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Phase separation in a simple model with dynamical asymmetry

Rajeev Ahluwalia*
Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
and Materials Research Centre, Indian Institute of Science, Bangalore 560 012, India

~Received 17 July 1998!

We perform computer simulations of a Cahn-Hilliard model of phase separation that has dynamical asym-
metry between the two coexisting phases. The dynamical asymmetry is incorporated by considering a mobility
function that is order parameter dependent. Simulations of this model reveal morphological features similar to
those observed in viscoelastic phase separation. In the early stages, the minority phase domains form a
percolating structure that shrinks with time, eventually leading to the formation of disconnected regions that
are characterized by the presence of random interfaces as well as isolated droplets. The domains grow as
L(t);t1/3 in the very late stages. Although dynamical scaling is violated in the area shrinking regime, it is
restored at late times. However, the form of the scaling function is found to depend on the extent of dynamical
asymmetry.@S1063-651X~99!12101-9#

PACS number~s!: 05.70.Fh
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I. INTRODUCTION

Phase separation phenomena in binary mixtures h
been the subject of much recent research in condensed m
physics@1#. In a typical phase separation experiment, a
nary mixture~such as an alloy, polymer blend, or a bina
liquid mixture! is quenched from its one phase region into
region of its phase diagram where the constituent phases
to segregate. The subsequent dynamics consists of the
mation and growth of domains that are rich in either of t
phases. It is now well established that, for mixtures the c
stituent phases of which have identical dynamical propert
the domain growth satisfies the dynamical scaling hypoth
in the late stages@2#. According to this hypothesis, the equ
time structure factor of the appropriate order parameter
isfies the scaling law

S~kW ,t !5L~ t !dF„kL~ t !…, ~1!

whereF is a scaling function andL(t) is a time dependen
length scale that can be associated with the mean size o
growing domains~d refers to the spatial dimension!. The
dynamical scaling implies that the evolution of domains
self-similar, i.e., domain size grows but the overall morph
ogy does not change with time. The other interesting asp
is the functional form of the length scaleL(t). It is now
conclusively established that for pure and isotropic syste
L(t);tf, wheref is the growth exponent that crucially de
pends on the nature of the dynamics. For example, in
case of a binary alloy where there is no intrinsic dynami
asymmetry between the two phases, the growth is driven
surface tension and is characterized by an exponentf51/3
@1#. This is commonly referred to as the Lifshitz-Slyozo
law, which also describes domain growth in polymer so
tions
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and blends for shallow quenches. For binary liquids the
drodynamic interactions are important and for this case,
growth exponentf51 @3#.

Recently, there have been some experiments investiga
the role of dynamical asymmetry between the constitu
phases of the phase separating system. The dynamical a
metry usually arises when the characteristic relaxation tim
of the molecules of the coexisting phases are differe
Tanaka has studied phase separation in deeply quenche
midilute polymer solutions@4# where the asymmetry arise
due to the viscoelasticity of the polymer rich domains.
another interesting experiment, Tanaka@5# has investigated
domain growth in a polymer blend that is quenched to
temperature that is close to the glass transition tempera
of the minority species. The common feature of these s
tems is that the time scales of molecular motion of the m
nority phase are much slower relative to the other pha
This leads to unusual phase separation, which is now c
monly referred to as viscoelastic phase separation.

The main features of viscoelastic phase separation ar
follows. After an initial incubation regime during which n
macroscopic phase separation occurs, domains of the m
mobile majority phase nucleate and start growing. T
growth of these domains eventually results in the format
of a thin spongelike percolating network of the minori
phase~this is in contrast to usual phase separation where
minority phase forms isolated droplets!. The growth of the
majority phase domains also leads to an overall shrinking
the volume of the minority phase regions. The shrinking co
tinues until the network breaks up into isolated droplets
the minority phase.

Taniguchi and Onuki@6# have studied this problem b
simulating a viscoelastic model that incorporates the c
pling between stress and diffusion@7# for a semidilute poly-
mer solution. They were able to observe a spongelike n
work of the minority phase in their simulations. Howeve
they were not able to see phase inversion~the eventual
breaking up of the network into isolated minority phase d
mains! within the time scales of their simulations. Subs
quently, Tanaka and Araki@8# simulated a viscoelastic mode
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@9# with the effects of bulk stress included. Using this mod
they were able to demonstrate most of the experiment
observed features like the formation of the minority pha
network, which eventually breaks down, leading to pha
inversion.

