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Computer simulations of the two-dimensional melting transition using hard disks

A. Jaster
Universität-GH Siegen, D-57068 Siegen, Germany

~Received 3 September 1998!

We present detailed Monte Carlo results for the two-dimensional melting transition of various systems up to
N565 536 hard disks. The simulations are performed in theNVT ensemble. In the isotropic phase the bond
orientational correlation lengthj6 and the susceptibilityx6 are measured and compared with the predictions of
the Kosterlitz-Thouless-Halperin-Nelson-Young~KTHNY ! theory. From the scaling relation ofj6 andx6 we
calculate the critical exponenth6 . In the phase transition region we use finite-size scaling methods to locate
the disclination binding transition point and compare the results with the values obtained from the behavior in
the isotropic phase. Additionally, we measure the topological defect density, the pressure, and the distribution
of the second moment of the local bond orientational order parameter. All results are in good agreement with
the KTHNY theory, while a first-order phase transition with small correlation length and a one-stage continu-
ous transition can be ruled out.@S1063-651X~99!08102-7#

PACS number~s!: 64.60.Fr, 64.70.Dv
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I. INTRODUCTION

The nature of the two-dimensional melting transition is
long unsolved problem@1,2#. Melting in two dimensions dif-
fers from the three-dimensional case because the t
dimensional solid possesses only quasi-long-range positi
order, while the three-dimensional solid is truly long ran
positional ordered. This means that the correlation funct
in two dimensions decays algebraically to zero for large d
tances, while it decays to a nonzero value in three dim
sions. This absence of conventional long range order at n
zero temperatures in two dimensions was pointed out
Mermin and Wagner@3#. Therefore, the mean-square di
placement of the particles from their ideal lattice positi
will diverge logarithmically with the size of the system, an
no Bragg peaks in a strict manner can occur in the ther
dynamic limit. Nevertheless, the other order parame
which describes the bond orientational order, is truly lo
range ordered, i.e., the orientation of the bonds betw
neighboring particles is correlated over arbitrary distance

There are several theoretical approaches for the des
tion of melting in two dimensions. Halperin and Nelson,
well as Young, developed a theory based on the idea
Kosterlitz and Thouless@4#. The Kosterlitz-Thouless-
Halperin-Nelson-Young theory deals with unbinding sc
narios of topological defects, where the two order parame
are related to two different topological defects: the disclin
tions and the dislocations. The dislocation unbinding a
temperatureTm is responsible for the melting transition
while the disclination unbinding atTi destroys the bond ori
entation. The first continuous transition transforms the so
into a hexatic phase, which is short range positional a
quasi-long-range orientational ordered. The second cont
ous transition transforms this hexatic phase in an isotro
one, i.e., a phase with short range positional and orientati
order. An alternative scenario was proposed by Chui@5#. He
presented a theory via spontaneous generation of g
boundaries, i.e., collective excitations of dislocations.
found that grain boundaries may be generated before the
locations unbind if the core energy of dislocations is su
ciently small, and predicted a first-order transition. This
PRE 591063-651X/99/59~3!/2594~9!/$15.00
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characterized by a coexistence region of the solid and iso
pic phases, while no hexatic phase exists. Another prop
was given by Glaser and Clark@2#. They considered a de
tailed theory where the transition is handled as a conde
tion of localized, thermally generated geometrical defec
and also found a first-order transition. Calculations based
the density-functional approach were done by Ryzhov a
Tareyeva@6#. They derived that the hexatic phase cann
exist in the hard disk system.

Numerical investigations of two-dimensional melting c
be done in several ways. On the one hand, one can simu
the particle system or the defect system@7#. On the other
hand, one can study lattice models which describe def
and their elastic interaction@8# or grain boundaries@9#.

