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Computer simulations of the two-dimensional melting transition using hard disks
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We present detailed Monte Carlo results for the two-dimensional melting transition of various systems up to
N=65536 hard disks. The simulations are performed inNhET ensemble. In the isotropic phase the bond
orientational correlation lengtfy and the susceptibilitys are measured and compared with the predictions of
the Kosterlitz-Thouless-Halperin-Nelson-YouiTHNY ) theory. From the scaling relation ¢ and y¢ we
calculate the critical exponenjs. In the phase transition region we use finite-size scaling methods to locate
the disclination binding transition point and compare the results with the values obtained from the behavior in
the isotropic phase. Additionally, we measure the topological defect density, the pressure, and the distribution
of the second moment of the local bond orientational order parameter. All results are in good agreement with
the KTHNY theory, while a first-order phase transition with small correlation length and a one-stage continu-
ous transition can be ruled o61063-651X99)08102-1

PACS numbdss): 64.60.Fr, 64.70.Dv

[. INTRODUCTION characterized by a coexistence region of the solid and isotro-
pic phases, while no hexatic phase exists. Another proposal
The nature of the two-dimensional melting transition is awas given by Glaser and Claf2]. They considered a de-
long unsolved probler,2]. Melting in two dimensions dif- tailed theory where the transition is handled as a condensa-
fers from the three-dimensional case because the twdion of localized, thermally generated geometrical defects,
dimensional solid possesses only quasi-long-range positionahd also found a first-order transition. Calculations based on
order, while the three-dimensional solid is truly long rangethe density-functional approach were done by Ryzhov and
positional ordered. This means that the correlation functioTareyeva[6]. They derived that the hexatic phase cannot
in two dimensions decays algebraically to zero for large disexist in the hard disk system.
tances, while it decays to a nonzero value in three dimen- Numerical investigations of two-dimensional melting can
sions. This absence of conventional long range order at norde done in several ways. On the one hand, one can simulate
zero temperatures in two dimensions was pointed out byhe particle system or the defect syst¢i. On the other
Mermin and Wagnef3]. Therefore, the mean-square dis- hand, one can study lattice models which describe defects
placement of the particles from their ideal lattice positionand their elastic interactiof8] or grain boundarief9].
will diverge logarithmically with the size of the system, and  The hard disk system is one of the simplest particle mod-
no Bragg peaks in a strict manner can occur in the thermoels to study the melting transition in two dimensions with
dynamic limit. Nevertheless, the other order parametercomputer simulation techniques. Even for this simple case no
which describes the bond orientational order, is truly longconsensus about the existence of a hexatic phase has been
range ordered, i.e., the orientation of the bonds betweeastablished. The melting transition of the hard disk system
neighboring particles is correlated over arbitrary distances. was first seen in a computer simulation by Alder and Wain-
There are several theoretical approaches for the descripvright [10]. They used a system ®§=870 disks, constant
tion of melting in two dimensions. Halperin and Nelson, asvolume V, and molecular dynamics method®&VE en-
well as Young, developed a theory based on the ideas afemblg, and found that this system undergoes a first-order
Kosterlitz and Thouless[4]. The Kosterlitz-Thouless- phase transition from the solid to the isotropic phase. How-
Halperin-Nelson-Young theory deals with unbinding sce-ever, the results of such small systems are affected by large
narios of topological defects, where the two order parameterfinite-size effects. Simulations performed in the last years
are related to two different topological defects: the disclina-used Monte CarldMC) technigues either with constant vol-
tions and the dislocations. The dislocation unbinding at aime (NVT ensemblg[11-14 or constant pressureNpT
temperatureT,, is responsible for the melting transition, ensemblg[15,16. Zollweg, Chester, and Leurid 1] made
while the disclination unbinding &af; destroys the bond ori- detailed investigations of large systems up to 16 384 par-
entation. The first continuous transition transforms the solidicles, but drew no conclusions about the order of the phase
into a hexatic phase, which is short range positional andransition. The analysis of Zollweg and Chedt&?] for the
guasi-long-range orientational ordered. The second continyressure gave an upper limit for a first-order phase transition,
ous transition transforms this hexatic phase in an isotropibut is compatible with all other scenarios. Lee and Strand-
one, i.e., a phase with short range positional and orientation&lurg[15] used isobaric MC simulations, and found a double-
order. An alternative scenario was proposed by GBliiHe  peaked structure in the volume distribution. Lee-Kosterlitz
presented a theory via spontaneous generation of graiscaling led them to conclude that the phase transition is of
boundaries, i.e., collective excitations of dislocations. Hefirst order. However, the data are not in the scaling region,
found that grain boundaries may be generated before the disince their largest system contained only 400 particles. MC
locations unbind if the core energy of dislocations is suffi-investigations of the bond orientational order parameter via
ciently small, and predicted a first-order transition. This isfinite-size scaling with the block analysis technique of
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16 384 particle systems were done by Weber, Marx, and TABLE I. Number of measurement sweeps that were performed
Binder[13]. They also favored a first-order phase transition.with the chain Metropolis algorithm. The acceptance rate was be-
In contrast to this, Fermalez, Alonso, and Stankiewi§6] tween 50% and 70%. “8 1500 denotes eight independent data
predicted a one-stage continuous melting transition, i.e., &ets with 1.X 10° sweeps.

