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Stationary-state skewness in two-dimensional Kardar-Parisi-Zhang type growth
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We present numerical Monte Carlo results for the stationary-state properties of KPZ-type growth in two-
dimensional surfaces, by evaluating the finite size scalf®9 behavior of the second and fourth moments
W, and W, and the skewnes®/; in the Kim-Kosterlitz(KK) and body-centered solid-on-soli@CSOS
models. Our results agree with the stationary state proposed ssig-arhe roughness exponeis,~ L%
obey power countingy,=ne«, and the amplitude ratios of the moments are universal. They have the same
values in both model&N/; /W%'5= —0.27(1) andN4/W§= +3.1¥2). Unlike in one dimension, the stationary-
state skewness is not tunable, but a universal property of the stationary-state distribution. The FSS corrections
to scaling in the KK model are weak amdconverges well to the Kim-Kosterlitz-lsaig valuea = % The FSS
corrections to scaling in the BCSOS model are strong. Naive extrapolations yield a smaller avalue
=0.391), but arestill consistent witha=§ if the leading irrelevant corrections to the FSS scaling exponent
are of ordery;,=—0.6(2).[S1063-651X99)00503-9

PACS numbegps): 02.50.Ey, 05.46-a, 68.35.Fx

[. INTRODUCTION proportional tox. This exponent equality links the dynamic
scaling to the stationary state scaling. Therefore the focus has

KPZ-type growth is one of the generic dynamic PrOCeSSe3nitted recently to the structure of the stationary state.

describing the growth of crystal surfaces. It is named after The stationary growing state is trivial in one dimension

the Langevin equation mtrod_uced by Kardar, Parisi, and(lD). It is the Gaussian distribution. The up and down steps
Zhang about a decade affb-5]: o
along the surface are uncorrelated beyond a definite correla-
tion length. This impliesyr=3 (the random walk value and
Jh  oh? Jh\ 2 from the above exponent identity it follows that 3. This
i VT“‘(& + 7, (1)  behavior is well established, not only by numerical studies
J°X [2-5], but also analytically. The 1D body-centered solid-on-
solid (BCSOS growth model is exactly solublg7,8]. Its
with h the surface height ang uncorrelated noise master equation is a special case of the 2D equilibrium six-
vertex model. In the latter representation, KPZ scaling de-
_ _ _ scribes facet ridge end points of equilibrium crystal shapes
(700t 70, 12)) =Dt~ 1) 1 —x). (2 [9]. One-dimensional KPZ growth is equivalent also to
asymmetric exclusion hopping proces§&@]. Moreover, the
Numerous microscopic models on the master equation levelxact stationary state of the Langevin equation itself is
have been studied numerically as well and are confirmed tgnown in 1D and is indeed the Gaussian distribufibh
be in the KPZ universality clag®-5]. However, many prop- The stationary state is not simplei>1. The stationary-
erties of this process are still in question, including basicstate roughness exponesttakes a nontrivial value and is
aspects, like the precise values of the scaling critical expoactually not very well known numerically. For example, in
nents and the detailed structure of the stationary growin@D the reported values vary between=0.37 and 0.4
state. Part of the problem is the absence of an obvious medB,4,11-13. Lassig made an important analytical break-
field theory. The linear, integrable diffusion, part of the KPZ through last yeaf14]. He proposed the likely structure of the
equation A =0) does not play the role of mean field theory stationary state by studying the operator product expansion
fixed point in high enough dimensionB}. The KPZ behav- of the (height variablg correlation functions. Under the as-
ior is governed by a strong coupling fixed point for@lland  sumption that the algebra closes and contains only one scal-
thus evades perturbative renormalization treatmgsits ing field operator, [asig obtained a quantization condition
It is widely accepted that the dynamic exponemind the  for the exponents. One of these solutioass £, is close to
stationary-state roughness exponanbbey the equalitye  the above 2D numerical values. The moments
+z=2 in all D [2-5]. These critical exponents specify how
time and height rescale under a renormalization transforma- W,=((hj—h)") 3)
tion x—bx, t—b%, and h—b*h. The exponent identity n !
states that under renormalization the amplitude of the non- . . o
linear term in the KPZ equation does not changeis a pf L:?lSSIg’S statlonary-s'gate dIStI’Ib'Utlon opey power count-
so-called redundant scaling field. It plays a role similar tol"d; i--, the exponents in the scaling relations
lattice anisotropy in equilibrium phase transitions. Increasing
\ simply speeds up the process, and scaling amplitudes are W, (N"Lt ) =baW,(bN~1,b%t 1) 4
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are related asy,=na. The distribution lacks multiscaling. skewness. Most initial states develop into skewed structures
Moreover, for the closure of the algebra it is important thatat intermediate time scalétemporal skewnegsven if the

the stationary state be skewed. The odd moments, in particstationary state is not skew¢i6).