The hard disk system is one of the simplest particle m
els to study the melting transition in two dimensions w
computer simulation techniques. Even for this simple case
consensus about the existence of a hexatic phase has
established. The melting transition of the hard disk syst
was first seen in a computer simulation by Alder and Wa
wright @10#. They used a system ofN5870 disks, constan
volume V, and molecular dynamics methods (NVE en-
semble!, and found that this system undergoes a first-or
phase transition from the solid to the isotropic phase. Ho
ever, the results of such small systems are affected by la
finite-size effects. Simulations performed in the last ye
used Monte Carlo~MC! techniques either with constant vo
ume (NVT ensemble! @11–14# or constant pressure (NpT
ensemble! @15,16#. Zollweg, Chester, and Leung@11# made
detailed investigations of large systems up to 16 384 p
ticles, but drew no conclusions about the order of the ph
transition. The analysis of Zollweg and Chester@12# for the
pressure gave an upper limit for a first-order phase transit
but is compatible with all other scenarios. Lee and Stra
burg@15# used isobaric MC simulations, and found a doub
peaked structure in the volume distribution. Lee-Koster
scaling led them to conclude that the phase transition is
first order. However, the data are not in the scaling regi
since their largest system contained only 400 particles.
investigations of the bond orientational order parameter
finite-size scaling with the block analysis technique
2594 ©1999 The American Physical Society
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16 384 particle systems were done by Weber, Marx,
Binder @13#. They also favored a first-order phase transitio
In contrast to this, Ferna´ndez, Alonso, and Stankiewicz@16#
predicted a one-stage continuous melting transition, i.e
scenario with a single continuous transition atr i5rm and
consequently without a hexatic phase.~For a critical discus-
sion of this work, see Ref.@17#.! Their conclusions were
based on the examination of the bond orientational or
parameter in very long runs of different systems up to 15 8
particles and hard-crystalline wall boundary conditions.
nally, Mitus, Weber, and Marx@14# studied the local struc
ture of a system with 4096 hard disks. From the linear
havior of a local order parameter, they derived bounds fo
possible coexistence region.

In a recent letter@18#, we published results of simulation
of the hard disk model in theNVT ensemble with up to
65 536 particles to answer the question of the kind of
phase transition. We showed that the behavior of the sus
tibility x6 and the bond orientational correlation lengthj6 in
the isotropic phase as well as the value of the critical ex
nenth6 coincide with the predictions of the KTHNY theory
Additionally, we performed finite-size scaling investigatio
in the transition region, and showed that these results are
in agreement with the KTHNY scenario. Here we discuss
methods in detail, and present additional results for the p
sure, the topological defect density, and the distribution
the second moment of the local bond orientational order
rameter. All results are compared with the predictions of
KTHNY theory.

II. ALGORITHM AND MEASUREMENT

As mentioned above, we used MC techniques and
NVT ensemble for the simulations of the hard disk syste
The updating was performed with an improved~nonlocal!
Metropolis algorithm @19#. We consider systems ofN
5322, 642, 1282, and 2562 hard disks in a two-
dimensional square box. We find that finite-size effects w
these boundary conditions are not substantially larger tha
a rectangular box with ratioA3:2, since no simulations in th
solid phase were made. This point will be discussed la
The simulations were performed on a Silicon Graphics wo
station and a CRAY T3E. The CPU time for the CRAY w
of the order of some month per node, where we have u
seven or eight nodes. Further details are described in
@18#.

Careful attention has been paid to the equilibration of
systems. We controlled that the expectation values had
bilized over long time. Additionally, we measured some a
tocorrelation times for smaller systems@19#, and estimated
the values of larger systems~for large correlations lengths!
by assumingz'2. We spent at least 10% of the time
warm up the system. The measurement frequency was
tween one measurement per 80 MC ‘‘sweeps’’ forr50.82
andN5642 and one measurement per 5000 MC sweeps
r50.89 andN52562, since the measurement is expens
compared to the updating steps due to the calculation
neighbors.~A sweep for the chain Metropolis algorithm
defined asN trials to move chains of particles@19#.! r is the
reduced density, since we have set the disk diameter equ
1 in the whole paper. The number of measurement swe
d
.
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for all performed simulations is collected in Table I. Th
measured observables will be discussed in the following

Bond orientational order parameter and susceptibility

The orientational order of the two-dimensional hard d
system can be described by the~global! bond orientational
order parameterc6 . The local value ofc6 for a particle i

located atrW i5(x,y) is given by

c6,i5
1

Ni
(

j
exp~6 i u i j !, ~1!

where the sum onj is over theNi neighbors of this particle,
and u i j is the angle between the particlesi and j and an
arbitrary but fixed reference axis. Neighbors are obtained
the Voronoi construction@20#. The ~global! bond orienta-
tional order parameter is then defined as

c65U1

N(
i 51

N

c6,iU. ~2!

