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Multiaffinity and entropy spectrum of self-affine fractal profiles
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The entropy spectrum method is applied to self-affine fractal profiles. First, the profile created by a gener-
alized multiaffine generator is decomposed into many subsets having their own topological entropies. The
entropy spectrum an#l (the gth Hurst exponentof its profile is calculated exactly. For each subg,

(divider dimensiopandDg (box dimensionare also calculated. The relati@y=2—H_, is obtained for the
remaining subset after infinite iteration of the generator. Next, the entropy spectrum of fractional Brownian
motion (FBM) traces is examined and obtained as a point spectrum. This implies that a variety of lengths of
segments in FBM traces is caused not by intrinsic inhomogeneity or mixing of the Hurst exponents but by only
the trivial fluctuation. Namely, there are no fluctuations in singularity or in topological entropy. Finally, a real
mountain rangéthe Hida mountains in Japais also analyzed by this method. Despite the profile of the Hida
mountains having two Hurst exponents, the entropy spectrum of its profile becomes a point spectrum again.
[S1063-651%99)10901-2

PACS numbeg): 47.53+n, 05.40-a, 92.40.Gc

I. INTRODUCTION where angular brackets denote an average quantity. In the
single-valued self-affine function, the fractal dimension
In nature, there are many complex patterns such as coasthows different values depending on measuring methods. It
lines, clouds, and cracks. Though it seems that quantitativis well known that thdocal divider dimensionD and the
analysis of these complex patterns is impossible at a glancégcal box dimensiorDg are related tdd as[9,10]
the fractal concept enables us to analyze them quantitatively
[1]. The scaling exponent between the utilized unit size and

the number of units to cover the object is very useful to DDzi, (3a)

guantify these complex patterns and is called the fractal di- H

mension. The concept of the fractal has become very famous

now and has been expanded. Dg=2—H. (3b)
Many patterns are scaled differently in different direc-

tions, for example, fracture surfaces of mefe§ crystalli-  These relations hold only on profiles whose topological di-

zation of NH,Cl [3], wet front propagation in papé4], real  mension is unity that are embedded in two-dimensional Eu-

mountain topographys,6] and so orj7,8]. These anisotropic clidean space. In addition, Eq3a) holds for H = L. For
_ . . . y = 2-
patterns are called self-affine fractals and are characteriz <1 Dy=2 [10]. Moreover, bothDp and Dy become

by the Hurst exponentor roughness exponent (0O<H . .
<1) [7]. We consider a single-valued function of a single ungygc:)n aglobal scalfe[llfl]. .HOW?.Vert’. thesfe r?flat;fc_)n(ga?)
variableF (t). If the function is a self-affine fractal, the func- anl (d ) are r\]/ery Usetul for Inves |ga§|)or; 0 dsg & u(;e hrac-
tion satisfies the scaling relation tals due to the eals!er measurementgfandDg and the
dominance oH=3 in nature.
On the other hand, limitations of only one fractal dimen-
F(t)=¢HF(et) 0 sion for self-similar fractals have been realized. Thus fractal
' measures characterized by an infinite hierarchy of fractal di-
mensions have been research&®),13. This multifractal in-

where ¢ is a parameter. In stochastic systems, the heightSight provides much detailed understandig]. The multi-

height correlation functioi©(t) can be evaluated. For a sta- fractal property has been usually studied by thex)
tistical self-affine functionC(t) is written as spectrum obtained from a thermodynamic formalism. In the