lar the third one, must be nonzero. Soin 1D, KPZ-type stationary states are typically skewed,

In this paper we report a detailed numerical study of theand its amplitude is tunable. This raises the immediate ques-
stationary state in 2D for the Kim-KosterlitkK) [11] and  tion of whether skewness affects the scaling exponents. Let
the BCSOS model. We determine the finite-size scaling beus refer to the operators leading out of the nonskewed sub-
havior of the second, third, and fourth moments. space a0y and to their conjugate coupling constants as

In Sec. Il we review the properties of stationary-stateug,. In 1D, a KPZ-type fixed point with zero skewness ex-
skewness in 1D KPZ growth, and list the possibilities inists. The question is whether this fixed point is stable and
higher dimensions. Section Ill contains our numerical resultsvhetherOg is a relevant, marginal, redundant, or an irrel-
for the KK and BCSOS models. The third moment is indeedevant operator. Suppose the nonskewed KPZ fixed point is
nonzero and the second, third, and fourth moments indeestable. The moments should scale then with system size as
obey power counting. We find strong evidence that the am-
plitude ratios of the moments are universBh=W;/W5> W, (N~L,ug) = bW, (N1, bYskug,), (5)
=-0.27(1) andR,=W,/W3=+3.152). The amount of
stationary-state skewness is the same in these two models.\m
1D skewness is tunable, but appears not to be so in 2D. The
values of these amplitude ratios are the major new results of
this paper.

One of the major differences between this and most ear-
lier numerical studies of KPZ-type growth is our detailed with universal amplitude ratioanwn/WS’z. All odd mo-
corrections to the finite-size scalif§S9 analysis. This al- ments scale as
lows us to address in Sec. Ill whether the differences be-

th a,=na andyy<0. All even moments scale as

W,=AN®+ - - -, (6)

tween the previous reported values @ffor the KK and W, (N1 ug) = N, (NYsiug,)

BCSOS models can be attributed to FSS-type corrections. " e " s

The leading FSS scaling corrections to the scaling exponent =N F(0) + F(0O)NYskug+ - - -]

are large for the even moments and in the range of values N

predicted by naive power counting. ~ UgN sk, )

To check more directly whether skewness is tunable or
not, we introduce a temperature-type paramiter the BC-  with F,,(0)=0 because the fixed point has no skewness. The
SOS model. In the KK model it is known thatchanges sign  odd amplitude ratios are proportional tg,; i.e., the skew-
with K [12]. In Sec. IV we give an intuitive explanation for ness varies continuously.
why this happenglt is related to preroughening phenomena  Numerical(transfer matrix finite size scalipgesults con-
in equilibrium surface$.In the BCSOS modeh does not firmed that the nonskewed KPZ fixed point is stable in 1D.
change sign. In Sec. V we present Monte C4MC) data  We foundyg=— 1. Moreover, the amplitude &5 (at, e.g.,
for the K dependence of the roughness exponents and thtae KK poin is indeed roughly proportional to the skewness
amplitude ratios. Both show some systematic drift, but muctcoupling constantig, in accordance with Eq7).
smaller than expected if they would vary wikh We performed a mean-field-type analysis of the master
equations[15]. This identifies the crossover operat6k,
with interactions like §?h/dx?)? that break particle-hole
symmetry. The latter interaction has as naive scaling dimen-
This study was actually not motivated bydsig's recent  siony;,=—2 (by power counting withae=3 andz=2—a«
results. It was conceived as a generalization of an earlier ). This is smaller than the observed value. We failed to
study of stationary-state skewness in [li3]. The KK model find an operator in the KPZ equation with power-counting
is a special point in the restricted solid-on-soll®@SOS  scaling dimensiory;, = —1. The origin of the corrections to
model. We varied its adsorption and evaporation probabiliscaling with y,=—1 remains therefore somewhat of a
ties in the 1D model by making them dependent on the locapuzzle. However, there is room for additional irrelevant op-
nearest-neighbor heights. That led to five independent parators not represented in the Langevin equation. For ex-
rameters. Surprisingly we were able to construct the exaample, the combination of the discreteness of the height vari-
stationary state in a four-dimensional subspace. Its structur@bles, the lattice, and the RSOS restriction gives rise to an
is simple. The steps in the interface are completely uncorreadditional order parameter, the step density, besides the local
lated. Only the step density varies. This state has zero skevslope in the mean field analydi$5]. We found that the step
ness. It is a Gaussian and has particle-hole symmetry. Outlensity is a massive field with a definite short relaxation time
side this exact soluble subspace the stationary state &cale, and therefore can be integrated out. However, it can be
skewed. This means that in general KPZ-type growth in 1Dxhe origin of additional irrelevant operators.
has a nonzero third momehl; in its stationary state. For Skewness is negative at the 1D KK point. On average hill
example, the KK point lies outside the nonskewed subspacdops are wide(flatter, less shappthan valley bottoms. Such
On the other hand, the stationary states in the exactly soluble statement is meaningless without the specification of a cut-
BCSOS model and also the Langevin equation itself are noneff. The definition of what constitutes a mountain and what
skewed. Stationary-state skewness is distinct from temporaiepresents a local hump depends on the length scale at which