scenario with a single continuous transition gt p,,, and

consequently without a hexatic phaggor a critical discus- P Sweeps/1D
sion of this work, see Ref{17].) Their conclusions were N=32" N=64 N=128  N=25¢
based on the examination of the bond orientational order g5 7 1150
parameter in very long runs of different systems up to 15876 g5 74 1200
particles and hard-crystalline wall boundary conditions. Fi- 0.840 21040
nally, Mitus, Weber, and Mark14] studied the local struc- 0'850 1100
ture of a system with 4096 hard disks. From the linear be- 0'855 840
havior of a local order parameter, they derived bounds for a 0'860 8¢ 1500 960
possible coexistence region. '
In a recent lettef18], we published results of simulations 0.865 81500 <640 8x430
of the hard disk model in th&lVT ensemble with up to 870 8x1600 %620 8x 470
65536 particles to answer the question of the kind of the 0.875 81700 8x500 8x430
phase transition. We showed that the behavior of the suscep-o-880 8<1500 8600 8x450 1900
tibility xs and the bond orientational correlation lengthin 0.885 ~ 81800  8x1200  8x520 1900
the isotropic phase as well as the value of the critical expo- 0.890  8<1800  8<1100 8x550 61900
nent g coincide with the predictions of the KTHNY theory. 0.895 8x 1800 8x<800 8x630
Additionally, we performed finite-size scaling investigations 0.897 81800 8x1500 8x 650
in the transition region, and showed that these results are also0.898 8x 1500 8x480 8x480 6x710
in agreement with the KTHNY scenario. Here we discuss the 0.900 8x 1500 8x 640 8x 370
methods in detail, and present additional results for the pres-0.905 8x 1500 8x590 8% 410
sure, the topological defect density, and the distribution of 0.910 15000 16500 82200

the second moment of the local bond orientational order pa=

rameter. All results are compared with the predictions of the

KTHNY theory. for all performed simulations is collected in Table I. The
measured observables will be discussed in the following.

IIl. ALGORITHM AND MEASUREMENT

As mentioned above, we used MC techniques and the Bond orientational order parameter and susceptibility

NVT ensemble for the simulations of the hard disk system. The orientational order of the two-dimensional hard disk

The updating was performed with an improvétbnloca) system can be described by tfglobal) bond orientational

Metropolis algorithm [19]. We consider systems oN order parameterss. The local value ofiyg for a particlei

:322, 642, 1282, and 256 hard disks in a two- located afi:(x'y) is given by

dimensional square box. We find that finite-size effects with

these boundary conditions are not substantially larger than in 1 )

a rectangular box with ratig3:2, since no simulations in the "”G’i:ﬁ;j: exp(6 i 6ij), @

solid phase were made. This point will be discussed later.

