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Using a recently developed algorithm for generic rigidity of two-dimensional graphs, we analyze rigidity and
connectivity percolation transitions in two dimensions on lattices of linear size up-#096. We compare
three different universality classes: the generic rigidity class, the connectivity class, and the generic “braced
square net(GBSN). We analyze the spanning cluster denslty, the backbone densifyg, and the density of
dangling endsP . In the generic rigidity(GR) and connectivity cases, the load-carrying component of the
spanning cluster, the backbone fiactal at p,, so that the backbone density behaveBas(p—p.)?" for
p>p.. We estimatqsérzo.ZSt 0.02 for generic rigidity angB; =0.467+0.007 for the connectivity case. We
find the correlation length exponentg,=1.16+0.03 for generic rigidity compared to the exact value for
connectivity,v.= %. In contrast the GBSN undergoes a first-order rigidity transition, with the backbone density
being extensive ap., and undergoing a jump discontinuity on reducm@cross the transition. We define a
model which tunes continuously between the GBSN and GR classes, and show that the GR class is typical.
[S1063-651%9912102-0

PACS numbes): 64.60.Ak, 05.70.Jk, 61.43.Bn, 46.25¢

I. INTRODUCTION central-force rigidity percolation transition, stressing the

Scalar percolation is a simple model for disordered syssimilarities and differences between this problem and scalar
tems, and has received much attention in the last two decadegrcolation.

[1-3]. This model describes the transmission of a scalar con- If rigidity [7,15—24 is provided by central forces alone
served quantityfor example, electric charge or fluid mass (e.g., rotatable springssingle connectedness is not enough
across a randomly diluted system. However in the calculato ensure rigidity. In this case a lattice that is conducting
tion of mechanical properties fordée., a vector must be  usually would not support an applied stréis., it would not
transmitted across the syst¢#]. It was originally suggested be rigid). This was first shown by Feng and SEA who,

[5] that the critical behavior of the elastic moduli of a per-found that the rigidity threshold is significantly larger than
colating system should be equivalent to that of its conductivthe conductivity threshold. An exception worth mentioning
ity, but this is only valid for the scalar limit of the Born is the case of elastic lattices under tension, or, equivalently,
model of elasticity[6], a model which is not rotationally systems in which all springs have zero repose lerfgs.
invariant and in many cases inappropriate. Elastic percolaFor such systems, the conductivity and Young modulus are
tion is not in general equivalent to scalar percolation. Thisequivalent i.e., rigidity appears at the scalar percolation
was first made clear by the work of Feng and $Enpwhich  point. It has been recently emphasiZ@é] that entropic ef-
showed thatentral-force elasticitypercolation was in a dif- fects can give rise to similar effects in central-force systems
ferent universality class than scalar percolation, and providedith nonzero repose length and finite temperature, although
the starting point for a renewed interest in this problem.  the connection with Ref.25] was not established.

It soon became clear that the elasticity problem can be The main difficulties associated with central-force elastic-
divided into two categorie$8], according to the kind of ity are as follows: Whereas in the scalar connectivity case it
forces which hold the lattice together. If angular forces ards a trivial problem to determine when two sites belong to the
important[9—-14], a singly connected path across the latticesame connected cluster, in the case of central-force rigidity it
is enough to ensure rigidity, so any configuration of bondds not in general easy to decide whether two objects are rig-
which is connected is also rigid. In this case, the geometry oidly connected. For example, it takes some thinking to see
the elastic backbone is exactly the same as that of the scaldrat the six bodies in Fig. 1 form a rigid unit. Thus it is not
percolation problenj10,12—14. This is the case for bond- easy to see how a computer algorithm can be devised to
bending[9,10] and beanj11,14 models. Thus the elasticity identify rigid clusters.
percolation problem with angular forces is now well under- In the scalar connectivity problem, the removal of a singly
stood, and that understanding has borrowed much from theonnected bond leads to the separation of a connected cluster
geometrically equivalerdcalar percolation problem. It is the into two clusters. In the rigidity case, the removal of an
purpose of this paper to analyze the more challengingnalogous “cutting bond” may produce the collapse of a