Although, the viscoelastic models are crucial to expla
the experimental observations of Tanaka, dynamical as
metry can also be studied in framework of the usual Ca
Hilliard theory of phase separation by making use of an
der parameter dependent mobility. Sappelt and Jackle@10#
have studied domain growth in a system where one of
phases freezes into a glassy state. They have considere
order parameter dependent mobility that is asymmetric ab
a fixed concentration. In their simulations, they found
unusual growth mechanism for concentrations where the
mobile glassy phase is the majority phase. However, they
not find a spongelike structure of the glassy phase for
case with low volume fraction of the glassy component.

In this paper, we study dynamically asymmetric pha
separation within the framework of Cahn-Hilliard theory b
choosing an appropriate mobility function. The mobili
function used by us is different than that chosen by Sap
and Jackle, who were investigating the interplay betwe
spinodal-decomposition and glass transition@10#. In this
work, we are specifically interested in describing the unus
coarsening behavior observed in viscoelastic phase sep
tion experiments by Tanaka. We propose a simple model
can describe many of the features observed in Tanaka’s
periments, from the point of view of pattern formation. U
like the viscoelastic theories, we do not incorporate str
fields and the dynamics in our model is driven by surfa
tension only. The effect of dynamical asymmetry and
stress fields is incorporated by choosing the mobility fu
tion appropriately. We will give a detailed discussion of o
modeling and its relation to the experiments in Sec. II.

The organization of this paper is as follows. In Sec. II, w
introduce our dynamical model. We also explain the mod
ing of the order parameter dependent mobility and its ph
cal significance. In Sec. III, we give numerical results f
pattern evolution. We also show results for the dom
growth law and the time-dependent structure factor. Sec
IV is devoted to a discussion of the results and the lim
tions of the model.

II. DYNAMICAL MODEL

The theory is formulated in terms of an order parame
that is the concentration difference between the two spec
Since the concentration difference is a conserved quan
the time evolution of a scaled dimensionless order param
f(xW ,t) is described by the equation

]f~xW ,t !

]t
5¹W •$M „f~xW ,t !…¹W @2f~xW ,t !1f~xW ,t !3

2¹2f~xW ,t !#%, ~2!

where xW and t are, respectively, the scaled space and ti
variables andM~f! is the mobility function. This is the de
terministic Cahn-Hilliard equation, which is also referred
as modelB in the Halperin and Hohenberg system of clas
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fication @11#. In conventional theories of spinodal decomp
sition, the mobility functionM~f! is usually treated as a
constant. However, recently there have been some stu
where the effect of an order parameter dependent mobility
the dynamics of phase separation has been investigated@12#.

At this stage, it is useful to discuss the mechanism
domain growth in viscoelastic phase separation. We cons
the example of polymer in a solvent. For very de
quenches, molecular time scales of the polymer rich regi
~minority phase! are much slower relative to the solvent~ma-
jority phase!. This gives rise to viscoelastic stresses. T
elastic stress in the early stages is responsible for the
called incubation regime during which no macroscopic ph
separation occurs as the stress fields tend to suppress d
sion. After the incubation period, holes of the solvent st
nucleating in regions where the stress has locally relax
The holes start growing resulting in an increase in dynam
asymmetry as the more viscoelastic polymer rich regions
subjected to deformations due to the ongoing coarsen
Due to the high deformation rate, stress acts on the poly
rich regions that by now form a percolating network. T
dynamics in this regime is governed by the viscoelastic str
rather than surface tension. As the stress relaxes, the poly
rich regions discharge the dissolved solvent resulting in v
ume shrinking of the polymer rich regions. In the very la
stages, the system approaches equilibrium and consequ
the deformation rate of the network decreases. This resul
a weakening of the stress fields. In the absence of viscoe
tic stress, the dynamics is governed by surface tension an
the network starts to break up into disconnected regio
Thus, the inherent asymmetry of molecular time scales
tween the two components does not influence the dynam
in late stages. To summarize, the dynamics in viscoela
phase separation is characterized by a strong influenc
dynamical asymmetry in the early stages. However, the
fect of dynamical asymmetry gradually decreases as the
tem approaches equilibrium.