formalism a partition function is defined and the&x) spec-
trum is obtained from the Legendre transform. Thisy)
spectrum method can describe the static fluctuations of sin-
gularity of the probability measure and fractal dimension.
Recently, Barabsi et al. have reported multifractality of
N i . N elf-affine fractal{14,15. They have investigated a multi-
Ins';:j;enltnidd;?gs'oEg‘;:;fg‘ili erE:rtrgf]S/t(’) d'\g'_tlzljb ?2;(;8?%%{% fine function created by a simple generator and have ob-
o ' ' tained a multifractal spectrum. They have calculated the
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and defined the generalized Hurst exponldgtin the limit ] (a)
t—0 of
08i....
--10.5
Cq(t)ctMa, (5)
0 1 0 1
If H, varies withqg, a nontrivial multiaffine spectrum is ob- Initiator Generator
tained. This analysis corresponds to the multifractal method
and its thermodynamic formalism is defined in Rdf5]. 1 ®) 1
In contrast to thef(a) spectrum, the entropy spectrum ;H,’v
has been studied in order to describe the dynamical property. /|
This entropic analysis has also been defined by the thermo- :
dynamic formalism and has been applied to chaotic dynam-
ics [16,17. Sano et al. have investigated fluctuations of 0 1 —1
Lyapunov exponents and topological entropy such as the re- Initiator Generator

lationships among dimensions of invariant measures,

Lyapunov exponents and entropies, the strange attractor vs FIG. 1. () The initiator is a diagonal line of a square. The
repeller, and the variational principle6]. In general, the generator has four contraction maps and two different scaling fac-
entropy function of hyperbolic dynamical systems has beetors & (=a"1=a'z) and3 (=a":=a"s) in the vertical direction.
obtained by Bohr and Rarjd 8]. Honjo and Sano have stud- All of the segments have the same horizontal contraction atio
ied self-similar fractal patterns by the entropy spectrum=7z. (b) The initiator is a diagonal line of a square. The generator
method[19]. They have obtained entropy spectra of self-consists ofN contraction maps. Thigh segment has the same hori-
similar fractal patterns with multiscaling factors. Each pat_zontal contraction ratia and different vertical contraction ratio
tern has been decomposed into many fractal subsets of dif™-

ferent similarity dimensions whose maximum value Il. ENTROPY SPECTRUM AND DIMENSIONS

corresponds _to the similarity dlme_nS|on of th_e whole pattern. OF GENERALIZED MULTIAEEINE PROFILES
They have discussed the dynamical behavior of the subsets .
using the entropy spectrum. The multifractal spectrum and A. Formulation

entropy spectrum are very similar but not identical. The main  Barabai et al. have worked with a simple multiaffine
difference between the two spectra is the definition of theyeneratofFig. 1(a)] [14]. The initiator is a diagonal line of a
singularity of subsets, which is defined to the support size irsquare whose side is unity. The generator has the same hori-
the former and the time step in the latter to describe theontal contraction rati¢ and two different vertical contrac-
dynamics of pattern formatiofi9]. Hence the entropy spec- tion ratios # and 3. Mixing of these different contraction
trum method can describe fluctuations of topological entropyatios results in the multiaffinity described by varialblg .
and singularity to the time step. Namely, we can examine! NiS generator is a simple example. Thus we consider the
how microstructures appear associated with the time step Byeneralized multiaffine generatfffig. 1(b)] and discus$i,
the entropy spectrum method. nd the entropy spectrur_n. .

To the best of our knowledge, there is no report on the The ge”efa“’f consists .ON sggm_ents, Wh'Ch. have
entropy spectrum of self-affine fractal profiles. In this paperthe same horizontal contraction /ra'ao(— 1) and differ-
we apply the entropy spectrum method to self-affine fractafnt Vertical contraction ratiog™ in the ith segment i(
profiles. One of our purposes, is to understand the appearing 1.2 -..N). HereH{ describes the anisotropy of scaling in
behavior of microstructures in self-affine fractal profiles. Foreéach segment. IH{=H (cons} for all i, the profile at an
example, a random time series is only the folded line in thdnfinite iteration time (=) certainly has onénot multiple
early stage and its profile becomes complicated by long tim&lurst exponent. If eachH/ is different, various vertical
observation. This complicated process resembles the iteratiy@ngths are yielded by the combination of different contrac-
process of the generator. Therefore, we investigate the ddion ratios. Therefore, we are interested in vertical lengths of
tailed evolution of generalized multiaffine generators. A pa-/ndividual segments. We focus on whether or not the singu-
rameter that is independent of the time step is introducedfity of the probability measure being proportional to the
instead of using the thermodynamic formalism. It is usefulvertical Iengths of individual segments fluctuates. _Further—
for the investigation of profiles created by contraction map ore, the v_ertlcal Iengths_ of the_segments are very important
because the topological entropy, singularity, divider dimen-°" calc_ulatlons of the helgh_t-helg_ht correlation function, di-
sion, and box dimension are calculable for each subset. I\rll'd\?\; dlmen_scljon, and box dtlmer?smn. tical lenath i
succession, this method is applied to fractional Brownian (He,kcﬁ_?il f'r.fH?fg)]men whose vertical feng ”@)
motion (FBM) traces[20] as a random time series. Real =& ** 27 N at thenth step. Here the vectdris
mountain profiles(the Hida mountains in Japprare also  K=(Ki.Kz2,... ky), ki is an integer (&kj=n), and =;Z;k;
analyzed as an example of the real self-affine fractal profiles™n. The total vertical length of segments is written las
in nature. Finally, the comparison between the entropy spec=(a"1+aH2+ . .. +atn)". The probability measure of the
trum and multiaffine spectrum is discussed. segment isp,(k)=1,(k)/L,. From the above definitions,
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I,(k), the number of segmenis,(k), andp,(k) are obtained
as

