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Phase separation in a simple model with dynamical asymmetry
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We perform computer simulations of a Cahn-Hilliard model of phase separation that has dynamical asym-
metry between the two coexisting phases. The dynamical asymmetry is incorporated by considering a mobility
function that is order parameter dependent. Simulations of this model reveal morphological features similar to
those observed in viscoelastic phase separation. In the early stages, the minority phase domains form a
percolating structure that shrinks with time, eventually leading to the formation of disconnected regions that
are characterized by the presence of random interfaces as well as isolated droplets. The domains grow as
L(t)~t¥®in the very late stages. Although dynamical scaling is violated in the area shrinking regime, it is
restored at late times. However, the form of the scaling function is found to depend on the extent of dynamical
asymmetry[S1063-651X99)12101-9

PACS numbd(s): 05.70.Fh

[. INTRODUCTION and blends for shallow quenches. For binary liquids the hy-
drodynamic interactions are important and for this case, the
Phase separation phenomena in binary mixtures havgrowth exponent=1[3].

been the subject of much recent research in condensed matterRecently, there have been some experiments investigating
physics[1]. In a typical phase separation experiment, a bi-the role of dynamical asymmetry between the constituent
nary mixture(such as an alloy, polymer blend, or a binary phases of the phase separating system. The dynamical asym-
liquid mixture) is quenched from its one phase region into ametry usually arises when the characteristic relaxation times
region of its phase diagram where the constituent phases terdl the molecules of the coexisting phases are different.
to segregate. The subsequent dynamics consists of the foranaka has studied phase separation in deeply quenched se-
mation and growth of domains that are rich in either of themidilute polymer solution§4] where the asymmetry arises
phases. It is now well established that, for mixtures the congue to the viscoelasticity of the polymer rich domains. In
stituent phases of which have identical dynamical propertiesanother interesting experiment, Tandléd has investigated
the domain growth satisfies the dynamical scaling hypothesigomain growth in a polymer blend that is quenched to a
in the late stagef2]. According to this hypothesis, the equal temperature that is close to the glass transition temperature
time structure factor of the appropriate order parameter sabf the minority species. The common feature of these sys-

isfies the scaling law tems is that the time scales of molecular motion of the mi-
. nority phase are much slower relative to the other phase.
S(k,t)=L(t)IF(KL(t)), (1) This leads to unusual phase separation, which is now com-

monly referred to as viscoelastic phase separation.
whereF is a scaling function antl(t) is a time dependent The main features of viscoelastic phase separation are as
length scale that can be associated with the mean size of thellows. After an initial incubation regime during which no
growing domains(d refers to the spatial dimensipnThe  macroscopic phase separation occurs, domains of the more
dynamical scaling implies that the evolution of domains ismobile majority phase nucleate and start growing. The
self-similar, i.e., domain size grows but the overall morphol-growth of these domains eventually results in the formation
ogy does not change with time. The other interesting aspeeif a thin spongelike percolating network of the minority
is the functional form of the length scalg(t). It is now  phase(this is in contrast to usual phase separation where the
conclusively established that for pure and isotropic systemsninority phase forms isolated droplet§he growth of the
L(t)~t?, where¢ is the growth exponent that crucially de- majority phase domains also leads to an overall shrinking in
pends on the nature of the dynamics. For example, in théhe volume of the minority phase regions. The shrinking con-
case of a binary alloy where there is no intrinsic dynamicaktinues until the network breaks up into isolated droplets of
asymmetry between the two phases, the growth is driven bthe minority phase.
surface tension and is characterized by an expogent/3 Taniguchi and Onuk{6] have studied this problem by
[1]. This is commonly referred to as the Lifshitz-Slyozov simulating a viscoelastic model that incorporates the cou-
law, which also describes domain growth in polymer solu-pling between stress and diffusid#] for a semidilute poly-
tions mer solution. They were able to observe a spongelike net-