In this paper, we consider a model where the viscoela
effects discussed above are mimicked through an order
rameter dependent mobility. We state here that the mode
not specific to polymer solutions but attempts to describe
unusual domain growth observed in viscoelastic phase s
ration within the general framework of the Cahn-Hilliar
theory. We consider a mobility function of the type

M ~f!5
1

11exp~af2bf2!
, ~3!

wherea andb are positive constants~b.a!. The motivation
for choosing this particular form of the mobility is as fo
lows. In the early stages of domain growthf is small and for
a large enough value ofa, the mobility is a sharp step func
tion aroundf50. The negative quadratic term on the oth
hand provides a competing effect on the dynamical asym
try asf increases. This term is responsible for weakening
dynamical asymmetry in the late stages and is crucial to
phase inversion. The effect of this term on the dynamics i
some sense analogous to stress relaxation in viscoelastic
tems.
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III. NUMERICAL RESULTS

In this section, we give details of our numerical simu
tions of phase separation for an off-critical quench into
unstable region, using the above described model. We s
Eq. ~2! with the mobility function given in Eq.~3! on anN
3N square lattice with periodic boundary conditions.
simple Euler discretization is used with mesh sizeDx51.2
and the smallest time stepDt50.02. The initial condition are
given by

f~rW,0!5f̄1df~rW,0!, ~4!

wheref̄ is the off-criticality anddf(rW,0) represents random
fluctuations uniformly distributed in the interva
@20.005,0.005#. In the simulations reported in this paper, w
choosef̄520.1, which corresponds to a minority pha
concentration of 0.45.

We first describe our results on pattern evolution on
N3N lattice with N5128. We consider a quench corr
sponding to~a5100,b5160!. In Fig. 1 we display the evo
lution of domains corresponding tof̄520.1. The darker
contrast regions correspond to the minority phase~f.0! and
the brighter regions correspond to the majority phase~f,0!.
The shade varies with the extent of order, which is char
terized by the local value of the order parameter. In the v
early stages, the growth is strongly influenced by the
namical asymmetry. Att50, the system is in a one phas
state corresponding tof̄520.1. As order parameter fluctua
tions start getting amplified, the growth of concentration
regions that are locally rich in the minority component
suppressed due to low mobility. However, regions that
rich in the majority component order much faster~this is in
contrast to the usual phase separation where both min
and majority phases order rapidly and the minority ph
forms isolated droplets!. The snapshot at timet550 in Fig. 1
corresponds to this situation where we can see the emerg
of local regions rich in the majority phase. These regions
more ordered as compared to the minority phase regi
However, the boundaries between the two phases are stil
very sharp~this is analogous to the so-called incubation
gime in viscoelastic phase separation!. When the order pa-
rameter in the majority phase regions reaches its satura
valuefeq521 (t;100), well defined domains of the ma
jority phase appear and start growing~keep in mind that the
order parameter in the minority phase regions is yet to re
its saturation value offeq51). In this regime, the partially
ordered minority phase regions form a percolating struct
the area of which keeps on shrinking with time. This th
ning is due to diffusion from the minority phase regions
the majority phase regions~the minority phase regions ten
to expel the dissolved majority phase component and
results in the growth of order parameter within the minor
phase regions!. This behavior is analogous to the solve
discharge from the polymer rich domains in the elastic
gime of viscoelastic phase separation.

The growth of the majority phase domains and the as
ciated area shrinking can be clearly seen in the snapsho
times t5100 andt5200. As the order parameter in the m
nority phase grows, the negative quadratic term in the m
bility starts dominating and the dynamics becomes fas
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The order parameter in these regions rapidly saturates to
equilibrium valuefeq51 ~the thick black patches in minor
ity phase at timet5200 correspond to such regions!. At this
stage, we should also remark that the negative quadratic
in the mobility is crucial to observe substantial area shrin
ing and eventual phase inversion. In the absence of this te
the mobility of the minority phase regions remains low f
all time, thereby arresting the growth of order parame
@10#.