N
In<k>=[I1 atiki,

(6a)
Nn(K)=nCuk, n-k,Ciky * "n—k;— - —ky_,Cky (6D
N
H/ ki
]:[1 a
Pn(K)=7R—7- (60)
i

We assume that fan>1, | ,(k), N,(k) andp,(k) could de-
pend onn as

In(X)=exd —né(x)], (78
N, (x)=exd nh(x)], (7b)
Pn(X)=exd —n\(x)]. (70

Here the vectorx is x=(X1,Xs,...,Xy) and x;=Kk;/n,x,
=kp/n,... xy=ky/n(EN xi=1, 0=<x<1). §(x) is the
decay exponent of the vertical length of the segmie(i) is
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andX (x) —h(\(x))=0. Thus only the subset whobé\ (x))
is equal toA(x) remains atn=c; h(x)=X\(x)=\* and
P.—(A*)=1. Moreover, the corresponding entropy
(=\*) denotes the information entrop¢1] of the genera-
tor; h*=—3N rilnr;. Herer;=a" /SN jati is the prob-
ability of the segmentthe vertical length normalized to the
total vertical length of the generajos(x) is related tox (x)
as 8(x) =In(Ly)+\(X).

H of this profile is also calculable. The exact form of the
gth-order height-height correlation function is written as

Cqaf= 2 a%Cy -
ky+---+ky=n
Hikqy+ - - +qHyk
X n—kl—~-~—kN,1CkNaq 1K1 ARNKN
:[a(aquJr- - +aqH|,\|)]n:(an)qu

Thus

N

|3,

E altaH
gina

]

Here we improve the expressionidf, in Refs.[8,14,15,21
In those papersH, was obtained asHg=In[(b,"

Hy=

(9d)

the increasing exponent of the number and represents theb,%)/2]/qin(1/4). Accordmg to Eq.(9d), however Hq of

topological entropy of the segment, argx) is the decay

their model should be written asdi, In[{2b1q+b2q+

exponent of the probability measure of the segment. Froni1—b,)9/4]/qin(1/4) in general The expressmn in those

h(x) and\(x), theh(\) spectrum is obtained, i.en(x) and
N(X) are parameter descriptionstof\ ). Then we divide the
prefractal[11] profile setS, at the nth step into subsets
Sn(\ (X)) characterized by (x),

S$h= S ()

Forn > 1, explicit forms of §(x), h(x), and\(x) are cal-
culable as

(®)

N

S(X)=— Zl H/xiIna, (99
N
h(x):—Z xjnx;, (9b)
N N
)\(x)=ln( 21 a"'i’) —Zl H{xilna. (90

Note that §(x), h(x), and A(x) are independent of.