The simulations were performed on a Silicon Graphics work-

station and a CRAY T3E. The CPU time for the CRAY was wWhere the sum ofis over theN; neighbors of this particle,

of the order of some month per node, where we have usednd 6;; is the angle between the particlesand j and an

seven or eight nodes. Further details are described in Re#rbitrary but fixed reference axis. Neighbors are obtained by

[18]. the Voronoi constructiof20]. The (global) bond orienta-
Careful attention has been paid to the equilibration of alltional order parameter is then defined as

systems. We controlled that the expectation values had sta-

bilized over long time. Additionally, we measured some au- N

tocorrelation times for smaller systeris9], and estimated e = 12 e

the values of larger systentfor large correlations lengths 6T INE O

by assumingz~2. We spent at least 10% of the time to

warm up the system. The measurement frequency was be-

tween one measurement per 80 MC “sweeps” for 0.82 We measurgd the second and four‘gh_r'noment$6ofwhere

andN=64%> and one measurement per 5000 MC sweeps fofhe former is related to the susceptibility by

p=0.89 andN =256, since the measurement is expensive

compared to the updating steps due to the calculation of X6:N<dj§>- 3

neighbors.(A sweep for the chain Metropolis algorithm is

defined as\ trials to move chains of particld49].) p is the

reduced density, since we have set the disk diameter equal [@his definition yields a factor % 2/7r in the thermodynamic

1 in the whole paper. The number of measurement sweeginit compared toys=N({3) —(5)?).]

. 2
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FIG. 1. “Zero-momentum” bond orientational correlation functigg(x) for N=642 particles atp=0.86 (with arbitrary chosen nor-
malization). The left figure shows the exponential behavior for large distances, wheveas about 0.65. The dotted line is the best fit with
a hyperbolic cosine ansatz. The right figure illustrates oscillationg(r) for small distancegwith Ax~0.065). The line is a guide to the
eye.

Bond orientational correlation length

L Ax/2 .
The bond orientational correlation function is defined as Nie= Jo dyf—Ax/dep(r)' (19

- o (D ge(r)) Therefore, the distance between two particles direction is
Ge(r—r")= (p(Np(r")) @ not exactlyx, but lies betweem— Ax andx+ Ax. Neverthe-
less, assuming a pure exponential behavior of the correlation
where function gg(x), the integration oveAx causes no error. In
the simulations the value dx was given by the length of a
o - o cell of the cell structure, i.eAx~%, where the exact value
lﬂe(f):izl S(r—ri) e, () depends orp and N. gg(x) was fitted with a costfL/2
—X)/&g) in the intervalx,,<x<L/2, where&g and &g are
denotes the microscopic bond orientational order-parameteéelated by
density, and

—=sin (11

N 5z
p(N)=2, 8(r=r) () 286 265)

. . . . . . . To determine the influence of “excitations,” we compare the
is the microscopic particle density. In the isotropic phase thgeg, s for different minimal distances,,. The correlations

bhon(‘j‘ orientational co,r'rilatlgn It_angm. wasl extralcte_d frfom are always dominated by the lowest state of the transfer op-
the “zero-momentum" bond orientational correlation func- o 4o “Hamiltonian.” so that it was not necessary to omit

tion g(x). This is defined as points. In Fig. 1 we plot the correlation function for the
1 =64? particle system ap=0.86 (with arbitrary normaliza-

ge(X—x')= _f j dy dy ge(r—r"), (7)  tion). The left figure shows the correlation function as ob-
L tained from the simulation, i.e., withx~%. The curve