rigid cluster to a collection of an arbitrarily large number of
smaller onegwe call this thehouse-of-cardsnechanism
*Electronic address: cristian@if.uff.br Figure 1 shows a simple example of this situation. Due to
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Degenerate configurations appear with probability zero if the
lattice locations are “randomly chosen.” A lattice is thus
said to begenerically rigid if it is rigid for most geometrical
arrangements of its sites. Generic rigidity only depends on
the topology of the underlying graph, i.e., ignores the possi-
bility of degeneracies. Since degenerate configurations are
always possible on perfectly regular lattices, we will assume
our lattice sites to have small random displacements, in
which case generic rigidity applies.
Up until recently, no simple algorithms existed for the

determination of the rigid-cluster structure of arbitrary lat-
tices. Due to this, direct solving of the elastic equations was
one of the few methodp4] available to obtain information
on the structure of rigidly connected clusters. But this is very

ime consuming, and did not allow the study of large lattices.

revious simulations were, for example, not sufficiently pre-
cise to confirm or reject the propoddl6,31,17 that bond-

ters(no two are rigidly connectedThis means that the existence of b?nd'ng_ and Cemral'for_ce ela_st'c percolat!on might E,ifter all
a rigid connection between, for example, clusteendf cannot be still _be In the samg universality Cla,SS' This SqueSt_'on was
decided on local information only, since it depends on the presencBOt inconsistent with some numerical results obtained on

of “far away” bonds, i.e., bonds not connected to clusters . small-sized systemsl6,31,17-18 _
Recently there has been a breakthrough in the system

. o . . .. Sizes accessible to numerical analy{6,22,23, following
this fact, the transmission of rigidity can be “nonlocal” e geyelopment of efficient graph-theoretic methods for the
[15,23, since a bond added between two clusters on one S'?ﬁroblem or generic rigidity in two dimensiorig9,30,32.
of the sample may induce rigidity between two clusters onygjng such methods, we study the central-force rigidity per-
the other side of a samp_le_. . colation problem on randomly diluted triangular lattices of
A Se.cf“?d source of.d|ff|cu|t|es in the problem of C.emral'linear size up td_=3200, and connectivity percolation and
force rigidity is the_ existence of parthular gepmetncal ar- body-joint rigidity percolation on site-diluted square lattices
rangements for which a system may fail to be ri2d] even of size up toL=4096. Our numerical algorithri30] is

if it is rigid fqr_most pther casef28-30,23. Take, f_or ex- _complementary to the “pebble gamd?22,33, which is an
amplg, two r'g'dthd'e.S ?:angct_erg_by three ba_rs in two di; plementation of Hendrickson’s matching algorithm in the
fT“?QS'g“tS:f ?ﬁ sthown t;n 'ﬁ' : tIS Etructure IS 1n gene_rt riginal “joint-bar” representation of the networlk9] (see
rigid, but It the threée bars happen o have a common poin below). This paper is an elaboration and extension of our two
then the structure is not rigid, since this common point is therecent letters on this subjef20,21. We extend and elabo-
center of relative rotationg23] between the two bodies. rate upon the numerical data presented there in several ways:

hl?z;rtlcular ge_o_r;etrlcal a;:rant?]em?rﬁm:ch as I':I'gd fb)]’ tby comparing rigidity and connectivity percolation, by
which aré nonngid even wnen the structure Is rigid for mos studying significantly larger lattices for rigidity percolation,
other configurations, are calledegenerate configurations

by giving data on site- and bond-diluted lattices with a vari-
ety of boundary conditions; by presenting results on a body-
L joint model which is in the universality class of bar-and-joint
rigidity percolation, and, by presenting detailed results for a
model which continuously tunes between the braced square
lattice (which has a first-order rigidity transitiorand the
isotropic triangular latticéwhich has a second-order rigidity
transition.

The numerical method is briefly described in Sec. Il. In
Sec. lll, our results are presented and their implications dis-
cussed. A comparison is made with other available numerical
and analytical results for the central-force rigidity percola-
tion problem. We also discuss the issue of first-order rigidity,
which has been the subject of a comment and reply in physi-

cal review letterg33]. Section IV contains our conclusions.
FIG. 2. Three bars are in general enough to form a rigid con-

nection between two rigid bodidsase(a)], but for particularde-

generatecaseq case(b)], rigidity fails even when the system has II. NUMERICAL METHOD

the right number of bars. Cag) fails to be rigid because the three o ) )

bars happen to have a common point. A structure formed by two We take an initially depleted triangular lattice and add
bodies connected by three barsgenerically rigidin two dimen- ~ bonds(in the bond-diluted cageor sites(in the site-diluted
sions if it is rigid “for most geometrical arrangements,” i.e., leav- Casg to it one at a time, and use a graph-theoretic matching
ing aside degenerate configurations suchtswhich occur with  algorithm[30] in order to identify the rigid clusters that are
probability zero in the configuration space. formed in the system. For the case of bond dilutipiis the