Il. STATIONARY-STATE SKEWNESS
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the surface configuration is being viewggiumans do not '
interpet every grain of sand as a hilskewness is a scale-
dependent property. The asymptotic scaling of the moment:
tells us how asymmetric the hills and valleys are in the large
length scale limit. In 1D this skewness persists all the way to
microscopic length scales. We calculated the surplus of shar|
valley bottoms over sharp hill tops at the microscofitee
grains of sangllevel. This expectation value has the same =
sign as the macroscopic skewness and is also roughly pra 1t
portional toug,. This invariance of the surface structure over
all length scales is related to the rather trivial nature of the
fixed-point stationary statéGaussian distribution 05
The tunability of the skewness at the microscopic length
scale is easy to understand. Consider the 1D RSOS mode
with deposition only, with three parametgrg, ps, andp, -
[15]. The density of local sharp hill tops is set by the depo- 10 L 100
sition probability p,, of particles on local flat surface seg-
ments. The sharpness of these local hill tops is set by the rate FIG. 1. Stationary-state second moméfj of the 2D Kim-
at which they broaden, i.e., the probability with which par- Kosterlitz(KK) model as function of lattice size?. The solid line
ticles adhere to existing stegs,. The density of local sharp Wwith slope 0.8 is shown as reference.
valleys is set by the rate at which single-particle puddles fill
up, p, , compared to the rate at which they are createqd, 2 is the energy change if the adsorption would take place. The
These processes balance exactly inside the subspace wheéiergy
the stationary state is trivial and has zero skewness. At the
KK point p,=ps=p,=1, the balance is imperfect and the
dynamics creates a backlog of “to-be-filled-up” local val-
leys. Newly created local hill tops broaden readily, and
therefore are flattelr15]. has a tunable parametirand the summation runs over all
Is the skewness tunable >1 as well? Is there maybe next nearest neighbors. This rule is identical to that in stan-
a line of KPZ-type fixed points with continuously varying dard Metropolis MC simulations, except that desorption is
skewness? A varying exponeatwould explain the current forbidden. The latter breaks detailed balance and leads to the
numerical spread in its value. Is it possible to change the sigRonequilibrium growing stationary state.
of skewness without changing the sigmofn Eq. (1)? Or is We determine the second, third, and fourth moments of
there one single KPZ stationary-state fixed-point distributionthe stationary states. The MC averages in this section involve
with a universal amountand sign of skewness? In that case =2x10° MC steps, after=4x10® initial MC configura-
we need to explain the numerical spreadeiis in terms of  tions, to allow the surface to reach its stationary state. The
strong FSS corrections. These are the issues we addresssfuare lattice size? varies as 12 L <128.