shown is the best fit with a cosh-like behavior. As one can
see there are no influences of excitations. Although the fit
seems to be consistent with the data, there are large devia-
1 (L it Ax/2 BE tions. T_he reason i§ an oscillating behavior gf(x) as
ge(X)~ _f dyf dx gg(r) shown in the right figure, where we have choskx ten
NiJo x=Ax/2 times smaller. The same oscillations can be seen, if we plot
1 (L A2 the relative deviations between the data of the first case
2 f dy’ f dx’ ¢G(;»)) > @®  (Ax~2) and the hyperbolic cosine fit. This is done in Fig. 2.
NiJo —Ax/2 Since the oscillating length is about 1, the curve can be
smoothed if one choosésx~ 1. Nevertheless, withx~2 a
where precise determination of the correlation length is also pos-
sible. Systematic errors coming from the oscillations are
L X+ Ax/2 R . .
N, = dx p(r) (9) taken into account. These errors become dominant—
k pLr),

whereL denotes the box length.
In practice we use the definition

X

dy -
0 X— Ax/2 compared to our statistical errors—for small valuestof
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N=642 p=0.860 omitted since the ansatz is not valid in this case, while points
0.2 : with r~L are affected by finite-size effects. In contrast to
0s(X), where the periodicity just leads to a cosh behavior,
ge(r) has no simple periodic behavior. Therefore, one has to
01 - T | omit the points with large. Nevertheless, we use the radial
T bond orientational correlation function for a determination of
_5 the correlation length. In all cases both valueggtoincide
& within the statistical errors.
3 003 .
© .
@' Pressure
P | The pressure was calculated from the pair correlation
function g(r) in the range 1.€&r<1.2. From 200 bins we
extracted the contact value of the pair correlation function by
1 fitting the data with a power series of sixth order and ex-
0275 10.0 trapolating tog(1). Thevirial theorem relates this value to
X the pressure bj21]
FIG. 2. Relative deviations afg(x) (left picture in Fig. 2 from pAg \/§ T
a hyperbolic cosine fit. NkT 2 P 1+ Epg(l)) ’ (14)

Radial bond orientational correlation function where A, is the closed-packed area of the system, ig.,

=N+/3/2. Statistical errors were calculated by independent
data sets and by performing fits on the whole data sets to a
Gaussian distribution af(r) with varianceAg(r). System-

atic errors were estimated by changing the order of the power

In the isotropic phasegG(F) is independent of the angle.
Therefore, we use the angle averaged quantity

96(r)~ (45 (0) ghg(r))/g(r) (12 , ) :
series from six to five.

for an additional calculation afg, whereg(r) is the(radia) ~ Our results for the pressure as a function of the system
pair correlation function. The radial bond orientational cor-size and the density are collected in Table II, and visualized

relation functionge(r) was fitted for large distances with an in Fig. 4. The quoted error is the sum of the statistical and
ansatz of the form systematic errors. The data show the end of the liquid region

and the beginning of a possible liquid-solid tie line, while no
ge(r)~r1 76 exp(—r/&g). (13)  simulations in the solid phase were made. For densities up to
In Fig. 3 we plotgg(r) for N=64% hard disks atp

p=0.885, the pressure does not have any finite-size effect
within the statistical errors. Taking the finite-size depen-
=0.86. The left figure shows the oscillating behavior of dency of the pressure together with the datg@gfwhich are
ges(r). In order to smooth the curvegg(r) has been aver- discussed in Sec. llwe find that we have reached the ther-
aged over a distance of 1. This was done in the right figuremodynamic limit for the systems witN= 128 particles up
wheregg(r) was additionally multiplied by 76 in order to  to p=0.885 and for the systems wibh= 256" particles up to
compare the data with an exponential behavior. p=0.89. For densitiep>0.89 there might be still finite-size
The values ofég obtained fromgg(r) are affected by effects. The results are consistent with those of Zollweg and
larger systematic errof€ompared to the previous method Chester{12], who used the same methods but a rectangular
The reason is that one has to leave out the points with verpox with ratio \/3:2. Only the value ap=0.910 shows de-
small and very large distances. The first points have to beiations. This could be a result of the square box, which