FIG. 1. The six bodies shown in this figure are rigidly con-
nected, i.e., they belong to the same rigid cluster. But the remov.
of any bond(thin black lineg leads to the collapse of the structure,
which is then reduced to a collection of shdependentigid clus-

a) b)
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density of present bonds, while in site dilution it indicates thegeneral include someutting bonds so named because the
density of present sites. In the site-diluted problem, a bond isemoval of any one of them leads to the loss of global load
present if the two sites it connects are. carrying capability. Cutting bonds attain their maximum
We use the body-bar versidB0] of a recently proposed number exactly ap. [35]. The backbone bonds which are
rigidity algorithm [29]. This algorithm, being combinatorial Nnot cutting bonds are parts of internally overconstrained
in nature, allows us to identify sets of sites which are rigidlyPlobs In the rigidity case, the smallest overconstrained clus-
connected, without providing any information on the actualtér on a triangular lattice is the complete hexagonal wheel
values of the stresses when an external load is applied. TH&2 bonds, while in the connectivity case it is a triangfiee.,
body-bar algorithm sees the lattice as a collection of rigigth® Smallest possiblop). The spanning cluster also con-
clusters(or “bodies”) connected by bars, instead of points {&iNS bonds which are rigidly connected to both ends of the
connected by bars as proposed in the original algor{t2@ sample but which do not carry any of the applied load. These

and as implemented in the “pebble gamg2]. The body- are calleddangling ends This classification is standard in
bar representation allows a more efficient use of CPU angonnectivity(scalaj percolation[36]. ,
memory, as each rigid cluster is represented as one object, " tis work we analyze several other boundary condi-

The matching identifies rigid clusters andndensethem to tions, particularly in the_gen_eri_c rngidity case on trignggl_ar
one node as new bonds are added to the network. lattice. In that case, for site dilution we analyze AS with rigid

In two-dimensional rigidity, a rigid cluster has three de-Pus-bars at the ends of the sample, AS without bus bars

grees of freedom, while a pointlike joint has two. Therefore,(@y-Pair rigidity, and IS with bus bars. For bond dilution,
the minimumnumber of bonds needed to rigidizdoints in only the care of AS with bus bars was studied. We determine

two dimensions is 8—3. Matching algorithmg29,30,32 the exact percolation poitAS or IS for each sample, so we
are based on this sort of constraint counting can identify and measure the different components of the

The body-bar algorithni30], can be extended to handle spanning clustegxactlyat p. for 'each sample. Th_is sht_)uld
“rigidity problems” with arbitrary values ofg (number of be contrasted with usual numerical approaches, in which av-

degrees of freedom of a joinand G (degrees of freedom of ©€rages are done at fixed valuespfand(p,) is obtained
a rigid clustey. Connectivity, for example, is just a special Tom finite-size scalinge.g., data collapseln that case, it is
(simple case of rigidity withg=1 andG=1: the minimum known that slight differences in the estimation<op.> can

number of bonds needed to connegboints isn—1 in any lead to important deviations in critical indicg46]. This

dimension. Connectivity percolation can thus be studied usSCUrce of error is absent in our measurements. Sample aver-

ing this algorithm. More details on the application of match-29€S are done over approximately’/A¢ samples.
ing algorithms for the specific case of connectivity percola-
tion can be found in Ret34] IIl. RESULTS

There are several ways to define the onset of global rigid-
ity in a network[20]. We have used two distinct methods. ~ We first analyze the size dependence of the three key
First we determine whether an externally applied stress caprobabilities—Pg the backbone densitPg, the dangling-
be supported by the network, which we call applied stresgnd densityPp, and the infinite cluster densify..—exactly
(AS) percolation. Second, we studied the percolation of in-at their percolation thresholdsis described in Sec. Il. In
ternally stressedlS) regions. Figs. 4a)-4(c), these data are presented for the three differ-