work of the minority phase in their simulations. However,

they were not able to see phase inversitie eventual
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[9] with the effects of bulk stress included. Using this model,fication[11]. In conventional theories of spinodal decompo-
they were able to demonstrate most of the experimentallgition, the mobility functionM(¢) is usually treated as a
observed features like the formation of the minority phaseconstant. However, recently there have been some studies
network, which eventually breaks down, leading to phasevhere the effect of an order parameter dependent mobility on
inversion. the dynamics of phase separation has been investigahd
Although, the viscoelastic models are crucial to explain At this stage, it is useful to discuss the mechanism of
the experimental observations of Tanaka, dynamical asyndomain growth in viscoelastic phase separation. We consider
metry can also be studied in framework of the usual Cahnthe example of polymer in a solvent. For very deep
Hilliard theory of phase separation by making use of an orquenches, molecular time scales of the polymer rich regions
der parameter dependent mobility. Sappelt and Jgddd¢ (minority phasg¢are much slower relative to the solvenia-
have studied domain growth in a system where one of thgority phase. This gives rise to viscoelastic stresses. The
phases freezes into a glassy state. They have considered @lastic stress in the early stages is responsible for the so-
order parameter dependent mobility that is asymmetric abouwtalled incubation regime during which no macroscopic phase
a fixed concentration. In their simulations, they found anseparation occurs as the stress fields tend to suppress diffu-
unusual growth mechanism for concentrations where the lession. After the incubation period, holes of the solvent start
mobile glassy phase is the majority phase. However, they diducleating in regions where the stress has locally relaxed.
not find a spongelike structure of the glassy phase for th&he holes start growing resulting in an increase in dynamical
case with low volume fraction of the glassy component.  asymmetry as the more viscoelastic polymer rich regions are
In this paper, we study dynamically asymmetric phasesubjected to deformations due to the ongoing coarsening.
separation within the framework of Cahn-Hilliard theory by Due to the high deformation rate, stress acts on the polymer
choosing an appropriate mobility function. The mobility rich regions that by now form a percolating network. The
function used by us is different than that chosen by Sappeliynamics in this regime is governed by the viscoelastic stress
and Jackle, who were investigating the interplay betweemather than surface tension. As the stress relaxes, the polymer
spinodal-decomposition and glass transitigk0]. In this  rich regions discharge the dissolved solvent resulting in vol-
work, we are specifically interested in describing the unusualime shrinking of the polymer rich regions. In the very late
coarsening behavior observed in viscoelastic phase separstages, the system approaches equilibrium and consequently
tion experiments by Tanaka. We propose a simple model thahe deformation rate of the network decreases. This results in
can describe many of the features observed in Tanaka’s e@ weakening of the stress fields. In the absence of viscoelas-
periments, from the point of view of pattern formation. Un- tic stress, the dynamics is governed by surface tension and so
like the viscoelastic theories, we do not incorporate stresthe network starts to break up into disconnected regions.
fields and the dynamics in our model is driven by surfaceThus, the inherent asymmetry of molecular time scales be-
tension only. The effect of dynamical asymmetry and thetween the two components does not influence the dynamics
stress fields is incorporated by choosing the mobility func4n late stages. To summarize, the dynamics in viscoelastic
tion appropriately. We will give a detailed discussion of ourphase separation is characterized by a strong influence of
modeling and its relation to the experiments in Sec. Il. dynamical asymmetry in the early stages. However, the ef-
The organization of this paper is as follows. In Sec. I, wefect of dynamical asymmetry gradually decreases as the sys-
introduce our dynamical model. We also explain the modeltem approaches equilibrium.
ing of the order parameter dependent mobility and its physi- In this paper, we consider a model where the viscoelastic
cal significance. In Sec. Ill, we give numerical results foreffects discussed above are mimicked through an order pa-
pattern evolution. We also show results for the domainrameter dependent mobility. We state here that the model is
growth law and the time-dependent structure factor. Sectionot specific to polymer solutions but attempts to describe the
IV is devoted to a discussion of the results and the limita-unusual domain growth observed in viscoelastic phase sepa-
tions of the model. ration within the general framework of the Cahn-Hilliard
theory. We consider a mobility function of the type

IIl. DYNAMICAL MODEL

The theory is formulated in terms of an order parameter 1
that is the concentration difference between the two species. M(¢p)= T+ expad—pBoD)’
Since the concentration difference is a conserved quantity,
the time evolution of a scaled dimensionless order parameter

qb()Zt) is described by the equation

)

wherea and 3 are positive constan{$>«). The motivation

for choosing this particular form of the mobility is as fol-

lows. In the early stages of domain growftis small and for

a large enough value af, the mobility is a sharp step func-

. tion around¢$=0. The negative quadratic term on the other

—V2p(x,1)]1}, (20 hand provides a competing effect on the dynamical asymme-

) try as ¢ increases. This term is responsible for weakening of

wherex andt are, respectively, the scaled space and timalynamical asymmetry in the late stages and is crucial to get

variables and(¢) is the mobility function. This is the de- phase inversion. The effect of this term on the dynamics is in

terministic Cahn-Hilliard equation, which is also referred to some sense analogous to stress relaxation in viscoelastic sys-

as modeB in the Halperin and Hohenberg system of classi-tems.