1
E({hh)=2 ZK(hi—h)? ®
()

this paper. First consider the KK model. Figure 1 shows the second
momentW,. It scales asV,=AL“2. The slope of the log-
Il. SCALING OF THE STATIONARY-STATE MOMENTS log plot gives the exponent,. It is a mistake to apply a

least-squares-type fit to the slope at latgeOne should de-

We perform a systematic numerical study of thetermine the slope at various system size intervals and per-
stationary-state properties in the 2D KK model and the BCform a FSS analysis. Figure 2 represents such an analysis. It
SOS model. In both cases we allow only particle depositiorshows FSS estimates far, from the same data, defined as
(no desorption Consider a 2D square lattice with a height a,(L) = In[Way(L,)/W,(L,) V/IN[L,/L;] with L,=1.2; and L
variableh(r)=0,£1,+2,... ateach lattice site. We apply =3(L,+L,). Such a FSS scaling analysis is only barely
periodic boundary conditions. In the KK model, nearest-feasible at large system sizes due to the intrinsic MC noise.
neighbor columns are allowed to differ by at most one unit,Figure 2 is indeed rather noisy at lare The MC scatter
6h=0,+=1. Choose a site at random, and deposit a particléincreases with system size, since the stationary state is intrin-
h—h+1, with probabilityp=1, unless such a move would sically critical and therefore subject to a critical slowing
violate the above restriction. down. We opted for running many lattice sizes instead of

In the BCSOS model the square lattice is divided into twofewer but longer MC runs. The solid line is obtained by
sublattices. The height variables are restricted to be even mweraging thev,(L) locally, overL—7<L<L+7. The data
one of themh(r)=0,=2, ..., and to be odd on thather, in Fig. 2 converge by eye te,=0.80(2), consistent with
h(r)==+1,+£3, ..., such that nearest-neighbor columns al-the valuea= £ proposed by Kim and Kosterlitz from their
ways differ in height by oneSh=*1. Choose at random a earlier numerical resultgl1,12 and with Lasig’'s[14] sta-
site, and deposit a particle with probabilipy=1 if the move tionary state. The FSS corrections to scaling in the KK
does not violate thééh=+1 constraint. In Sec. V we con- model are small compared to the MC noise.
sider also the generalization where the BCSOS deposition Figures 3 and 4 show the same FSS analysis for the third
probabilities vary with the local configuration by means of aand fourth moment exponents; anda,. They converge by
temperature type parameter= min(1,exp(—AE)). HereAE eye to @3=1.20(4) anda,=1.6(05). The corrections to
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FIG. 2. Finite-size scaling approximants for the surface rough-
ness exponent, of the second momenty,=AL"?, in the station-
ary state of the 2D KK model.

FIG. 4. Finite-size scaling approximants,(L) for the surface
roughness exponent, of the fourth momentW,=AL%, in the
stationary state of the 2D KK model.

FSS are again small compared to the MC noise. The surfagep, scaling behavior is described by one single fixed point.

s skewed_and power counting, =ne, is satisfied within To check this we repeat the same analysis for the BCSOS
the numerical accuracy. model

Figures 5 and 6 show the amplitude rat{ti®e circle$ of Consider the BCSOS model Kt=0. Figures 7, 8, and 9

the third and fourth moments compared to the second ON&How the same type of FSS estimates for the exponents

— n/2 ;
R.“_W”/ (WZ) ' T_he fact that the.se ratios convergencery finite-size corrections to scaling are much larger than in
gives additional evidence of the validity of power-counting. v kK model. The data converge by eye systematically to

Actually, they do so much smoother than the exponents smaller values than in the KK modet,=0.772), as
suggesting that the MC fluctuations tend to preserve the:1 163), and a,=1.544). This is consistent wi:[h the
power counting property better than the precise value.of value fOI’c,z2 reported in the literaturg4,13). Thesea,'s are

The amplitude ratios converge smoothly Rg=—0.27(1) | v all ; : : o
B _ ) ) y consistent with power counting. Power counting is

agld Rq= ;]rf3i15ﬁ_2)k..8kewness IS nehgatl\/_ée,3<0. It |s_pr0_b- again more stable than the values of the exponeptsMost

ably wishful thinking to guess thaR,=m. (R4=3 in importantly, the amplitude ratios in Figs. 5 anddsamond$

GaUESiaT_) distributi?n)sd hat in 2D th litud converge to the same values as in the KK madetles.
The above results demonstrate that in 2D the amplitudes |5, really smaller than in the KK model and different