FIG. 1. Time evolution of the domains for the asymmetric m
bility case. The dark contrast regions in the snapshots correspon
the minority phase regions~f.0! and the bright contrast region
correspond to the majority phase~f,0!. The shade varies with the
extent of ordering determined by the local value of the order
rameter. The snapshots correspond to timest550, 100, 200, 300,
400, 1000, 2000, and 3000.
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The area shrinking continues till the order parameter
most of the minority phase regions has also reached its s
ration valuefeq51. Notice that by this time, the asymmet
in the mobility has also disappeared asM (f51)5M (f5
21). Subsequently, the domain growth is expected to oc
by the usual Lifshitz-Slyozov or evaporation-depositi
mechanism, where there is a diffusion from regions of hig
to lower curvature. Thus domains like to minimize the s
face area and the connectivity of the minority phase regi
is expected to break. This can be seen from the snapsho
times t5300 andt5400, where we can see the appearan
of disconnected minority phase domains. At very late tim
as shown in the snapshots at times 1000, 2000, and 3000
morphology consists of disconnected random interfaces
well as isolated circular domains. Even after long times,
do not observe a fully droplet morphology that is charact
istic of the dynamically symmetric cases for the pres
value of the initial composition. Thus, even in the regim
that is not dominated by dynamical asymmetry, the patt
retains the memory of the percolating structure it had in
early stages. Similar behavior has been observed in sim
tions of a viscoelastic model by Tanaka and Araki@8# where
the effect of the bulk as well as shear relaxational modul
has been incorporated.

We now present results pertaining to dynamical scali
The quantity of interest here is the time-dependent struc
factor defined as

S~kW ,t !5
^f~kW ,t !f~2kW ,t !&

1

N2(
k

^f~kW ,t !f~2kW ,t !&

, ~5!

wheref(kW ,t) is the fourier transform off(rW,t)2f̄ and an-
gular brackets refer to an average over initial conditions. T
wave vectorkW ranges over the first Brillouin zone. For th
results presented in this paper, we make use of the isot
of the system and evaluate a spherically averaged struc
factor that depends only on the magnitude of the wave v
tor.

We test whether the spherically averaged structure fa
obeys the dynamical scaling form

S~k,t !5L~ t !dF„kL~ t !…, ~6!

whereL(t) is a length scale related to the mean size of
growing domains. We use the inverse of the first momen
the spherically averaged structure factor as a measure o
length scale, i.e.,L(t);^k&(t)21, where

^k&~ t !5

E
0

km
dkkS~k,t !

E
0

km
dkS~k,t !

. ~7!

The upper cutoff is taken to be half the magnitude of
largest wave vector lying in the first Brillouin zone.

Before we describe our results on dynamical scaling
the structure factor, it is useful to identify the different r
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gimes of growth. In Fig. 2, we plot the area fractionfA of
the minority phase regions with the dimensionless time v
able of our simulations. The quantityfA has been obtained
by solving Eq.~2! on anN3N lattice (N5256) and com-
puting the fraction of sites withf.0 at each time step. The
data presented in Fig. 2 is obtained by averaging over
independent systems. We see that the area fraction init
increases above it’s equilibrium value of 0.45. This cor
sponds to the fact that the minority phase forms a percola
matrix in the early stages. Subsequently, the area fractionfA
rapidly decreases. This corresponds to the regime in wh
the concentration within the domains keeps on changing
there is a desorption from the minority phase to the majo
phase leading to area shrinking. The area shrinking contin
till the order parameter saturates to it’s equilibrium val
every where (t;300). The area fraction saturates close
the equilibrium value of 0.45 in the late stages. This regi
can be clearly seen in Fig. 2 for times greater thant;300.
The domain growth in this regime is characterized by
usual curvature driven mechanism. We should remark h
that very similar time dependence of the volume fraction h
been observed in deeply quenched polymer blends
Tanaka@5#.

We now present our results for the structure factor and
length scales. We have computed the spherically avera
structure factor and the associated length scaleL(t) on a
2563256 lattice by averaging over 50 independent init
conditions. In Fig. 3, we show the behavior ofL(t) with t (t
is a dimensionless time variable! on a log-log scale. We ob
serve an initial fast growth which corresponds to the a
shrinking regime. The curve crosses over to a straight
that is nearly parallel to the solid line of slope 1/3, there
indicating that our data conforms to a growth lawL(t)
;t1/3 asymptotically. This growth law corresponds to th
regime where both minority and majority phase regions
fully ordered and the evaporation-deposition mechanism
expected to apply.

FIG. 2. Variation of the area fractionfA of the minority phase
with the dimensionless time variable of the simulations.
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To test for dynamical scaling hypothesis, we p
L22(t)S(k,t) versuskL(t) in Fig. 4, for times 60, 120, and
300. The datasets at times 120 and 300 fall within the a
shrinking regime. We observe that there is no data colla
indicating a violation of dynamical scaling for these time
This can be understood if we consider the fact that in the a
shrinking regime, the order parameter within the domain
not saturated but keeps on changing with time. Howev

FIG. 3. Log-log plot of the mean domain sizeL(t) ~Inverse of
the first moment of the spherically averaged structure factor! with
the dimensionless timet of the simulations. The solid line has
slope 1/3 and serves as a guide to the eye.