ad(X,t)
ot

=V - {M((X,))V[— d(X,1) + p(x,t)°
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IIl. NUMERICAL RESULTS

In this section, we give details of our numerical simula-
tions of phase separation for an off-critical quench into the 2

gy
L]
L

Eq. (2) with the mobility function given in Eq(3) on anN
XN square lattice with periodic boundary conditions. A §
simple Euler discretization is used with mesh sive=1.2
and the smallest time steyt=0.02. The initial condition are
given by

B(r,0)= ¢+ 5¢(r,0), 4

whereg is the off-criticality and5¢(F ,0) represents random
fluctuations uniformly distributed in the interval
[—0.005,0.00% In the simulations reported in this paper, we

concentration of 0.45.
We first describe our results on pattern evolution on an|
NXN lattice with N=128. We consider a quench corre- !
sponding to(@=100,8=160). In Fig. 1 we display the evo-
lution of domains corresponding t¢=—0.1. The darker
contrast regions correspond to the minority phase0) and
the brighter regions correspond to the majority phase€0). B
The shade varies with the extent of order, which is charac/@ |
terized by the local value of the order parameter. In the very,
early stages, the growth is strongly influenced by the dy-§&
namical asymmetry. At=0, the system is in a one phase

state corresponding = —0.1. As order parameter fluctua-
tions start getting amplified, the growth of concentration in P
regions that are locally rich in the minority component is
suppressed due to low mobility. However, regions that ares
rich in the majority component order much fastgris is in
contrast to the usual phase separation where both minority,
and majority phases order rapidly and the minority phase’
forms isolated droplejsThe snapshot at time=50 in Fig. 1
corresponds to this situation where we can see the emergency
of local regions rich in the majority phase. These regions are
more ordered as compared to the minority phase regions i
However, the boundaries between the two phases are still nc™
very sharp(this is analogous to the so-called incubation re-
gime in viscoelastic phase separajioWwhen the order pa-
rameter in the majority phase regions reaches its saturatiol
value ¢q=—1 (t~100), well defined domains of the ma-
jority phase appear and start growitigeep in mind that the FIG. 1. Time evolution of the domains for the asymmetric mo-
order parameter in the minority phase regions is yet to reachility case. The dark contrast regions in the snapshots correspond to
its saturation value ot;ﬁeqz 1). In this regime, the partially the minority phase regiong>0) and the bright contrast regions
ordered minority phase regions form a percolating structurgorrespond to the majority phag¢<0). The shade varies with the
the area of which keeps on shrinking with time. This thin-extent of ordering determined by the local value of the order pa-
ning is due to diffusion from the minority phase regions torameter. The snapshots correspond to tieS0, 100, 200, 300,
the majority phase regionhe minority phase regions tend 400, 1000, 2000, and 3000.
to expel the dissolved majority phase component and this
results in the growth of order parameter within the minority The order parameter in these regions rapidly saturates to the
phase regions This behavior is analogous to the solvent equilibrium valuede,=1 (the thick black patches in minor-
discharge from the polymer rich domains in the elastic redity phase at time¢ =200 correspond to such regignst this
gime of viscoelastic phase separation. stage, we should also remark that the negative quadratic term
The growth of the majority phase domains and the assoin the mobility is crucial to observe substantial area shrink-
ciated area shrinking can be clearly seen in the snapshots iaig and eventual phase inversion. In the absence of this term,
timest=100 andt=200. As the order parameter in the mi- the mobility of the minority phase regions remains low for
nority phase grows, the negative quadratic term in the moall time, thereby arresting the growth of order parameter
bility starts dominating and the dynamics becomes fastef.10].
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The area shrinking continues till the order parameter in 052

most of the minority phase regions has also reached its satL o o
ration valuese,= 1. Notice that by this time, the asymmetry 051}