There are some characteristic subsets. The maximum value

of the h(\) spectrumh,,.(=InN) corresponds to the in-

papers holds only fob,=

The relations among the divider dimensibr,, box di-
mensionDg, and generalized Hurst exponett, are inter-
esting problems. In order to examine these relations, we cal-
culate Dp and Dg of the subsetS,(\(X)). Dp(x) is
obviously written as follows

IN{Ny(x)} h(x)
In{l,()} — 8(x)

Dp(x)=—
H/

ixilna

Next we calculateDg(x). We consider the box number
M,(x) required to cover the vertical length(x) by squares
whose length of each side ég . €, is written ase,=a". Then
M,(x) is obtained as

N
H Hxn

N
n(x)_ 1:[ H 7l)nxi'

creasing ratio of all segments at each iteration. From Edsyp, s the box dimensioBg(x) is derived as

(9b) and (9¢), we can find that the subset satisfying
=a (i=1,2,..,N) has this maximum valuen(,,,). Namely,
in theh(\) spectrum, there is a unique maximum value cor-

responding to the topological entropy of the entire pattern.

The probability of the subsef,(\(x)) can be written
as Pr(M (X)) =Nn(A (x))pn(A (X)) = exd —n{\(x) —h (X (X))}]

N

N E Xilnx;
=1

—E H x+I
=1

In{Nn(X) ’ Mn(x)} =1

® In{en} -

Ina
(9f)
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FIG. 2. Entropy spectrum of the profile created by the generator
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Dp(x), Dg(x)

X

FIG. 3. Dp(x) (divider dimensionandDg(x) (box dimension

of Fig. 1(a). The topological entropy of the entire profile corre- of the subseS,(\(x)) of the profile created by the generator of Fig.

sponds to the maximum value of the spectrum, (ogen circlg.

1(a). The subset whosé shows the maximumx=3) satisfies

The topological entropy of the longest and the shortest segments arg, (x)= 1/H’(x) andDg(x)=2—H'(x) (open circles The subset

In 2 (open diamonds The remaining subset at=« is character-

ized byx= % (open squarne The subset shown by the open triangle

gives the maximum value dd(x).

The relationsdDp=1/H'(x) andDg=2—-H’(x) hold for
the subset whose topological entropy is maximwn=@a),

that remains ah= satisfiesDg(x)=2—H,-; (open squane

h(x)=In2—xInx—(1—x)In(1—Xx), (12b)

4 1
AM(X)=—xIn g—(l—x)ln X (129

whereH’(x) denotes the anisotropy of scaling of the subset
[H'(x)=={L1H{x]. Dp(X) is the same as the similarity di- \ye show then(\) spectrum in Fig. 2. The maximum value

mensionDg of self-similar fractal pattern§19]. Therefore,
the maximum value oDy is obtained from the maximum
value of the slope of the connecting line from [n0) to the
h(\) spectrum in\-h space. On the other hand;-2, can
be written as

ln(ile aHi'“) |n<i%1 aHa')

2-H;=2-——— =1 —————

Ina In (10

From Egs.(9f) and (10) andh(x)=\(x), i.e., —E{\leilnxi
=In(zN ;@) —=N ;H/xIna, the remaining subset at= o

satisfies

N

2 XilnXi

i=1

na D8

N
2—H;=1-2, H/x+ (12)
=1

Equation(11) indicates that the relatio(8b) holds only for
g=1 in multiaffine profiles.

B. Simple example

A simple example studied by Barabeet al. is investi-

gated here again from the viewpoint of the entropy spectrum,
[Fig. 1(a)] [14]. Because the generator has only two vertical

contraction ratiog (for i=1,2 and 2 (for i-3,4), the vector
(X1,X2,X3,X4) can be represented by one varialle(=x,
+X5; 1—X=Xz+X,4) and 0=x<1. Thens(x), h(x), and
A (x) for n>1 are obtained as

5 I13 I4 1 I1 | 13
(x)——ng—x ng—( —x)nz——ngﬂx(x),
(12a

of the spectrum is In 4, which corresponds to the increasing
ratio of segments of the entire pattern. The subset character-
ized by x=3 (open circle in Fig. 2 gives this maximum
value ofh and certainly increases by'4The subsets of the
longest segmentsS,(A(1)) and the shortest segments
S,(\(0)) have the same minimum value &f In2 (open
diamonds in Fig. 2 This means that the number of these
subsets increases by'.2The remaining subset at=x is
characterized bx= % (open square in Fig.)2