We measured the second and fourth moments ofc6 , where
the former is related to the susceptibility by

x65N^c6
2&. ~3!

@This definition yields a factor 122/p in the thermodynamic
limit compared tox65N(^c6

2&2^c6&
2).#

TABLE I. Number of measurement sweeps that were perform
with the chain Metropolis algorithm. The acceptance rate was
tween 50% and 70%. ‘‘831500’’ denotes eight independent da
sets with 1.53106 sweeps.

r Sweeps/103

N5322 N5642 N51282 N52562

0.820 731150
0.830 731200
0.840 731040
0.850 731100
0.855 73840
0.860 831500 73960
0.865 831500 73640 83430
0.870 831600 73620 83470
0.875 831700 83500 83430
0.880 831500 83600 83450 1900
0.885 831800 831200 83520 1900
0.890 831800 831100 83550 631900
0.895 831800 83800 83630
0.897 831800 831500 83650
0.898 831500 83480 83480 63710
0.900 831500 83640 83370
0.905 831500 83590 83410
0.910 15000 16500 832200
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FIG. 1. ‘‘Zero-momentum’’ bond orientational correlation functiong6(x) for N5642 particles atr50.86 ~with arbitrary chosen nor-
malization!. The left figure shows the exponential behavior for large distances, whereDx was about 0.65. The dotted line is the best fit w
a hyperbolic cosine ansatz. The right figure illustrates oscillations ing6(x) for small distances~with Dx'0.065). The line is a guide to the
eye.
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Bond orientational correlation length

The bond orientational correlation function is defined

g6~rW2rW8!5
^c6* ~rW !c6~rW8!&

^r~rW !r~rW8!&
, ~4!

where

c6~rW !5(
i 51

N

d~rW2rW i !c6,i ~5!

denotes the microscopic bond orientational order-param
density, and

r~rW !5(
i 51

N

d~rW2rW i ! ~6!

is the microscopic particle density. In the isotropic phase
bond orientational correlation lengthj6 was extracted from
the ‘‘zero-momentum’’ bond orientational correlation fun
tion g6(x). This is defined as

g6~x2x8!5
1

LE E dy dy8g6~rW2rW8!, ~7!

whereL denotes the box length.
In practice we use the definition

g6~x!;K S 1

Nk
E

0

L

dyE
x2Dx/2

x1Dx/2

dx c6~rW ! D *

3S 1

Nk8
E

0

L

dy8E
2Dx/2

Dx/2

dx8c6~rW8! D L , ~8!

where

Nk5E
0

L

dyE
x2Dx/2

x1Dx/2

dx r~rW !, ~9!
er

e

Nk85E
0

L

dyE
2Dx/2

Dx/2

dx r~rW !. ~10!

Therefore, the distance between two particles inx direction is
not exactlyx, but lies betweenx2Dx andx1Dx. Neverthe-
less, assuming a pure exponential behavior of the correla
function g6(x), the integration overDx causes no error. In
the simulations the value ofDx was given by the length of a
cell of the cell structure, i.e.,Dx' 2

3 , where the exact value
depends onr and N. g6(x) was fitted with a cosh„(L/2
2x)/ j̄6… in the intervalxmin<x<L/2, wherej̄6 and j6 are
related by

1

2j6
5sinhS 1

2j̄6
D . ~11!