N=64? p=0.860 N=64° p=0.860
0.4 . T 1400 : .
>,
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FIG. 3. Radial bond orientational correlation functigg(r). The left figure shows the behavior for small distances. The line is just a
guide to the eye. In the right figure we plotegg(r) together with an exponential fitlotted ling.
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TABLE Il. Pressure for densities in or near the transition region. 8.05 . . . .

p PAo/NKT 8.00 | 1

N=32 N=642 N=12& N=256 %

0.880  7.80%) 7.7996) 7.7987) 7.7958) _ 7.95 & T T 3 1
0.885 7.8945) 7.9006) 7.8998) 7.8959) _Z~< /l\\ﬁ@ .
0.890  7.9265) 7.95Q7) 7.95009) 7.9535) 2 790 1 H/@_,,,_._,@ 1
0.895 7.9106) 7.9539) 7.9639) Lol
0.897 7.90%6) 7.9406) 7.95Q7) 785 - o atope ]
0.898 7.8916) 7.9349) 7.9555) 7.9544) o0 4096
0.900 7.8977) 7.9289) 7.9517) 7.80 |- e—f;gggg 1
0.905 7.9066) 7.9019) 7.9438) .
0.910 7.9165) 7.9045) 7.9285) 7'78.875 0.885 0.895 0.905 0915

p

leads to larger finite-size effects if the density of the system FIG. 4. Pressure as a function of the density for various system
is near the solid phase. Another possibility is that the largesizes. Data of Ref.12] are marked by stars.
systems at higher densities are not fully equilibrated. How- ) » , -
ever, this seems to be unlikely due to our observation of th@f the lowest and highest densities of a possible coexisting
pressure as a function of time. Our results give a lowef€gion. This should work for two arbitrary densities, pro-
bound for the beginning of a coexisting phasepet 0.89, v_|ded that these systems are in the coexisting phase? If a
but give neither any conclusive evidence for a first-ordefirst-order phase transition exists, but the chosen density of
phase transition or a hexatic phase. It just shows that the1=0.89 is too low or that 0p,=0.905 is too high, there are
compressibility in this region is very high. dgwatlons_. Obviously, the direct measurement and the mod-
eling are in perfect agreement. Moreover, the weights of the
two distributions correspond to their theoretical valueskof
and iz, respectively. Nevertheless, an interpretation as the
The distribution of the second moment of the local bondsum of two distributions from two different phases of a first-
orientational order parametéiy;|?> was first studied by order phase transition makes only sense if the system size is
Strandburg, Zollweg, and Ches{@2]. In the case of a first- larger than the two interfaces. But the results of the follow-
order phase transitiofwith thin interface$ one expects that ing sections will show that a first-order phase transition with
the distribution of the coexistence phase is the sum of theuch small interfaces can be ruled out. Therefore, the situa-
fluid, solid, and interface distributions weighted with their tion is more complicated than in this simple picture.
relative areas. On the left picture of Fig. 5 we glgt;|? for The distributions of ;|2 in the transition region can be
systems with 16384 hard disks at three differetd. To  modeled as the sum of two initial distributions. The recon-
check if the distribution ap=0.898 corresponds to a coex- struction of these distributions is not unique. A decomposi-
isting phase, we compare it with a combination of two othertion is shown in the right picture of Fig. 5. One of the dis-
distributions atp, and p,, respectively. It is not necessary tributions results primary from particles with six neighbors,
that the two chosen densities;(andp,) are the exact values while the other is mainly the sum of distributions from par-