J;”(O) in Eq'g) d_o nlpt vanish forkthe odd .momen.tshln 1D, from the Kim-Kosterlitz-Lasig(KKL ) value? The finite-size
the KPZ fixed point lies at zero skewness; in 2D it has noNy 4 jing corrections in the BCSOS model are several orders of

zero serwness. r-]rh's aglj'rezs W't.h SEa's [t"’] stgﬂonalryf h magnitude bigger than in the KK model. Is it believable that
state. However, the amplitude ratios must be universal It th¢,age annarent differences are due to corrections to scaling
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FIG. 3. Finite-size scaling approximanas(L) for the surface FIG. 5. Finite-size scaling behavior of the skewness amplitude

roughness exponent, of the third momentW,;=AL®, in the  ratio R;=W,;/W3> in the 2D KK model(circles and theK=0
stationary state of the 2D KK model. BCSOS modeldiamonds.
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FIG. 8. Finite-size scaling approximants for the surface rough-
FIG. 6. Finite-size scaling behavior of the fourth-moment am-ness exponent; of the third momentW;=AL3, in the stationary
plitude ratioR,=W, /W3 in the 2D KK model(circles and theK state of the 2D BCSOS model.
=0 BCSOS mode({diamonds.
second and fourth moments, apg=—1.7(3) for the third
only? The above FSS extrapolation “by eye” presumes im-moment. These straight line fits are satisfactory stable. So the
plicitly that all a,, converge approximately linearly in~ 1. KKL value for « is within the realm of possibilities for the
This looks reasonable from the data, but is too restrictiveBCSOS model. Still, it remains a leap of faith, because the
Corrections to scaling originate from so-called irrelevantcurves in Figs. 7, 8, and 9 are bent to the limit.
scaling fields. The corrections to scaling exponggts 0 in It would be much more convincing if the corrections to
W,=AN“[1+B,LYr+...] are universal properties of the scaling exponents were known analytically and/or take
stationary-state fixed point. The amplitud®s are not uni-  simple values. At the core of lsaig’s result is the assump-
versal. They depend on the “distance” of the model to thetion that the operator content of the system is simple. There-
fixed point and the quantity we are looking at. Assume thafore one would expect that the irrelevant operators have
one correction to scaling term dominates, i.e., that all otherather trivial critical dimensions, like integers, multiples of
operators scale with much more negative valueg;of The  «, and combinations of both. The above numerical values of
same exponeny; should then appear in all moments. They; do not look that simple, but are of the same order of
only exception is that in specific quantities the leading termmagnitude as we might expect. Simpleminded power count-
might have zero amplitude by symmetry. For example, allng in Eq. (1), with =% and z+ a=2, suggests that the
even moments might show a different leading expongnt corrections to scaling are strong and that the curvature op-
than all odd ones. This actually happens here. eratorg?h/9x? is irrelevant, but not by mucty,= — «. The
Suppose we force our BCSOS data to convergexto corrections to FSS in the third moment are much smaller.
=£. We made plots of,/L"* with a=2 versusLYr for a  The curvature operator*h/ x> does not affect it and prob-
range of values of;, . This should be a straight line at the ably all other operators that change sign undes —h ei-
propery; . From this we estimate that,=—0.6(2) for the ther. One of the leading remaining candidatesdh(dx?)?
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FIG. 7. Finite-size scaling approximants for the surface rough- FIG. 9. Finite-size scaling approximants for the surface rough-
ness exponent, of the second momeniy,=AL“2, in the station-  ness exponent, of the fourth momenty,=AL“4, in the station-
ary state of the 2D BCSOS model. ary state of the 2D BCSOS model.
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FIG. 10. Finite-size scaling approximants for the surface rough- F!G- 11. Finite-size scaling approximants for the surface rough-
ness exponent, of the second momen#,=AL, in the station- €SS exponent, of the second moment in the stationary state of

ary state of the 2D BCSOS model as functionkof the 2D BCSOS model & = =0.25 and 0.
which we associated with skewness in the 1D modele They only need to be of the same order of magnitude. The
Sec. I). It gives rise toyg=—2. following arguments suggest that a line af=0 points
emerges from the,=0 point ats=0 into thes direction.
IV. TEMPERATURE-DEPENDENT TRANSITION U, is negative at the high-temperature side of the=0
PROBABILITIES line. There, the rough stationary-state surface takes locally

the so-called disordered-flat-type structure with alternating
up and down steps and local half-integer surface heibBit