in the mobility has also disappeared M $¢=1)=M (=

—1). Subsequently, the domain growth is expected to occul osh

by the usual Lifshitz-Slyozov or evaporation-deposition
mechanism, where there is a diffusion from regions of higher
to lower curvature. Thus domains like to minimize the sur-
face area and the connectivity of the minority phase regions
is expected to break. This can be seen from the snapshots =~ o4sf
timest=300 andt=400, where we can see the appearance
of disconnected minority phase domains. At very late times, 4 ,/|
as shown in the snapshots at times 1000, 2000, and 3000, tt
morphology consists of disconnected random interfaces a:
well as isolated circular domains. Even after long times, we o4er
do not observe a fully droplet morphology that is character- o
istic of the dynamically symmetric cases for the present 045k
value of the initial composition. Thus, even in the regime
that is not dominated by dynamical asymmetry, the pattern
retains the memory of the percolating structure it had in the 044 e 5
early stages. Similar behavior has been observed in simula t
tions of a viscoelastic model by Tanaka and Arigiwhere
the effect of the bulk as well as shear relaxational modulous FIG- 2. Variation of the area fractio#, of the minority phase
has been incorporated. with the dimensionless time variable of the simulations.

We now present results pertaining to dynamical scaling.

The quantity of interest here is the time-dependent structursimes of growth. In Fig. 2, we plot the area fractign of
factor defined as the minority phase regions with the dimensionless time vari-
able of our simulations. The quantity, has been obtained
by solving Eq.(2) on anNXN lattice (N=256) and com-
, (5) puting the fraction of sites witlp>0 at each time step. The
iz K1) b —K.t data presented in Fig. 2 is obtained by averaging over 50
N2< (¢(kp(—k,)) independent systems. We see that the area fraction initially
increases above it's equilibrium value of 0.45. This corre-
sponds to the fact that the minority phase forms a percolating
énatrix in the early stages. Subsequently, the area fragijpn
N , o rapidly decreases. This corresponds to the regime in which
wave vectork ranges over the first Brillouin zone. qu the the concentration within the domains keeps on changing as
results presented in this paper, we make use of the isotroRyere is a desorption from the minority phase to the majority
of the system and evaluate a spherically averaged structugghase leading to area shrinking. The area shrinking continues
factor that depends only on the magnitude of the wave vedl| the order parameter saturates to it's equilibrium value

0.49F

(p(K,D)p(—K,1))

S(k,t)=

where ¢(Kk,t) is the fourier transform o#s(r,t) — ¢ and an-
gular brackets refer to an average over initial conditions. Th

tor. _ every where {~300). The area fraction saturates close to
We test whether the spherically averaged structure factathe equilibrium value of 0.45 in the late stages. This regime
obeys the dynamical scaling form can be clearly seen in Fig. 2 for times greater thar800.

The domain growth in this regime is characterized by the
usual curvature driven mechanism. We should remark here
that very similar time dependence of the volume fraction has
been observed in deeply quenched polymer blends by
anaka[5].

We now present our results for the structure factor and the
ngth scales. We have computed the spherically averaged
structure factor and the associated length st on a
256x256 lattice by averaging over 50 independent initial

S(k,t)=L(1)9F(KL(1)), (6)

whereL(t) is a length scale related to the mean size of th
growing domains. We use the inverse of the first moment o
the spherically averaged structure factor as a measure of th|i§
length scale, i.el(t)~(k)(t) %, where

Km conditions. In Fig. 3, we show the behaviorloft) with t (t
j dkkSKk,t) is a dimensionless time variablen a log-log scale. We ob-
(ky(t) = ——. (7) ~ serve an initial fast growth which corresponds to the area
f mdkS(k t) shrinking regime. The curve crosses over to a straight line
0 ’ that is nearly parallel to the solid line of slope 1/3, thereby

indicating that our data conforms to a growth ldwt)
The upper cutoff is taken to be half the magnitude of the~t® asymptotically. This growth law corresponds to the
largest wave vector lying in the first Brillouin zone. regime where both minority and majority phase regions are
Before we describe our results on dynamical scaling andully ordered and the evaporation-deposition mechanism is
the structure factor, it is useful to identify the different re- expected to apply.
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FIG. 5. Analogous to Fig. 4, but for times corresponding to

FIG. 3. Log-log plot of the mean domain siz€t) (Inverse of
=900, 1500, 2100, and 3000.

the first moment of the spherically averaged structure faetith
the dimensionless time of the simulations. The solid line has a

slope 1/3 and serves as a guide to the eye. there is a good data collapse at later times as shown in Fig. 5.