At the AS percolation pointan applied stress is first able ent universality classes in Figs(a3-3(c).
to be transmitted between the lower and upper sides of the Case(c) corresponds to the generic braced square net
sample. As we add bonds one at a time, we are able to dete¢6BSN), which is a square lattice to which diagonals are
this percolation point exactly by performing a simple testadded at random with probability. The nongeneric version
[30] which consists of connecting an additional fictitious of this problem has been studied by many autfis7s38,24,
spring between the upper and lower sides of the system. Thand it is well known that the number of diagonals needed to
auxiliary spring mimics the effect of an external load, and,rigidize it is not extensivep.~0 whenL—oe. This is con-
therefore, the first time that a macroscopic rigid connectiorfirmed by our numerical simulations, which correspond to
exists, a globally stressed regidthe backbongappears. the bus-bar boundary condition.

The IS critical point is defined as the bond or site density In Fig. 4(d) we also present data for the rigidity cage
at which internal stresses percolate through the system. This 3,G=3 on a square lattice, to further test whether the ri-
means that the upper and lower sides of the system belong gidity class is universal in two dimensions. In this model
the same self-stressed clusf@0], and this is trivially de- each site of a square lattice is a body, and so ¢as
tected within the matching algorithi80]. The AS and IS degrees of freedom. Each of these bodies is connected to
definitions of percolation are in principle different, but we each adjacent body by two bonds or bars, i.e., two contigu-
found [20] that the average percolation threshold and theous bodies are pinned at a common point. Maxwell counting
critical indices coincide for large lattices. Similar definitions [39] then impliesf =3—4p, so that the Maxwell estimate of
apply to the connectivity case, with the AS case being theéhe bond percolation threshold is 3/4. Our numerical estimate
usual definition, i.e., the onset of electric conductivity, andis p.=0.748 77 0.000 05, thus confirming the accuracy of
IS being percolation of “eddy currents.” the Maxwell approximation.

We define thespanning cluste(Fig. 3 as the set of bonds One clear feature of Fig. 4 is that the BSNg. 4(c)] has
that are rigidly connected to both sides of the sample. Howa qualitatively different behavior than the other cases. For
ever, only a subset of these bonds carries the applied loathe BSN,Pg,P.,, andPp all have a finite density at larde
This subset is called thbackbone The backbone will in indicating that the rigidity transition is first order in this case.
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FIG. 3. Infinite percolation clusters which lie in different universality classgsConnectivity percolationd=G=1) on a triangular
lattice. (b) Rigidity percolation §=2,G=3) on a triangular lattice(c) Rigidity percolation §=2,G=3) on a braced square lattice. Hay
and (b), boundary conditions are periodic in the horizontal direction, while(¢pthey are free. The system sike=64 and rigid bus bars
are set on the upper and lower ends of the sample.bBlekboneis composed of “blobs” of internally stressed bondsick black lineg,
rigidly interconnected by cutting bondgray lines. Cutting bonds are also calledd bonds Removing one of them produces the collapse

of the systemDangling endgthin lineg are rigidly connected to the backbone, but do not add to the ability of these networks to carry a dc
external loador curren;.

In contrast, in both the connectivifyFig. 4(a)] and rigidity =~ correction-to-scaling terms, which we assume to be power
casegFigs. 4b) and 4d)], Pz and P, are decreasing in a law, we may generally write

power law fashion over the available size ranges. However,
the behavior ofPy is more complex. First we discuss the

behavior ofPg . - o ~ This expression is fitted to our numerical data by choos-
At a second-order phase transition, finite-size scalingng the set of parameterC,,C,,e,} that minimize the
theory predicts PB(pc)~L*B"”. Taking into account error