This is the same surface structure as in the BCSOS model
Ybut not close packed witdh=+1 kinks. The nonlinear
term in the KPZ equation controls the local growth velocity
at sloped sections of the surface. Growth at slopes is sup-
pressed in BCSOS-type rough structures, and therefore
<0. At the opposite, low-temperatute>0 side of theu,

=0 point, the local rough RSOS surface is smooth, and has
'¥n the local level integer average surface heights. In such

ary state a17\=0_ is nonskewedthe Ga_ussian distribution structures, growth at sloped parts of the surface is enhanced
Such a change in does not take place in the BCSOS mOde"and therefore,>0

The following connection with preroughening phenomena The location ofu,=0 can be controlled by introducing

in equilibrium crystal surface explains whychanges sign in ¢, ey neighbor interactions. This point transforms into the

the R.SOS f“Ode' and nolt in the BQSO%lmodel. Imagine ?)reroughening transition point when it moves below the
two-dimensional phase diagram, wik~T~ - the tempera-

turelike parameter and a paramesaepresenting the asym-

In Sec. V we vary the temperature-type paraméten
the BCSOS model, to study the universalityofand skew-
ness issues raised in Sec. Il in more detail. We do this onl
for the BCSOS model, not the RSOS modéhe KK model
is a special point in the phase diagram of lajtErom earlier
studies it is known that in the RSOS model the KPZ nonlin-
ear term\ changes sign wittK [12]. This creates strong
Edwards-Wilkenson{EW-) type corrections to scaling and
will obscure the skewness property, because the EW statio

1.5

metry between particle deposition and evaporatsen0 cor-
responds to MC-equilibrium-type dynamics ase 1 to the 145 | OK=-025 ©
L . . . - —— K=-0.25(Ave.)
above pure deposition model without evaporation. The equi- OK=0.00
librium surface undergoes a roughening transition. The 14} -~ K=0.00(Ave.)
rough phase is the EW stationary state. The scaling proper ___?ﬁ:g;ggmve_) o
ties of the equilibrium(stationary state are described by the wee o o7 B o
Gibbs distribution of the sine-Gordon model: & 1l oo e
Bag P 5L
K 125 | ','"@ o
Ezf dx dy{E(Vh)er U, cog2mh)+u, cog4mh)|. Mo =6 o
12| %’050
C) ¢
115
[m]
It is known thatu, varies with temperature and changes sign | . , , . )
inside the equilibrium rough phase in the RSOS model just 0 0.01 0.02 C;?LS 0.04 0.05 0.06
above the roughening transition. This follows from an exact
duality transformatiori17]. The location of thisu,=0 point FIG. 12. Finite-size scaling approximants for the surface rough-

ats=0 agrees qualitatively with the numerical value of the ness exponent; of the third moment in the stationary state of the
A =0 point ats=1. Those values do not have to be identical.2D BCSOS model aK= +0.25 and 0.
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FIG. 13. Finite-size scaling approximants for the surface rough-
ness exponent, of the fourth moment in the stationary state of the
2D BCSOS model aK= *0.25 and 0.

FIG. 15. Finite-size scaling behavior of the fourth moment am-
plitude ratiow, /W3 in the stationary state of the 2D BCSOS model
atK==*=0.25 and 0.

roughening temperatufd 8] (but only ats+ 0, because the
driven nonequilibrium surface is always roygh

Such a change in does not take place in the BCSOS
model. Its equilibrium stationary statat s=0) is exactly

known for all K from the exact solution of the six-vertex o . .
more qualitative than the ones in Sec. Ill. The system sizes

model [19]. u, is negative at all values ok in the s=0 -
equilibrium surface. Therefore there is no reason to expect are smalleup tol. =80) and the MC runs an order of mag-

change ofA as a function oK in the pure deposition model nitude shorter(up to 16 MC.SFepS' after 2500 initial MC;
teps. The curves have a definite slope at small system sizes,

at s=1. This makes the BCSOS model a suitable testin$ t th di ith " e Alt i b
ground for the tunability of 2D skewness and the universalit ut these disappéar with system size. emperatures be-
yondK=1 the surface becomes very flat and inactive. Com-

of a. pared toK=0 the system size is effectively much smaller
and the MC runs effectively much shorter. This explains the
decay in the approximants at largfe At the opposite side,
beyondK=—1, the surface becomes quite faceted at short
distances and the dynamics slows down again. Faceted struc-

In this section we study the universality of the stationary-tures havea=1. This explains why thex,(L) curves drift
state roughness exponentand the skewness by varying the upward on the left hand side in Fig. 10. Herg anda, vary
deposition probabilities in the BCSOS model. This shouldalso only weakly with K. The amplitude ratiosR;
clarify whether the skewness is truly universal or a tunable

parameter. We can control the microscopic particle-hole
asymmetry explicitly.