Hq, Dp, andDg are also calculable as
1 2 4\ 5 1\¢
H —Z 5 ’ 2 12
a glna ’ (12d

IN2—xInx—(1-X)In(1—Xx)

Do(x)= Z T (29
—xlng—(l—x)lnz
3 1 4 1
DB(x)=§+m xIn§+(1—x)Inm. (12f)

Figure 3 showsDp(x) and Dg(x). The relationsDp(X)
=1/H’(x) andDg(x)=2—H'(x) hold for the subset char-
cterized byx=3 (open circles in Fig. B The remaining
subsetS,(\ (5)) satisfies the relatiofil1l) (open square in
Fig. 3. Furthermore, the maximum value &fz(x) coin-

cides with that of the remaining subsBi(). Dp(x) is
over 2 in almost all subsets; therefore, its value is meaning-
less even in the subsets characterized by or x=5. The
maximum value ofDp(x) numerically corresponds to the
maximum value ofh/(N—InL;) as predicted in Sec. Il A
(open triangle in Fig. 2



258 HIROAKI KATSURAGI AND HARUO HONJO PRE 59

T T T T T 12D | _
B0 O O O
'ﬁ'\HH\HHIIIIIIIIIIIII | O
10'F A )
g 0
g 107+ |
2
8 Z: 10 1 | j
2 107 0 n=12
& \ 0O n=11
) 3 ) A n=10
10° v n=9
AN B ¢ n=8
4 o —— slope=1.00
' ' 1 10 O | CONNEFSATIIED :

. 10°
-ln(p,) (arb. units)

FIG. 4. Probability distribution curves (N, versus—In p,) of
the prefractal profile created by the generator shown in K. dt
arbitrary time step#®,,n,,n;. The subset is composed of crossing
points among these distribution curves and the line from the origin
of coordinate axes. The open circles compose the subset characte
ized byx=15.

=

4

Written as above, the entropy spectrum and dimensions
are calculable easily if the generator is given. However, it is
too difficult to find the generator on the given pattern. Alter-
natively, there is another chance to obtain the entropy spec
trum from the given pattern. From Eq&/a and (7¢) the
relations nh(x)=INN,(x) and n\(x)=—Inp,(X) are ob- 0P 0 ""'1'04 — '1'65 =
tained. Thus the log-log plots of the probability distribution 1/p,
curves of segments varyinggive distribution curvesimilar
to the entropy spectrum. Figure 4 shows these distribution FIG. 5. (2) Double logarithmic plots oN, versus 1p, on FBM
curves of the prefractal profiles created by the generator dfaces H=0.75). Gray CIr_cIes indicate the subs,_et Whose probability
Fig. 1(a). The subset is composed of the crossing point§3n=Nn|On shows the maximuntb) Double .logamhm'c plots oN,
among distribution curves and the line from the origin of theverius 16, on FBM traces ﬂlat have different Hurst exponents

; . - (H= 0.25, 0.50, and 0.7&atn=11.

coordinate axegopen circles in Fig. 4 represent the subset
characterized by = 15). Thenh(x) and\(x) are obtained in ]
each subset from tha dependence of IN, and —Inp,, Whosep, is 27" 11X 10 °k<p,<2 "X 10" %(k+1),

respectively. After that, the entropy spectrum can be obWherek is a non-negative integer. The number of segments
tained. is counted adN,(p,)-

In order to compose the subset, log-log plotdNgfversus
1/p, at variousn are shown in Fig. &). Each distribution

H=0.25
H=0.50
H=0.75

IIl. SPECIFIC APPLICATION curve is obtained from an average of 10 000 FBM traces
_ _ _ whoseH is 0.75. The case dfi=0.75 seems to be a particu-
A. Fractional Brownian motion lar case; however, these distribution curves are independent