Pg=C,L %(1+C,L ). (1)
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FIG. 4. Density of backbone bondsircles, dangling bonds
(squares and infinite cluster bond&iamonds at the AS critical 0.8
point for (a) connectivity percolationd=G=1) on a site-diluted
square lattice(b) rigidity percolation §=2,G=3) on a site-diluted B
triangular lattice;(c) rigidity on a randomly braced square lattice;
and (d) body rigidity (G=g=3) on a site-diluted square lattice . 04
Paneasured_ Pgt 2
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A plot of —In(Pg)/In(L) vs. 1/In(L) should then have an 1.0
asymptotic { — =) intercept equal to the leading exponent
e. Similar fitting procedures were used to produce Figs. 5 08
and 8, where the leading exponentdsy and 1k, respec- 0.6
tively. '
A fit of the data in Figs. é) and 4d) produces a rather B
universal estimateé,/v= 0.22+0.02. As a consequence, the 0.4
rigid backbone isfractal at p., with a fractal dimension 02 |
Dg=1.78+0.02. In the connectivity cag€ig. 4(a)], we find '
[34] B'/v=0.350+0.005, orDg=1.650+0.005, which is 0.0
consistent with the most precise prior wgeQ,41]. 0.0 0.2 0.4 0.6 0.8
Now we considerP,, and Py. In the connectivity case (c) 1/In{L)
[Fig. 4@], an analysis of the dangling ends and infinite clus- ] ) )
ter probabilities[Fig. 5@)] both lead to the estimatg/v FIG. 5. The spanning cluster density exponght as numeri-

cally estimated for(@) connectivity percolation on a square lattice
&Lmax: 4096), (b) rigidity percolation on a triangular lattice. ["®*
=3200), and(c) body rigidity on a square latticel {"®*=4096).

=0.10-0.11, in agreement with the exact resilt In the
rigidity case however, there are strong finite-size effects an

even at sizes of =3200 [joint-bar rigidity, Fig 4b)], and Two estimates result in each case from fitting the scaling of span-
L =4096 [_bOdy'lo'nt ,r,'g'd'ty’ Fig. 4d)]; '_t Iooks.as tho_ugh, ning cluster densitytriangles and dangling-er?d densit(;cir?:les}. P
the dangling probability may be saturating, while the infinite g\ ines are fits using Eqd).
cluster density continues to decrease. SiAgce- Pg+ Pp, it
is expected that asymptotically,, and P, must behave in infinite cluster probability at the dangling end value of about
the same manner. 0.1. Having extended our data frdm= 1024 to 4096, it now
Clearly the numerical results for the range of system sizefoks more likely that a small value ¢ occurs in the rigid-
currently available are still controlled by finite-size effects, ity case[Figs. §b) and Fc)], though much larger simulation
and the results depend on the analysis method chosen. Jacaiges are required to find/v precisely.
and Thorpg 22] chose to interpret the infinite cluster prob-  Due to the slow finite-size effects found in the analysis of
ability as being key. A fit to theP., data of Figs. &) and  the infinite cluster and dangling end probabilities, it is natu-
4(d) yields p/v=0.147+0.005[see Figs. &) and 5c)], in  ral to be concerned about the effect of boundary conditions
agreement with Jacobs and Thorpe. But a similar fit of theand other, usually nonuniversal, parameters on the observed
dangling end density giveg8/v~0.03 for the joint-bar rigid-  results. For generic joint-bar rigidity case on triangular lat-
ity case[Fig. 5b)] and B~0.01 for the body-joint rigidity tices we thus tested a variety of different boundary condi-
case[Fig. 5(c)]. In our previous wor21] we were guided tions for both site and bond dilution. These data are pre-
by the Cayley tree resulfgl2], which indicated a first-order sented in Fig. 6, from which it is seen that the conclusions
jump in the infinite cluster probability. We thus chose to drawn from the case of rigidity percolation with applied bus
interpret Figs. 4) and 4d) as indicating a saturation of the bars are quite robust.
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FIG. 6. Backbone densityg (solid lineg and dangling-end
density Pp (dashed linesas a function of sample size at the per-
colation threshold of each sample, on triangular lattices for bond-
diluted AS with bus-bargcircles, site-diluted AS with bus bars
(diamonds, site-diluted AS without bus-bar@riangles, and site-
diluted IS without bus-bars. The AS percolation point without bus
bars is defined as the concentration of sites or bonds for which there
is, for the first time, a rigid connection between at least one pair of
points on opposite sides of the sample.

Finally, the behavior of the dangling end density as a
function of p is also quite striking. These data are presented
in Fig. 7. At very highp, nearly all bonds belong to the
backbone, so the dangling end density approaches zero. Be-
low p., there is no infinite cluster, so there are again no
dangling ends. There then must be a maximum in the density
of dangling ends betwegm. andp=1. As seen in Fig. 7, the
interesting feature is the abrupt drop in the dangling density
at p., a feature that appears to become more pronounced
with increasing sample size. It is tempting to interpret this as
definitive evidence of a first-order rigidity transition, but it is
also consistent with the strong finite-size effects seen in Figs.
4(b), 4(d), and 6, so we must await large lattice simulations
for a definitive analysis.