To determine the influence of ‘‘excitations,’’ we compare t
results for different minimal distancesxmin . The correlations
are always dominated by the lowest state of the transfer
erator ‘‘Hamiltonian,’’ so that it was not necessary to om
points. In Fig. 1 we plot the correlation function for theN
5642 particle system atr50.86 ~with arbitrary normaliza-
tion!. The left figure shows the correlation function as o
tained from the simulation, i.e., withDx' 2

3 . The curve
shown is the best fit with a cosh-like behavior. As one c
see there are no influences of excitations. Although the
seems to be consistent with the data, there are large de
tions. The reason is an oscillating behavior ofg6(x) as
shown in the right figure, where we have chosenDx ten
times smaller. The same oscillations can be seen, if we
the relative deviations between the data of the first c
(Dx' 2

3 ) and the hyperbolic cosine fit. This is done in Fig.
Since the oscillating length is about 1, the curve can
smoothed if one choosesDx'1. Nevertheless, withDx' 2

3 a
precise determination of the correlation length is also p
sible. Systematic errors coming from the oscillations a
taken into account. These errors become dominan
compared to our statistical errors—for small values ofj6 .
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Radial bond orientational correlation function

In the isotropic phase,g6(rW) is independent of the angle
Therefore, we use the angle averaged quantity

g6~r !;^c6* ~0!c6~r !&/g~r ! ~12!

for an additional calculation ofj6 , whereg(r ) is the~radial!
pair correlation function. The radial bond orientational co
relation functiong6(r ) was fitted for large distances with a
ansatz of the form

g6~r !;r 2h6 exp~2r /j6!. ~13!

In Fig. 3 we plot g6(r ) for N5642 hard disks atr
50.86. The left figure shows the oscillating behavior
g6(r ). In order to smooth the curves,g6(r ) has been aver
aged over a distance of 1. This was done in the right figu
whereg6(r ) was additionally multiplied byr h6 in order to
compare the data with an exponential behavior.

The values ofj6 obtained fromg6(r ) are affected by
larger systematic errors~compared to the previous method!.
The reason is that one has to leave out the points with v
small and very large distances. The first points have to

FIG. 2. Relative deviations ofg6(x) ~left picture in Fig. 1! from
a hyperbolic cosine fit.
-
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omitted since the ansatz is not valid in this case, while po
with r'L are affected by finite-size effects. In contrast
g6(x), where the periodicity just leads to a cosh behavi
g6(r ) has no simple periodic behavior. Therefore, one ha
omit the points with larger. Nevertheless, we use the radi
bond orientational correlation function for a determination
the correlation length. In all cases both values ofj6 coincide
within the statistical errors.

Pressure

The pressure was calculated from the pair correlat
function g(r ) in the range 1.0,r ,1.2. From 200 bins we
extracted the contact value of the pair correlation function
fitting the data with a power series of sixth order and e
trapolating tog(1). Thevirial theorem relates this value t
the pressure by@21#

pA0

NkT
5

A3

2
rS 11

p

2
rg~1! D , ~14!

whereA0 is the closed-packed area of the system, i.e.,A0

5NA3/2. Statistical errors were calculated by independ
data sets and by performing fits on the whole data sets
Gaussian distribution ofg(r ) with varianceDg(r ). System-
atic errors were estimated by changing the order of the po
series from six to five.

Our results for the pressure as a function of the sys
size and the density are collected in Table II, and visualiz
in Fig. 4. The quoted error is the sum of the statistical a
systematic errors. The data show the end of the liquid reg
and the beginning of a possible liquid-solid tie line, while n
simulations in the solid phase were made. For densities u
r50.885, the pressure does not have any finite-size ef
within the statistical errors. Taking the finite-size depe
dency of the pressure together with the data ofj6 ~which are
discussed in Sec. III!, we find that we have reached the the
modynamic limit for the systems withN51282 particles up
to r50.885 and for the systems withN52562 particles up to
r50.89. For densitiesr.0.89 there might be still finite-size
effects. The results are consistent with those of Zollweg a
Chester@12#, who used the same methods but a rectangu
box with ratioA3:2. Only the value atr50.910 shows de-
viations. This could be a result of the square box, wh
st a
FIG. 3. Radial bond orientational correlation functiong6(r ). The left figure shows the behavior for small distances. The line is ju
guide to the eye. In the right figure we plotr h6g6(r ) together with an exponential fit~dotted line!.
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2598 PRE 59A. JASTER
leads to larger finite-size effects if the density of the syst
is near the solid phase. Another possibility is that the la
systems at higher densities are not fully equilibrated. Ho
ever, this seems to be unlikely due to our observation of
pressure as a function of time. Our results give a low
bound for the beginning of a coexisting phase ofr'0.89,
but give neither any conclusive evidence for a first-ord
phase transition or a hexatic phase. It just shows that
compressibility in this region is very high.