Figurel0 shows the variation of the second-moment ex-
ponenta,(L) with the temperature parameter This plot is

V. TEMPERATURE-DEPENDENT DEPOSITION
RATES IN THE BCSOS MODEL
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FIG. 16. The difference in the expectation value of local sharp
FIG. 14. Finite-size scaling behavior of the skewness amplitudénill tops and of local sharp valley bottoms as functionkofn the
ratio R;=WS; /W%'5 in the stationary state of the 2D BCSOS model 2D BCSOS model along 1D cross sections through the surface. The
atK==*0.25, and 0. diamonds(circles are for lattice sizd. =36 (64).
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FIG. 18. Definition of local sharp hill tops, valley bottoms,
ridges, and canyons in the 2D BCSOS model.

0000000000 © © o
° © i skewness is tunable. Since this not the c&&gsr —0.27 is
o most likely a universal property of the stationary state.

The curves in Fig. 16 and Fig. 17 have kinkskat0.
These are caused by the definition of the deposition prob-
B Ty S a— 02 o7 o8 o8 abilities, p=min(1,exp~AE)). The _probgbilities are tem-

K perature dependent for some configurations but conspant,
=1, for others. AtK=0 they are being reshuffled. The

FIG. 17. The difference in the expectation value of sharp hillcurves of Fig. 10 have similar dips Kt=0 for smallL, but
tops and of sharp valley bottomg,, , and local sharp ridges and these vanish with system size. This is another illustration of
canyons,,., as function ofK in the 2D BCSOS model. The dia- the insensitivity of the macroscopic length scale properties of

phv oo
(o)

monds(circleg are for lattice size. =36 (64). the stationary state on the local properties.
=W, /W5 andR,=W, /W3 do not vary significantly withK VI. CONCLUSIONS
either. The most important result of this paper is that the ampli-

We performed quantitative MC runs &t=*0.25+0.1  tyde ratiosR;=W;/W® andR,=W, /W2 of the stationary-
for system sizes up ta =60 (with 2X10° MC step runs  state moments converge to the same value in the KK and
after 4x 10° initial MC steps. Figures 11, 12, and 13 show gcsos modelR;=—0.27(1) andR,=+3.152). At the
the a,(L) approximants as function of l/at K==*0.25.  start of this project we expected that the skewrRgsvould
TheK =0 data are included as reference. The corrections t@e the most sensitive parameter to test the universality of the
scaling in the even moments increase wWikhand are an  kpz stationary-state properties in 2D. HowevBy, is nu-
order of magnitude smaller &= —0.25. The three curves merically much more stable than the surface roughness criti-
are consistent with convergence towards the same values fgg| exponentr. HereR; takes the same value in the KK and
@, anday. Naively these values point to ansmaller than  BCSOS models, and does not vary significantly in the BC-
5, but still consistent with the KKL value if the crossover SOS model with the temperature paramédein contrast to
scaling exponent is largésee Sec. I)l The corrections to  the strong variation in the microscopic measures of particle-

scaling in a5 are less clear-cut. At first glance the threenole asymmetry. The 2D KPZ stationary-state skewness is
curves seem more or less paralfelhich would suggest a yniversal, unlike 1D where it is tunable.

continuous variation invg with K), but they actually con- The differences in the numerical values ferin the KK
verge to indistinguishable values fef; given the error bar  and BCSOS models have been a puzzle for a long time. The
from the numerical MC noise. corrections to FSS scaling in the KK model are small, com-

The amplitude ratioRg=W;/W32 and R,=W, /W3 are pared to the MC noise, and point clearly to the KKL value
shown in Figs. 14 and 15. As before, these amplitude ratiog;=2. The FSS corrections to scaling in the BCSOS model
are more stable than the numerical valuesogf The data are large. The stationary-state roughness exponent converges
confirm universaK-independent values &}, (althoughR,  naively but systematically to a smaller valuae=0.38. How-
drifts off by a few percent aK=0.25). ever, our FSS analysis shows that the data are consistent with