Local bond orientational order parameter
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FIG. 5. The left figure shows the distribution occurrence of the second moment of the local bond orientational order pargietiar
arbitrary unitg for N=128& hard disks at three different densiti&.indicates the curve, which is the linear combinatiorpet 0.89 and
p2=0.905. The small inset amplifies the region with sne; |2 to show the small difference between the direct measurement and the linear
combination. Errors are of the order of the distance between the two curves. The right figure displays two distributions, which can be taken
as the initial distributions for the modeling of all others in the transition region.
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TABLE Ill. Bond orientational correlation lengtfy and suscep-
0.25 - 1 tibility x¢ for various densities in the isotropic phabkrefers to the
system sizes used.
0.20 - i
. p N &6 X6
o
C st ] 0.82 64 1.51350) 3.79113
0.83 64 1.80035) 4.69315)
oo L | 0.84 64 2.15640) 6.05224)
: o m=1024 0.85 64 2.63530) 8.41541)
Dl 0.855 64 2.99535) 10.306)
0.05 - + N=65536 7 0.86 64 3.42540) 12.969)
0.865 64, 128 4.1410) 17.4518)
998 570 0.880 0.890 0.900 0910 0.87 128 5.0315) 25.0039)
0.875 128 6.6530) 39.58)
p 088 128 256  9.5626) 75.021)
FIG. 6. Topological defect density; as a function ofp. Sta- 0.885 128, 2562 15.6951) 176.861)
tistical errors are too small for a visualization. 0.89 25 38.019) 86544)

ticles with coordination numbers unequal to six. Additional
investigations for the dependency of the distribution of
|46;1? on the system size are discussed in Sec. IV.

phase transition with an interface width which is larger than
the box length_ of our largest system dfi=256 particles,
on the other hand, a continuous transition with a homoge-
neous phase. In both cases, increasing the demgitimarily
leads to a decrease of the defect density, since the average
An analysis of the numbers of neighbors of each particledensity in the ordered regions is higher than the density in
as obtained from the Voronoi construction gives a characterdnordered regiongi.e., a disclination or dislocation needs
ization of the defect structure of a two-dimensional systemmore space than perfect crystalline structurssthe case of
The average number of neighbors is—independent of tha first-order phase transition the defects will form some
state of disorder—six. In a perfect solid each particle has si¥arger structure, while there is a homogenous distribution for
neighbors. Particles with any other number of neighbors repthe continuous transition.
resent a disclination. Dislocations are pairs of disclinations.

We define the density of defects as IIl. SIMULATION IN THE ISOTROPIC PHASE

Topological defects

Nb In the isotropic phase we measured the susceptibility and
”defzﬁize Ni™, (19 the correlation length of the bond orientation. Subsequently,
we compare the results with the predictions of the KTHNY
theory, i.e., a critical exponenjg of 1/4 and an exponential
singularity for the correlation length

&(h=azexpb .t (17)

whereNiNb denotes the number of particles witineighbors.
Alternatively one can take the strengths of the disclination
into account and define the density of defects as

1 2 I
néef:NZ i — 6|NNP= _;6 (6—i)NNP. (16)  and the susceptibility

xo(t)=a, expb, t~1?) (19
However, the difference between the two definitions gor
=0.88 is lower than 1%. if t=p;—p—07. A detailed description of these measure-
In Fig. 6 we plotng;as a function op. One can see that ments is given in Ref.19].
there is a linear behavior afy. for p=0.89. (A linear be- Our results ofyg and &g as a function of the density are

havior of a local order parameter was also found in Refsummarized in Table Ill. We analyzed the critical behaviors
[14].) As in the case of the distribution ¢f[;6,i|2, this could  of xg(p) andég(p) by performing least square fits according
be explained with the coexistence of two different phasesto Egs.(17) and(18). Using all 12 points we obtained y?
However, if one examines the defect structure of several corper degree of freedortd.o.f) of 0.75 for &(t) and 0.65 for
figurations in the transition region and the configurations it-yg(t), i.e., the data are in a very good agreement with an
self, one finds no hint of two coexisting phases, while theyexponential singularity of the KTHNY type. This is not only
are compatible with the picture of a homogeneous phase result of large statistical errors, as can be seen if one uses
Therefore, the conventional pictuef a first-order phase different approaches for the singularities. For example, a
transition with thin interfacesof two separated phases is conventional second-order behavior with a power-law singu-
incompatible with the data. The results of Sec. IV will con- larity of the form Ings)=a—vIn(t) yields y?/d.o.f=4.1.
firm this assumption. All results for the fit parameter are collected in Table IV.
There are different possibilities to explain this linear be-The values foryg(p) and &(p) together with the fitted
havior. On the one hand, there could be a weak first-ordecurves are shown in Fig. 7. We also made fits where we have
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TABLE V. Best fit parameter for the critical behavior of the TABLE V. The susceptibility per particle in the transition re-
correlation length and susceptibility. For 082<0.89 we have gion.
fitted 12 points, while we used eight points in the range 0855