Local bond orientational order parameter

The distribution of the second moment of the local bo
orientational order parameteruc6,i u2 was first studied by
Strandburg, Zollweg, and Chester@22#. In the case of a first-
order phase transition~with thin interfaces!, one expects tha
the distribution of the coexistence phase is the sum of
fluid, solid, and interface distributions weighted with the
relative areas. On the left picture of Fig. 5 we plotuc6,i u2 for
systems with 16 384 hard disks at three differentr ’s. To
check if the distribution atr50.898 corresponds to a coex
isting phase, we compare it with a combination of two oth
distributions atr1 and r2 , respectively. It is not necessar
that the two chosen densities (r1 andr2) are the exact value

TABLE II. Pressure for densities in or near the transition regio

r pA0 /NkT
N5322 N5642 N51282 N52562

0.880 7.803~5! 7.799~6! 7.796~7! 7.795~8!

0.885 7.894~5! 7.900~6! 7.899~8! 7.895~9!

0.890 7.926~5! 7.950~7! 7.950~9! 7.953~5!

0.895 7.910~6! 7.953~9! 7.963~9!

0.897 7.905~6! 7.940~6! 7.956~7!

0.898 7.892~6! 7.934~9! 7.955~5! 7.954~4!

0.900 7.897~7! 7.928~9! 7.951~7!

0.905 7.906~6! 7.901~9! 7.943~8!

0.910 7.916~5! 7.900~5! 7.928~5!
e
-
e
r

r
e

e

r

of the lowest and highest densities of a possible coexis
region. This should work for two arbitrary densities, pr
vided that these systems are in the coexisting phase.
first-order phase transition exists, but the chosen densit
r150.89 is too low or that ofr250.905 is too high, there are
deviations. Obviously, the direct measurement and the m
eling are in perfect agreement. Moreover, the weights of
two distributions correspond to their theoretical values of8

15

and 7
15 , respectively. Nevertheless, an interpretation as

sum of two distributions from two different phases of a firs
order phase transition makes only sense if the system siz
larger than the two interfaces. But the results of the follo
ing sections will show that a first-order phase transition w
such small interfaces can be ruled out. Therefore, the si
tion is more complicated than in this simple picture.

The distributions ofuc6,i u2 in the transition region can be
modeled as the sum of two initial distributions. The reco
struction of these distributions is not unique. A decompo
tion is shown in the right picture of Fig. 5. One of the di
tributions results primary from particles with six neighbor
while the other is mainly the sum of distributions from pa

FIG. 4. Pressure as a function of the density for various sys
sizes. Data of Ref.@12# are marked by stars.

.

linear
be taken
FIG. 5. The left figure shows the distribution occurrence of the second moment of the local bond orientational order parameteruc6,i u2 ~in
arbitrary units! for N51282 hard disks at three different densities.S indicates the curve, which is the linear combination ofr150.89 and
r250.905. The small inset amplifies the region with smalluc6,i u2 to show the small difference between the direct measurement and the
combination. Errors are of the order of the distance between the two curves. The right figure displays two distributions, which can
as the initial distributions for the modeling of all others in the transition region.
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PRE 59 2599COMPUTER SIMULATIONS OF THE TWO-DIMENSIONAL . . .
ticles with coordination numbers unequal to six. Addition
investigations for the dependency of the distribution
uc6,i u2 on the system size are discussed in Sec. IV.