Now we turn to the calculation of the correlation length
exponent for rigidity percolation. When there is a second-
order rigidity transition, there is a diverging correlation

1.2
1.1
1.0
v 0.9 1
0.8
0.7
06
0

5 :
00 02 04 06 08 1.0 1.2
(@) 1n(L)

1.6

1.4

v 12

1.0

0.8 e
00 02 04 06 08 10

(b) 1/In(L)
1.20

110 ¢

v 100

0.90 |

0.80
0.0 0.2 0.4 0.6 0.8

(© 1n(L)

FIG. 8. The thermal exponentilas numerically estimated for

length é~|p—pc| ~*. We can find the exponent of this  (a) connectivity percolationd=G=1) on square latticeb) rigid-
divergence by measuring the sample-to-sample fluctuationig/ percolation §=2,G=3) on a triangular lattice, an(t) body
in p. as a function ofL. The dispersions(L)= \/(< p§>L rigidity on a square latticeG=g=3). Two independent estimates

_<pc>2), and according to finite-size scaling(L)~L ™. result in each case from fitting the scaling of red boftdangles
L C :
and fluctuations imp, (circles.
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0.06
0.04

0.02
0.0 Jj’/%
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Dangling density

An asymptotic analysis fos(L) is shown in Fig. &) for
connectivity percolation, in Fig. (8) for joint-bar rigidity
and in Fig. &c) for body-joint rigidity. From these figures we
estimate »=0.75+0.01 (the exact value is 1/~=3/4) for
connectivity percolation and #&#0.85+0.02 for rigidity
percolation. This provides further strong evidence that rigid-
ity percolation is second order in two dimensions, thongh
in the same universality class as scalar percolation. In the
case of the first order rigidity on the braced square[Rég.
9(c)], the variations inp, behave ad ~%? in accordance

with analytical results for this modé#3].

p

Our algorithm also identifies the cuttifglso calledred

FIG. 7. Fraction of dangling ends on thg=2,G=3) generic  Or Critical) bonds at the percolation point, for the case of AS
rigidity infinite cluster, as a function g, for site-diluted triangular ~ percolation. The numbeMy of red bonds scales at, asL*.
lattices of sized =32, 64, 128, 256, 512, and 1024. Data shown Coniglio [35] showed thak=1/v exactly, forscalar perco-
here are for the AS case with bus bars. lation. Numerical evidence suggesting that 1/v also in
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1.00 square net and the triangular lattice. In the braced square net,
the random diagonals are present with probabipty, to
make the lattice rigid it is sufficier{though not necessarto

add one diagonal to every row of the square lattice. The
probability that a spanning cluster exists is then=[1
—(1—pg)-1-, from which we findpg, ~InL/L.

We generalize this model by randomly adding the diago-
nals (with probability py) to a square lattice whose bonds
have been diluted with probability. The braced square net
is g=0, while if q=1—pq4 this model is equivalent to the
10 100 1000 bond-diluted triangular lattice. Typical results for various
values ofqg are presented in Fig. 9. It is seen that even for a
small amount of dilution of the square lattice, e.g,
=0.10, the rigidity transition returns to the behavior charac-
teristic of the homogeneously diluted triangular cdsee
Fig. 9. We find that for sufficiently large lattice sizes, the
universal behavior found in the other rigidity cases holds for
any finite q<<0.5 (for larger values ofj it is not possible to
rigidize the lattice by randomly adding diagonaland we
suggest that the “fully first-order” transitiori.e., a first-
order backboneonly occurs in the special case of a perfect
(undiluted square lattice.