Up to now we have discussed contraction maps in a forof H, as we will discuss later. In Fig.(B) the distribution
mal way. This method should be applied to more specificurves of differentH’s at n=11 are shown and one can
self-affine profiles. We analyze FBM traces as a typical ex+tealize the coincidence of these distribution curves. The most
ample of self-affine fractal profiles such as random time seinteresting property of these distribution curves in Figp)5
ries. FBM traces are produced by a successive random adds the congruencelt should be recalled that the distribution
tion method [22]. Vertical and horizontal axes are curves in the case of contraction maps aimilar to each
normalized to closed interval®,1] at each step. We define other.
the time step asn=1log,M, whereM is the total number of What makes this difference? The important difference be-
segments. This is equivalent to the resolution level of the tween FBM traces and profiles created by the generator is the
horizontal axis. The vertical length of each segment is norg dependence ofl,. The former has constamt,=H and
malized to its total sum and this normalized length is asthe latter has a continuously changing nontrivial funct
signed to the probability measupg. We employ the cutoff associated witty [14]. If Hg is constant, the vertical length
scale ofp, as mifp,}=2"""11x10"°. This cutoff scale is of the segment,, the total vertical lengtth.,, and the num-
determined by the compromise between the computing timéer N, are scaled by the time variatiam—n—log,b (this
and the precision of the data. The probability meagyés  transformation is equivalent ta—ba for the horizontal
replaced by p,=2""*!1x1075(x+3) for the segment length of each segmeatand some parameté) as
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ln(Nn) ’ 'ln(pn)

N W A OO N ®

In(N,)

11 12

FIG. 6. n dependence of IN, and—In p, in the subset indicated
by gray circles in Fig. &). The slope of IlN,, and —In p, givesh
=0.691 and\ =0.691, respectively.

In—ln-togp=b"ln, (139
Ln—Ln-iogp=b"""Ly, (13b
Np—Npjog,b=b"*Ny. (130

From Egs.(139 and(13b) the relation
Pn— Pn-log,b =D Pn (130

is obtained for the probability measupg=1,/L,,. From Eqs.
(13¢ and (13d) it can be understood thad,, and 1p, are
independent ofH. In addition, the relations IN,—InN,
—Inb and —Inp,——Inp,—Inb are obtained from Egs.
(130 and(13d), respectively. These relations imply that all
points on log-log plots oN, versus 1p,, shift along the line
whose slope is unity. That is the reason why the distribution
curves for FBM traces are nstmilar but congruentto each
other.

In the case of contraction maps, the subset is composed of
crossing points among distribution curves and the line from
the origin of coordinate axes. However, in this FBM case,
the subset should be composed of crossing points among
distribution curves and the line whose slope is unity because
all subsets have the same scaling relatii®) and (130
due to the homogeneity di,. This composition of subsets
inevitably leads to the result that all subsets have the same
and h. Hence we obtain a point entropy spectrum for FBM
traces. In order to obtain the valuesdofndh, we show the

ability P,=N,p, is maximum[gray circles in Fig. )] in
Fig. 6. The obtained andh arex=h=0.691. This value is
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FIG. 8. (a) The height-height correlation functia®(t) obtained
n dependence of IN, and —In p, of the subset whose prob- fom the profile shown in Fig. 7. A crossover of the Hurst expo-

nents is confirmed around the horizontal scale of 1 km. The Hurst
exponents are obtained &5,=0.669 on a short length scale and

H,,=0.428 on a long length scaléh) The qth-order height-height
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FIG. 7. Typical profile of the Hida mountains in Japan. The
height variation is exaggerated.

correlation functionCq(t) obtained from the profile shown in
Fig. 7.

very close to In2. Of course this value becomes Iiiwe
definen=log.M, wherec is a parameter.

B. Real mountain profiles

It has been reported that transect profiles of real mountain

topography show self-affinity5,6]. In particular, there is a
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q FIG. 11. n dependence of IN,, and —In p, in the subset indi-

. i - cated by gray circles in Fig. 10. The slope oNpand—In p, gives
FIG. 9. H, versusq obtained from the profile shown in Fig. 7. h=0.732 and\ =0.685, respectively.