Topological defects

An analysis of the numbers of neighbors of each part
as obtained from the Voronoi construction gives a charac
ization of the defect structure of a two-dimensional syste
The average number of neighbors is—independent of
state of disorder—six. In a perfect solid each particle has
neighbors. Particles with any other number of neighbors r
resent a disclination. Dislocations are pairs of disclinatio
We define the density of defects as

ndef5
1

N(
iÞ6

Ni
Nb , ~15!

whereNi
Nb denotes the number of particles withi neighbors.

Alternatively one can take the strengths of the disclinatio
into account and define the density of defects as

ndef8 5
1

N(
i

u i 26uNi
Nb5

2

N(
i ,6

~62 i !Ni
Nb . ~16!

However, the difference between the two definitions forr
>0.88 is lower than 1%.

In Fig. 6 we plotndef as a function ofr. One can see tha
there is a linear behavior ofndef for r>0.89. ~A linear be-
havior of a local order parameter was also found in R
@14#.! As in the case of the distribution ofuc6,i u2, this could
be explained with the coexistence of two different phas
However, if one examines the defect structure of several c
figurations in the transition region and the configurations
self, one finds no hint of two coexisting phases, while th
are compatible with the picture of a homogeneous pha
Therefore, the conventional picture~of a first-order phase
transition with thin interfaces! of two separated phases
incompatible with the data. The results of Sec. IV will co
firm this assumption.

There are different possibilities to explain this linear b
havior. On the one hand, there could be a weak first-or

FIG. 6. Topological defect densityndef as a function ofr. Sta-
tistical errors are too small for a visualization.
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phase transition with an interface width which is larger th
the box lengthL of our largest system ofN52562 particles,
on the other hand, a continuous transition with a homo
neous phase. In both cases, increasing the densityr primarily
leads to a decrease of the defect density, since the ave
density in the ordered regions is higher than the density
unordered regions~i.e., a disclination or dislocation need
more space than perfect crystalline structures!. In the case of
a first-order phase transition the defects will form som
larger structure, while there is a homogenous distribution
the continuous transition.

III. SIMULATION IN THE ISOTROPIC PHASE

In the isotropic phase we measured the susceptibility
the correlation length of the bond orientation. Subsequen
we compare the results with the predictions of the KTHN
theory, i.e., a critical exponenth6 of 1/4 and an exponentia
singularity for the correlation length

j6~ t !5aj exp~bj t21/2! ~17!

and the susceptibility

x6~ t !5ax exp~bx t21/2! ~18!

if t5r i2r→01. A detailed description of these measur
ments is given in Ref.@19#.

Our results ofx6 andj6 as a function of the density ar
summarized in Table III. We analyzed the critical behavio
of x6(r) andj6(r) by performing least square fits accordin
to Eqs.~17! and ~18!. Using all 12 points we obtained ax2

per degree of freedom~d.o.f.! of 0.75 forj6(t) and 0.65 for
x6(t), i.e., the data are in a very good agreement with
exponential singularity of the KTHNY type. This is not onl
a result of large statistical errors, as can be seen if one
different approaches for the singularities. For example
conventional second-order behavior with a power-law sin
larity of the form ln(j6)5a2n ln(t) yields x2/d.o.f.54.1.

All results for the fit parameter are collected in Table I
The values forx6(r) and j6(r) together with the fitted
curves are shown in Fig. 7. We also made fits where we h

TABLE III. Bond orientational correlation lengthj6 and suscep-
tibility x6 for various densities in the isotropic phase.N refers to the
system sizes used.

r N j6 x6

0.82 642 1.513~50! 3.797~13!

0.83 642 1.800~35! 4.693~15!

0.84 642 2.156~40! 6.052~24!

0.85 642 2.635~30! 8.415~41!

0.855 642 2.995~35! 10.30~6!

0.86 642 3.425~40! 12.96~9!

0.865 642, 1282 4.14~10! 17.45~18!

0.87 1282 5.03~15! 25.00~39!