FIG. 4. Test for dynamical scaling in the early stages. We p
L22(t)S(k,t) vs kL(t) on a log-log scale for timest560, 120, and
300.
t

a
se
.
ea
is
r,

there is a good data collapse at later times as shown in Fi
The data at times 1500, 2100, and 3000 scales well~except
in the tail where the finite interfacial width is responsible f
deviations from scaling@13#!. In this regime, the order pa
rameter is saturated every where and growth takes plac
usual evaporation-condensation mechanism.

It is interesting to compare the form of the scaling fun
tion with dynamical asymmetry to that with the symmetr
mobility case. In Fig. 6, we plotL22(t)S(k,t) with kL(t) at

t

FIG. 5. Analogous to Fig. 4, but for times corresponding tot
5900, 1500, 2100, and 3000.

FIG. 6. Log-log plot of L22(t)S(k,t) vs kL(t) at time t
53000 for the aymmetric mobility case and the constant mobi
case withM~f!51.
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268 PRE 59RAJEEV AHLUWALIA
time 3000 for the case of constant mobility and the dyna
cally asymmetric case considered in this paper~the data for
the symmetric mobility case has been obtained forM~f!51,
with the same initial conditions and statistics as the asy
metric mobility case!. We find that the two scaling function
have different form. In particular, the usual Porod’s ‘‘shou
der’’ is less pronounced in the dynamically asymmetric c
than in the constant mobility case. This suggests that
form of the scaled structure factor is dependent on the ex
of the dynamical asymmetry, for the same value of the ini
composition.

IV. SUMMARY AND DISCUSSION

In this paper, we have presented results of computer si
lations of a simple Cahn-Hilliard type model that has d
namical asymmetry built in through an order parameter
pendent mobility. The form of the mobility function i
chosen so as to incorporate the effects of a strong dynam
asymmetry in the early stages along with a competing te
that restores symmetry in the late stages. Our simple m
captures many of the experimentally observed features
have also been observed in simulations on viscoelastic m
els. Our simulations reveal a morphology in which the m
nority phase forms a percolating structure in the early sta
The area of the minority phase matrix shrinks with time a
eventually the matrix starts breaking up into disconnec
regions.

We have also tested for the existence of dynamical s
ing. We find that the structure factor does not scale very w
in the area shrinking regime. However, it crosses over int
scaling form when the growth is determined by the evapo
tion deposition mechanism. Interestingly, the form of t
scaling function is different than the constant mobility ca
This suggests that the scaling behavior is dependent on
extent of the dynamical asymmetry~this can be checked in
experiments by considering the dependence of the struc
factor on the quench depth!. The difference in the form of the
scaling function arises due to the fact that the late stage m
phology in the dynamically asymmetric case is different th
that for the constant mobility case. However, the asympt
hn
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growth law is same as that observed in constant mob
systems, i.e.,L(t);t1/3.

Although we have been able to account for many of
experimental features, we do not claim this model to be
accurate description of viscoelastic phase separation.
have considered a very simple model that shows growth
gimes similar to viscoelastic phase separation. The incor
ration of stress fields is essential to obtain the thin netwo
like morphologies as observed in experiments, where a
our model, the domain shapes are determined by conce
tion gradients only. Nevertheless, we expect that our
stage results on the morphological features as well as
scaling behavior could be relevant to viscoelastic phase s
ration experiments, particularly in the time regime where
viscoelastic stresses have decayed.

We should also point out that the percolating minor
phase structure is formed in our model only for a small ran
of compositions betweenf̄520.1 andf̄50.0, only for a
sufficiently large value of the asymmetry parametera. In
fact, for lowera, even for the same compositionf̄520.1,
we do not get an initial percolating minority phase. The on
effect of asymmetry for such cases is on the shape of
domains.

Finally, we remark that our choice of the mobility func
tion is not unique. We could construct other forms of t
mobility function that could give similar results. Howeve
we expect that the associated phase separation to fall into
same dynamical universality class for all these models. In
present work, we have attempted to demonstrate that the
usual phase separation observed in viscoelastic systems
more general phenomena, which is expected to show u
systems where there is a dynamical asymmetry that gra
ally decreases as the system approaches equilibrium.
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