Pp

#

0.10

1.0000

0.1000
Red
0.0100 |

A

0.0010

00001 10 100 1000
IV. CONCLUSIONS

1.0000 We have compared three types of percolation transition in

two dimensions: the connectivity transition, the generic ri-

gidity transition on the triangular lattice, and the generic ri-

0.1000 | i gidity transition on the braced square lattice. A summary of
7 (p) our understanding is as follow§) The generic rigidity tran-
0.0100 | sition on triangular lattices is second order with+1.16
+0.03, 0<B=<0.2, and 8’ =0.25+0.02. (i) The rigidity

0.0010 | ] transition on the braced square net is first order with finite

: backbone, spanning cluster, and cutting bond densities at the

percolation threshold. Only the value @f for the generic
rigidity transition on triangular lattices remains controversial,
due to the very strong finite-size effects in that case. To
illustrate the fact that our data are inconsistent with a first-
FIG. 9. The volume fraction ofa) backbone bondgp) cutting  order backbone in the site-joint rigidity case, we have devel-
bonds, andc) the fluctuationo(p.) at the rigidity threshold for a oped the following scaling argument.
square lattice withg=0 [this is the braced square néilled Assume that the backbone mddd] scales asvig~LPe
squarey], a square lattice witq=0.1(circles, a square lattice with  at p... If the backbone is compact, thé&y=d, the dimen-
g=0.40 (square} a triangular lattice with bond dilutiodia-  sion of the system. The backbone mass is composed of red
monds, and a triangular lattice with site dilutiofriangles. (or cutting bonds plus “blobs” of overconstrained, or self-
stressed bondssee Fig. 3. ThereforeMg=M ¢+ M pobs-
rigidity percolation was first presented in RE20]. It is in  The number of red bonds in the backbone scaledag
fact possible to extend Coniglio’s reasoning to the case of-L'”, as analytical result§35,43 and the simulations re-
central-force rigidity percolatioj43]. It turns out thatx  ported here show. Let us furthermore writ®lq,s
=1/v has to be rigorously satisfied also in this case, and=NyepdNpiops, Where nyps is the number of blobs in the
therefores(L) and 1Ngr(L) must have the same slope in a backbone, andn,, is the average number of bonds in a
log-log plot. Analysis of the number of cutting bonds is alsoblob. ThereforePe~ LY+ n o Myons: Now the AS back-
presented in Fig. 8, and yields values of tonsistent with bone is anexactly isostaticbody-bar structure, formed by
the analysis of variations in percolation thresholds describedgid clusters (blobg joined by bars(red bond§ so that
in the previous paragraph. counting of degrees of freedom is exact on it andMgy
Since the Cayley tree modé#2] gives behavior quite = 3nyg,st2ns— 3 [30]. Hereng is the number of sites in the
similar to the braced square nfe#], i.e., a first-order rigidity  backbone, that do not belong to a blékee Fig. 3. This
transition, it is interesting to ask whether the rigidity transi-identity is known as Laman’s conditidd5,30, and results
tion is “usually” like that on the braced square k., first  from the fact that each red bond acts as a bar and therefore
orden, or whether the second-order transition found on tri-restricts one degree of freedom, while each blob has three
angular lattices is more typical. In order to probe this issuedegrees of freedom and isolated sites have two. The back-
we analyze a model which interpolates between the braceldone is a rigid cluster, and therefore has three overall degrees
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of freedom. We do not need to knaw for our argument. It
is enough to notice that,,es<M e4/3~LY". We can thus

COMPARISON OF RIGIDITY AND CONNECTIVITY ...
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The first-order rigidity transition exhibited by the braced
square net seems to be atypical, as we illustrated using a

write model which tunes continuously from that limit toward the
generic triangular lattice. We found that even a small devia-
tion from the braced square lattice limit leads to a behavior
similar to that of the triangular lattice. It would be intriguing

§ there were a tricritical point at which first-order rigidity
ceases and second-order rigidity sets in, but we have not
found a model which exhibits that behavior. Nevertheless
there are a large number of other rigidity models in two
dimensions, so the possibility is not yet ruled out.

LPe<LY"(1+Mpygpd3). 3

To this point, we have made no assumption about th
character(lcompact or fractalof the backbone, so it is valid
in general. If the transition is second order, there is a diver
gent length(for example, the size of rigid clustersand we
expectmy,qps to diverge with system size. Therefore a non-
trivial value results foDg, as we find numerically. If on the
other hand there is no diverging length in the system, then
My ops— CONstant for large systems, abg=d=1/v exactly.

We thus see that a compact backbone requires an extensive C.M. acknowledges financial support of CNPg and
number of cutting bonds, and this in turn can only be satisFAPERJ, Brazil. This work was partially supported by the
fied if v=1/d exactly[46]. This is completely inconsistent DOE under Contract No. DE-FG02-90ER45418, and the
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