In 1D the skewness amplitude is tunable and directly rew=2 if the leading corrections to scaling exponents are
lated to the amount of particle-hole symmetry breaking at thelominated byy;=—0.6(2) for the even moments ary}
microscopic level. Figures 16 and 17 show how the micro=—1.7(3) for the odd ones. These values are different, but
scopic particle-hole asymmetry varies as functiotkoh the  in the same range as predicted by simpleminded power
2D BCSOS model. We measure several local quantities. Figeounting. This is an important issue, because different values
ure 16 shows the density difference rafie-(pn—p,)/(pn  of « in the KK and BCSOS models, and variations within
+p,) between local sharp hill tops, and local sharp val- the latter, would imply nonuniversality of2 KPZ scaling
leysp, as seen along 1D cross sections of the crystal. Figurand open up the possibility of, e.g., a continuously varying
17 shows the density differengg, between local sharp hill «. Our data suggest one single KPZ fixed point with unique
tops and local sharp valleys bottoms in the 2D surface andxponents. It is most likely Issig’s stationary state.
also the difference between sharp ridges versus sharp can-
yons p,. as defined in Fig. 18 . All three quantities vary
dramatically withK. This demonstrates that the local skew-
ness coupling constant, varies significantly withK, suffi- This work was supported by NSF Grant No. DMR-
ciently to expect a large variation iRz if (macroscopit  9700430.

ACKNOWLEDGMENT



PRE 59 STATIONARY-STATE SKEWNESS IN TWG. .. 2641

[1] M. Kardar, G. Parisi, and Y-C. Zhang, Phys. Rev. L&6,.889 [11] 3. M. Kim and J. M. Kosterlitz, Phys. Rev. Let62, 2289

(1986. (1989.

[2]J. Krug and H. Spohn, inSolids Far from Equilibrium: [12] J.G. Amar and F. Family, Phys. Rev. Led8, 543(1990; 64,
Growth, Morphology and Defegtsedited by C. Godiehe 2334(1990; J. Krug and H. Spohripid. 64, 2332(1990; J.
(Cambridge University Press, Cambridge, England, 1991 Kim, T. Ala-Nissila, and J.M. Kosterlitapid. 64, 2333(1990.

[3] P. Meakin, Phys. Ref235, 189 (1993. [13] For numerical results on the 2D BCSOS model see, e.g., D.
Liu and M. Plischke, Phys. Rev. B8, 4781(1988; M. Koita
and A.C. Levi, J. Phys. &5, 3121(1992; B.M. Forrest and
Lei-Han Tang, Phys. Rev. Let64, 1405 (1990; also the
above review papef-5].

[14] M. Lassig, Phys. Rev. LetB0, 2366(1998.

[4] J. Krug, inScale Invariance, Interfaces, and Non-Equilibrium
Dynamics edited by A. McKane, M. Droz, J. Vannimenus,
and D. Wolf (Plenum, New York, 1996

[5] T.J. Halpin-Healy and Y.C. Zhang, Phys. Repb4, 215

(1999' i i [15] M. den Nijs and J. Neergaard, J. Phys38, 1935(1997.
[6] M. Lassig and H. Kinzelbach, Phys. Rev. Latg 903(1997); [16] J. Krug, P. Meakin, and T. Halpin-Healy, Phys. Rev45, 638
K. Wiese, Phys. Rev. B6, 5013 (1997; C. Castellano, M. (1992.
Marsili, and L. Pietronero, Phys. Rev. LeB0, 4830(1998. [17] M. den Nijs, J. Phys. A8, L549 (1985.
[7] D. Dhar, Phase Transi9, 51 (1987. [18] M. den Nijs, in The Chemical Physics of Solid Surfaces and
[8] L-H. Gwa and H. Spohn, Phys. Rev. Lefi8, 725 (1992; Heterogeneous Catalysiedited by D. King(Elsevier, Amster-
Phys. Rev. A46, 844(1992. dam, 1994, Vol. 7, Chap. 4.

[9] J. Neergaard and M. den Nijs, Phys. Rev. Lé#.730(1995.  [19] See, e.g., H. van Beijeren and I. Nolden, Structures and
[10] See, e.g., B. Derrida, M.R. Evans, V. Hakim, and V. Pasquier, Dynamics of Surfacesdited by W. Schommers and P. von
J. Phys. A26, 1493(1993. BlanckenhageriSpringer, Berlin, 1987 Vol. 2.