On both scalesi; does not vary withg. The average generalized

Hurst exponents are obtained Bgs=0.68+0.01 andH;=0.46 ) .
+0.01. that theq dependence dfi, is very important; therefore, we

examineH s andH g, from Cq(t). C4(t) curves of various
values are shown in Fig.(B). We remove the data at large

clear crossover oH in Mt. Shirouma in the Japanese Alps o
. . . . (t>20 km) from the power-law fitting because of too much
[5]. Matsushita and Ouchi have conjectured that this CTOSS \ctuation. This fluctuation arises due to the finite-size ef-

over is caused by the difference of roughening process%ﬁ

between short length scale and long length scale regimes Ct. All Co(t) curves show the crossovers arounel km.
9 g 'eng 9 e show theq dependence ofi,s andHg, in Fig. 9. It is

short length scales, small-scale erosions due to, e.g., floo 12 own that bothHgs and Hy are constant Hge—0.68

and earthquakes, produce the small-scale rough profile. On ~ . .
long length scales, large-scale folds due to the plate tectoniciszég'oelting_'?é_r? 'ﬁ?j sot.v?/%))ﬁl—rr::i(gjeﬁlzsrsf?‘:;riierr?gsumam
determine the large-scale rough structure. This crossover h&2 ,gfter ‘:hg nrc))rxwalization of profiles to clgse d inferval
havior indicates that the profile has two Hurst exponents. It 01 btain log-I lot pN ith th
an interesting problem whether or not the entropy spectru sa’m]e’ Véeefi?]iti?)lr? gfn' 0(%0%(2)05”;;' ”re\forﬁﬁii nmre\\;\gl 2n)e
anqu.exmb!t nontrivial characteristics. : . Nn(pn), andp, (the probability measure being pro ortic'mal
We investigate the topography of the Hida mountains in " Pn), anapy | P 'ty X g prop

the Japanese Alps. Figure 7 shows the typical profiles of th o_Ehe h.6'ght difference QUrmg normah_zed_ ho_nzontal s_cale
Hida mountaingvery close to Mt. Shiroumafrom the digi- ) asin thefl;%l\(;l casfﬁFlg.trlth. Eacgodlstnbutut)nFc_urve '150 .
tal elevation mag50-m grid. The height-height correlation an average ot 2UY profiies that are >u:m apart. Figure 10 15
function C(t) of this profile is shown in Fig. &). A cross- very similar to Fig. %) and Q|strlbu_t|<_3n curves seem to b.e
over ofH is confirmed around the horizontal scale of 1 km. congruent to each other. This aff_alr_ lmplles that_ the scaling
The value of 1 km is close to the crossover scale c)irelatlons(136\)—(1300 are also satisfied in the Hida moun-

; ; - tains. Therefore, theC,(t) curves of the Hida mountains

. ' q

Mt. Shirouma[S]. From Fig. &) the Hurst exponent is ob should be fitted by the power law as mentioned in Fig. 8.

tained asH;s (Hqs at q=1)=0.669 on a shorter length i ;
. ; N Eventually, the above analysis method is easy and useful to
scale than 1 km and is obtainedtdg; (Hq atq=1)=0.428 discuss the condition of the scaling. From Figs. 9 and 10

on a longer length scale than 1 km. In Sec. lll A it is shownthe entropy spectrum of the Hida mountains becomes a
point again. The horizontal distance of 1 km is equivalent to

E oY n=6.26. No changes can be observed arousd®.26 in Fig.
i ] 10. It should be recalled that these probability distribution
10k - curves are independent bf. We assume that the segments
2 3 whose probabilityP?,,= N,,p, is maximum compose the sub-
, ] set(gray circles in Fig. 10 Figure 11 shows the depen-
s TE & 5 dence of I'N,, and — In p,, of this subset. The obtained values
“ F %g s 4 g g O n=10.58] ] of h and A are 0.732 and 0.685, respectively. Essentially
X F o 4 0 n=9.58 | 4 these values should be the same valuest0591; however,
0.1 ‘§§{ Pl g by g 2 gzi‘gg 3 they deviate slightly.
F X + _ ’ :
:>><< + g ‘é A? (o n;ﬁ.gg ]
+— + n=5. IV. DISCUSSION
0.01 ix » A £moo X n=4.58 |3
Bl v, oy SRR, ST If we redefine Egs(7a—(7¢) as I,(x)=a"™, Ny(x)
10' 10° 10° 10* ~nh(x) A (X)
1/p =a ,andp,(x)=a , theh(\) spectrum becomes an

analog of the multiaffine spectrum defined by Basiled al.