0.875 1282 6.65~30! 39.5~8!

0.88 1282, 2562 9.56~26! 75.0~21!

0.885 1282, 2562 15.65~51! 176.8~61!

0.89 2562 38.0~15! 865~44!
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omitted some data at lower densities. The fit parameters
x6(r) show only nonessential changes, while the changes
j6(r) are of the order of the statistical errors. An analysis
the behavior of ln(x6 /j6

7/4) as a function of ln(j6) yields the
following value of the critical exponent:

h650.251~36!. ~19!

IV. SIMULATION IN THE TRANSITION REGION

We now come to the simulations withr'r i . Finite-size
scaling~FSS! implies

x6;L22h6 f ~L/j6! ~20!

for the susceptibility. Assuming the prediction of th
KTHNY theory, the correlation lengthj6 diverges atr
5r i , andf is a constant independent ofL. We use this FSS
behavior to locater i , where we takeh65 1

4 . In the hexatic
phase (r i,r<rm) the correlation lengthj6 also diverges, so
that f is still independent ofL. In this phaseh6 is a decreas-
ing function of the density, which goes to zero ifr ap-
proaches the melting densityrm , i.e., at the end of the
hexatic phase. Forr ’s belowr i , one has to take correction
of x6;L22h6 for finite correlations lengths into account. O
results for the susceptibility are collected in Table V.

If we use the FSS behavior to locater i andrm , then the
requirement ofh6(r i)5 1

4 yields @19#

FIG. 7. Susceptibility~full symbols! and bond orientational cor
relation length~open symbols! as a function of density. The curve
shown are the best fits for a KTHNY behavior~for all measured
points!. The critical values ofr are visualized by vertical lines.

TABLE IV. Best fit parameter for the critical behavior of th
correlation length and susceptibility. For 0.82<r<0.89 we have
fitted 12 points, while we used eight points in the range 0.855<r
<0.89.

Fit range ln(a) b r i x2/d.o.f.

j6(r) 0.82<r<0.89 21.44~8! 0.547~21! 0.9017~6! 0.75
j6(r) 0.855<r<0.89 21.27~13! 0.505~31! 0.9006~8! 0.23
x6(r) 0.82<r<0.89 21.65~3! 0.847~7! 0.9002~3! 0.65
x6(r) 0.855<r<0.89 21.60~9! 0.834~21! 0.9000~4! 0.58
or
or
f

r i50.899~1!, ~21!

while h6(rm)50 leads to the estimaterm*0.91. The value
of r i is in agreement with that obtained from the singularit
of j6(t) andx6(t). A slightly different value ofh6 ~from the
relation of x6 and j6 in the isotropic phase! would not
change this situation. Moreover, our values ofr i are in
agreement with the result of Weber and co-workers@13# ob-
tained from the fourth-order cumulant intersection@r i
50.8985(5)#. However, it differs from their value obtaine
using the singularity ofx6 (r i50.913). The resultr i
50.916(4) of Ferna´ndez, Alonso, and Stankiewicz@16# is
not compatible with our value.

Another quantity which can be used to analyze the kind
the transition is the fourth-order cumulant

U512
^c6

4&

3^c6
2&2

. ~22!

According to the prediction of the KTHNY theory,U should
be independent of the system sizeL in the whole hexatic
phase. In contrast to this, in the case of a conventional fi
order phase transition there is only a single point, where
cumulants of different system sizes collapse. Since there
large region betweenr i'0.9 andrm*0.91, the behavior of
U can be used to distinguish between KTHNY and first-ord
transitions. The intersection of the cumulantU in a single
point was an argument in Ref.@13# against the existence of
hexatic phase. Unfortunately, statistical errors in our data
too large to answer this question, as can be seen in Fig.