<0.89. p xs/N
N=32 N= 642 N=12& N=256
Fit range In&) b pi x3d.o.f.
0.895 0.262(0)  0.1974l7) 0.140924)
£6(p) 0.82<p=<0.89 —1.448) 0.54721) 0.90176) 0.75 0.897  0.298P) 0.241818)  0.189925)
£6(p) 0.855<p=0.89 —1.2713) 0.50531) 0.90068) 0.23 0.898 0.3176l0) 0.261217) 0.216@G25 0.178829
Xs(p) 0.82<p<0.89 —1.653) 0.8477) 0.900Z3) 0.65 0.900 0.3514100 0.307613 0.263@17)
Xs(p) 0.855<p=<0.89 —1.609) 0.83421) 0.900Q@4) 0.58 0.905 0.423619) 0.405%11) 0.374§13

0.910 0.490®9 0.484@24) 0.470710

omitted some data at lower densities. The fit parameters for

xs(p) show only nonessential changes, while the changes for pi=0.8991), (21
&s(p) are of the order of the statistical errors. An analysis of

the behavior of Ing/&"") as a function of Ings) yields the ~ while 7¢(py,) =0 leads to the estimaig,=0.91. The value

following value of the critical exponent: of p; is in agreement with that obtained from the singularities
of &(t) andyg(t). A slightly different value ofpg (from the
76=0.25X36). (19 relation of yg and &g in the isotropic phasewould not

change this situation. Moreover, our values @f are in
agreement with the result of Weber and co-worKéi& ob-

IV. SIMULATION IN THE TRANSITION REGION tained from the fourth-order cumulant intersectigp;

We now come to the simulations wih~ p; . Finite-size ~ =0.8985(5). However, it differs from their value obtained
scaling(FS9 implies using the singularity ofyxg (p;i=0.913). The resultp;
=0.916(4) of Fernadez, Alonso, and Stankiewid46] is
Xo~L2 76 f(L/&g) (200  not compatible with our value.

Another quantity which can be used to analyze the kind of
for the susceptibility. Assuming the prediction of the the transition is the fourth-order cumulant
KTHNY theory, the correlation lengtlég diverges atp 4
=p;, andf is a constant independent bf We use this FSS U=1— (¥6)
: 1 ; =1-—0. (22
behavior to locate;, where we takepg= 7. In the hexatic 3(y)?
phase p;<p=<p.,) the correlation lengtlfs also diverges, so
thatf is still independent of. In this phaseys is a decreas- According to the prediction of the KTHNY theory should
ing function of the density, which goes to zerofap- be independent of the system sikein the whole hexatic
proaches the melting density,,, i.e., at the end of the phase. In contrast to this, in the case of a conventional first-

hexatic phase. Fqs's below p; , one has to take corrections order phase transition there is only a single point, where the
of xg~ L2~ 7s for finite correlations lengths into account. Our cumulants of different system sizes collapse. Since there is a

results for the susceptibility are collected in Table V. large region betweep;~0.9 andp,,=0.91, the behavior of
If we use the FSS behavior to locaieandp,,, then the U can be used to distinguish between KTHNY and first-order
requirement ofyg(p;) =3 yields[19] transitions. The intersection of the cumulddtin a single