The data at times 1500, 2100, and 3000 scales (ezttept

To test for dynamical scaling hypothesis, we plotin the tail where the finite interfacial width is responsible for
L~2(t)S(k,t) versuskL(t) in Fig. 4, for times 60, 120, and deviations from scaling13]). In this regime, the order pa-
300. The datasets at times 120 and 300 fall within the aregameter is saturated every where and growth takes place by
shrinking regime. We observe that there is no data collapsgsual evaporation-condensation mechanism.
indicating a violation of dynamical scaling for these times. It is interesting to compare the form of the scaling func-
This can be understood if we consider the fact that in the aretion with dynamical asymmetry to that with the symmetric
shrinking regime, the order parameter within the domains isnobility case. In Fig. 6, we plat ~%(t) S(k,t) with kL(t) at
not saturated but keeps on changing with time. However,

L()2S(kY)

60
120
300

KL (1)

ASYMMETRIC MOBILITY]
CONSTANT MOBILITY

L(O)~2S(k1)

kL(t)

10

FIG. 6. Log-log plot of L~2(t)S(k,t) vs kL(t) at time t
=3000 for the aymmetric mobility case and the constant mobility
case withM(¢)=1.

FIG. 4. Test for dynamical scaling in the early stages. We plot
L~2(t)S(k,t) vskL(t) on a log-log scale for times=60, 120, and
300.
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time 3000 for the case of constant mobility and the dynami-growth law is same as that observed in constant mobility

cally asymmetric case considered in this paftee data for ~systems, i.e.l(t)~t3,

the symmetric mobility case has been obtainedMigep)=1, Although we have been able to account for many of the

with the same initial conditions and statistics as the asymexperimental features, we do not claim this model to be an
metric mobility casg We find that the two scaling functions accurate description of viscoelastic phase separation. We
have different form. In particular, the usual Porod’s “shoul- have considered a very simple model that shows growth re-
der” is less pronounced in the dynamically asymmetric casdimes similar to viscoelastic phase separation. The incorpo-
than in the constant mobility case. This suggests that thEation of stress fields is essential to obtain the thin network-

form of the scaled structure factor is dependent on the exteri€ morphologies as observed in experiments, where as in

of the dynamical asymmetry, for the same value of the initial®Ur Model, the domain shapes are determined by concentra-
composition tion gradients only. Nevertheless, we expect that our late

stage results on the morphological features as well as the
scaling behavior could be relevant to viscoelastic phase sepa-
IV. SUMMARY AND DISCUSSION ration experiments, particularly in the time regime where the

In this paper, we have presented results of computer simJ/Scoelastic stresses have decayed. . o
lations of a simple Cahn-Hilliard type model that has dy- . W€ should also point out that the percolating minority
namical asymmetry built in through an order parameter dephase strU(_:t_ure is formed in our model only for a small range
pendent mobility. The form of the mobility function is ©f compositions betweep=—0.1 and¢$=0.0, only for a
chosen so as to incorporate the effects of a strong dynamicghfficiently large value of the asymmetry parameterin
asymmetry in the early stages along with a competing ternfiact, for lower «, even for the same compositiagh= —0.1,
that restores symmetry in the late stages. Our simple mod#€ do not get an initial percolating minority phase. The only
captures many of the experimentally observed features th&ffect of asymmetry for such cases is on the shape of the
have also been observed in simulations on viscoelastic modlomains. _ o
els. Our simulations reveal a morphology in which the mi- _ Finally, we remark that our choice of the mobility func-
nority phase forms a percolating structure in the early stagedO" IS not unique. We could construct other forms of the
The area of the minority phase matrix shrinks with time andmoblllty function that could give similar results. However,

eventually the matrix starts breaking up into disconnected"e €XPect th‘?‘t the qssocia}ted phase separation to fall into the
regions same dynamical universality class for all these models. In the

We have also tested for the existence of dynamical scalPresent work, we have attempted to demonstrate that the un-

ing. We find that the structure factor does not scale very Welpsual phase separation observed in viscoelastic systems is a

in the area shrinking regime. However, it crosses over into énorte generr]al pr:ﬁnom.ena,dwhlchlls Iexpected tto fﬁotw updm
scaling form when the growth is determined by the evapora?'yS €ms where there IS a dynamical asymmetry that gradu-

tion deposition mechanism. Interestingly, the form of the@lly decreases as the system approaches equilibrium.
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