Another possibility to distinguish a first-order phase tra
sition from a continuous transition is to study the depe
dency of the distribution ofuc6,i u2 on the size of the system
If the system exhibits a homogeneous hexatic phase,
changing the size of the system should not lead to
changes in the distribution. On the other hand, if the tran
tion is of first order one would expect that the distribution
a combination of the solid, fluid, and interface distribution
Therefore, changing the size of the system would result
change of the distribution, because the area of the inter
scales only linear withL. In Fig. 9 we plot uc6,i u2 at r
50.898 for four different system sizes. Apart from finite-si
effects, which become weaker for larger systems, no dif
ence between the distributions can be seen. The distribut
for the two largest systems coincide within statistical erro
Therefore, one can rule out a first-order transition with th
interfaces, while a first-order transition with an interfa
width larger than the largest system sizeL and a continuous

TABLE V. The susceptibility per particle in the transition re
gion.

r x6 /N
N5322 N5642 N51282 N52562

0.895 0.2620~9! 0.1970~17! 0.1409~24!

0.897 0.2987~9! 0.2418~18! 0.1899~25!

0.898 0.3175~10! 0.2612~17! 0.2160~25! 0.1788~29!

0.900 0.3514~10! 0.3076~13! 0.2630~17!

0.905 0.4235~19! 0.4055~11! 0.3745~13!

0.910 0.4900~29! 0.4840~24! 0.4707~10!
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transition are compatible with the data.„The results are also
compatible with the occurrence of two very small interfac
@i.e., a width ofO(1)#, but this can be ruled out due to th
examination of the defect structure of several configu
tions.… These results coincide with those of Ferna´ndez,
Alonso, and Stankiewicz@16#, who performed similar mea
surements in theNpT ensemble using a rectangular box
ratioA3:2. The data of Fig. 9 show also that the chosen ra
of the side lengths of 1:1 causes no large finite-size effe

V. CONCLUSIONS AND OUTLOOK

We presented a detailed Monte Carlo study of the tw
dimensional hard disk model in theNVT ensemble. The in-
vestigations were performed in the isotropic phase and in
transition region.

The behavior of the defect density as well as the distri
tion of the local order parameter in the transition region w
in good agreement with a simple model of two coexisti
phases, i.e., the data could be modeled as the sum of
different phases, where the relative areas of the two ph
are proportional tor. However, the defect structure of th
system and the distribution ofuc6,i u2 as a function ofL
showed that there are not two separated phases with a
interface. The data can be explained by a weak first-or
transition with a width of the interface which is larger tha
the largest system sizeL or by a continuous transition with
homogeneous phase.

The behavior of the pressure was compatible with b
first-order and KTHNY-like scenarios. The data just give
lower limit of r'0.89 for the coexisting phase.

In the isotropic phase we examined the dependency of
correlation length and the susceptibility on the densityr. We

FIG. 8. Finite-size scaling of the cumulant in the transition
gion.
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showed that the data are in good agreement with the pre
tion of an exponential singularity from the KTHNY theory
The critical exponenth6 was derived from the relation onj6
andx6 for j6→`. We obtainedh650.251(36), which co-
incides with the predictionh65 1

4 .
The simulations in the transition region were used to m

sure the finite-size scaling of the susceptibility. The value
r i50.899(1) ~assumingh65 1

4 ) coincided with those from
the KTHNY-like behavior ofj6(r) andx6(r). Furthermore,
the requirementh6(rm)50 led to the estimaterm*0.91.
The data of the fourth-order cumulantU were affected by too
large statistical errors in order to draw any conclusions.

In summary, all data are compatible with a KTHNY-lik
phase transition. A one-stage continuous transitionr i
5rm) as proposed in Ref.@16# and a first-order transition
with small correlation length can be ruled out.~Similar re-
sults are obtained for anr 212 repulsive potential by Bagchi
Andersen, and Swope@23#.! Further numerical investigation
have to be performed to make a clear decision betwee
weak first-order phase transition and a continuous scena
This could be done, for example, by studying the positio
order in the transition region. Work along this line is
progress.
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- FIG. 9. Distribution of the second moment of the local bo
orientational order parameter~in arbitrary units! for different sys-
tem sizes. The small inset amplifies the region with smalluc6,i u2,
where the largest deviations are. Statistical errors are of the ord
the symbols in the inset.
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