point was an argument in RdfL3] against the existence of a
hexatic phase. Unfortunately, statistical errors in our data are
1 1000 too large to answer this question, as can be seen in Fig. 8.
Another possibility to distinguish a first-order phase tran-
sition from a continuous transition is to study the depen-
dency of the distribution ofiyg;|* on the size of the system.
1100 If the system exhibits a homogeneous hexatic phase, then
changing the size of the system should not lead to any
% changes in the distribution. On the other hand, if the transi-
tion is of first order one would expect that the distribution is
110 a combination of the solid, fluid, and interface distributions.
Therefore, changing the size of the system would result in a
change of the distribution, because the area of the interface
scales only linear withL. In Fig. 9 we plot|yg;|? at p
1 =0.898 for four different system sizes. Apart from finite-size
effects, which become weaker for larger systems, no differ-
ence between the distributions can be seen. The distributions
FIG. 7. Susceptibilityfull symbolg and bond orientational cor- for the two largest systems coincide within statistical errors.
relation length(open symbolsas a function of density. The curves Therefore, one can rule out a first-order transition with thin
shown are the best fits for a KTHNY behavig@or all measured interfaces, while a first-order transition with an interface
points. The critical values op are visualized by vertical lines. width larger than the largest system slzand a continuous
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FIG. 8. Finite-size scaling of the cumulant in the transition re-  F|G. 9. Distribution of the second moment of the local bond
gion. orientational order paramet@n arbitrary unit$ for different sys-
tem sizes. The small inset amplifies the region with srgdl|?,
transition are compatible with the da{@he results are also where the largest deviations are. Statistical errors are of the order of
compatible with the occurrence of two very small interfacesthe symbols in the inset.
[i.e., a width ofO(1)], but this can be ruled out due to the
examination of the defect structure of several configurashowed that the data are in good agreement with the predic-
tions) These results coincide with those of Ferdaz, tion of an exponential singularity from the KTHNY theory.
Alonso, and Stankiewicg16], who performed similar mea- The critical exponengg was derived from the relation ofy
surements in th& pT ensemble using a rectangular box of and xg for £g—o0. We obtainedng=0.251(36), which co-
ratio v/3:2. The data of Fig. 9 show also that the chosen ratidncides with the predictiomg= 3.
of the side lengths of 1:1 causes no large finite-size effects. The simulations in the transition region were used to mea-
sure the finite-size scaling of the susceptibility. The value of
V. CONCLUSIONS AND OUTLOOK p;=0.899(1) (assumingzns= %) coincided with those from
the KTHNY-like behavior of¢g(p) andxg(p). Furthermore,

We presented a detailed Monte Carlo study of the twothe requirementyg(p,,) =0 led to the estimatg,,=0.91.
dimensional hard disk model in tHéVT ensemble. The in-  The data of the fourth-order cumulddtwere affected by too
vestigations were performed in the isotropic phase and in thpyrge statistical errors in order to draw any conclusions.
transition region. In summary, all data are compatible with a KTHNY-like

The behavior of the defect denSity as well as the diStribU'phase transition. A One-stage continuous transitiqm (
tion of the local order parameter in the transition region were— p) as proposed in Ref16] and a first-order transition
in good agreement with a simple model of two coexistingwith small correlation length can be ruled o(&imilar re-
phases, i.e., the data could be modeled as the sum of twqits are obtained for an 12 repulsive potential by Bagchi,
different phases, where the relative areas of the two phasggdersen, and Sword€3].) Further numerical investigations
are proportional tp. However, the defect structure of the have to be performed to make a clear decision between a
system and the distribution dfijs;|* as a function ofL  weak first-order phase transition and a continuous scenario.
showed that there are not two separated phases with a thirhis could be done, for example, by studying the positional

interface. The data can be explained by a weak first-ordegrder in the transition region. Work along this line is in
transition with a width of the interface which is larger than progress.

the largest system sizeor by a continuous transition with a
homogeneous phase.

The behavior of the pressure was compatible with both
first-order and KTHNY-like scenarios. The data just give a We thank Harro Hahn for helpful discussions, and the
lower limit of p~0.89 for the coexisting phase. Institute of Scientific Computing in Braunschweig for pro-

In the isotropic phase we examined the dependency of theiding computer time on their CRAY T3E. Especially, we
correlation length and the susceptibility on the dengityWe  benefitted from discussions with Rainer Gensch.
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