being reshuffled. Th
curves of Fig. 10 have similar dips atK50 for smallL, but
these vanish with system size. This is another illustration
the insensitivity of the macroscopic length scale properties
the stationary state on the local properties.

VI. CONCLUSIONS

The most important result of this paper is that the amp
tude ratiosR35W3 /W2

1.5 andR45W4 /W2
2 of the stationary-

state moments converge to the same value in the KK
BCSOS model,R3520.27(1) andR4513.15(2). At the
start of this project we expected that the skewnessR3 would
be the most sensitive parameter to test the universality of
KPZ stationary-state properties in 2D. However,R3 is nu-
merically much more stable than the surface roughness c
cal exponenta. HereR3 takes the same value in the KK an
BCSOS models, and does not vary significantly in the B
SOS model with the temperature parameterK, in contrast to
the strong variation in the microscopic measures of partic
hole asymmetry. The 2D KPZ stationary-state skewnes
universal, unlike 1D where it is tunable.

The differences in the numerical values fora in the KK
and BCSOS models have been a puzzle for a long time.
corrections to FSS scaling in the KK model are small, co
pared to the MC noise, and point clearly to the KKL valu
a5 2

5 . The FSS corrections to scaling in the BCSOS mo
are large. The stationary-state roughness exponent conve
naively but systematically to a smaller valuea.0.38. How-
ever, our FSS analysis shows that the data are consistent
a5 2

5 if the leading corrections to scaling exponents a
dominated byyir.20.6(2) for the even moments andyir
.21.7(3) for the odd ones. These values are different,
in the same range as predicted by simpleminded po
counting. This is an important issue, because different va
of a in the KK and BCSOS models, and variations withK in
the latter, would imply nonuniversality of 2D KPZ scaling
and open up the possibility of, e.g., a continuously vary
a. Our data suggest one single KPZ fixed point with uniq
exponents. It is most likely La¨ssig’s stationary state.
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FIG. 18. Definition of local sharp hill tops, valley bottom
ridges, and canyons in the 2D BCSOS model.
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