FIG. 10. Double logarithmic plots df, versus 1p, on the Hida  [15], i.e., entropy spectrum and multiaffine spectrum are es-
mountains. Gray circles indicate the subset whose probatfility —sentially the same and our formulation of the entropy spec-
=N,p, is the maximum. trum is the same as the thermodynamic of(e), h(x), and
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N (x) correspond toy, h (or f), and «, respectively, of the terms of the entropy spectrum. It seems that one Hurst expo-
formalism of Barabsi et al. nent might correspond to one physical mechanism in natural

For self-similar fractals, théa(\) and f(«) spectra are Self-affine objects. In the case of the Hida mountains, there
different[19]. When the normalized length of the segment isare two Hurst exponents; however, two mechaniges-
assigned to the probability measure in ther) formalism, sions and plate tectonicaffect different scales. Therefore,
the singularity of each subset becomes unity andfie) two Hurst exponents do not mix with each other. If the pro-
spectrum becomes a point. There is only one length to chafile is produced by plural physical mechanisms affecting the
acterize the segment in self-similar fractals, but there are tw§ame scale, the mixing of Hurst exponents will be observed
(vertical and horizontallengths in self-affine profiles. One and the entropy spectrum will become broad. The remaining
can define the vertical length as the probability measure folnteresting problem is whether or not there are such phenom-
each supporthorizontal lengthin self-affine profiles. Then €na in nature. On the other hand, multiaffinity has been ob-
the nontrivial f(a) spectrum can be obtained in self-affine Served in a particular class of numerical simulafiga]. Ac-
profiles. According to this definition, the limit ai—c of  cording to Ref.[24], multiaffinity arises from the kinetic
our formulation and the limit of Support size approachingsurface rOUghening with power'laW'diStribUted amplitudes of
zero of the multifractal formalism are the same; thereforeuncorrelated noise. This type of surface roughening has been
the h(\) and f() spectra become essentially the same inProposed by Zhan{P5]. He obtained the variable Hurébr
self-affine profiles. Our probability measure mett{Biys. 4,  roughnessexponent by controlling the exponent of power-
5, and 10 can classify profiles. If the mixing of Hurst expo- law-distributed amp!ltudes of uncorrelated noise. He conjec-
nents exists, the probability distribution curves become simitured that the experimentally observed larger Hurst exponent
lar to each other like those of Fig. 4. If the mixing does notis & manifestation of this instability by power-law-distributed
exist, they become congruent to each other like those of Fig@mplitudes of uncorrelated noise. We think that broad en-
5 and 10. We obtain the important relati@y=2—Hq_, tropy spectra are obta_lned for_such rough surfaces. Experi-
for multiaffine profiles. This is a generalization of Egb). ~ Mental and more detailed studies are future problems.

We can consider another class of contraction maps that
have no homogeneous horizontal intervj#8]. In that case V. SUMMARY
the h(\) spectrum becomes different from the multiaffine
spectrum. However, a specific application of that analysig,,
method is difficult. This application is an open problem.

Self-affine fractal profiles have been studied by the en-
py spectrum method. First, generalized multiaffine pro-
i : ; files were investigated formally and broad entropy spectra
The Hida mountains has two unmixed Hurst exponents,q e onhtained from the profiles created by the generator that

Has and_ Hg . This seems to represent the transition from &35 plural contraction ratios in general. We find that the re-
mountain to a mountain range. The self-affine profile Whos‘?naining subset at=o satisfiesDg=2—H,_,
q=1

al ) ° : mne | .
H satisfiesH < ; (H>3) has persistenc@ntipersistencein FBM traces were analyzed with this method and the point

— 1 <
general[11,20. Hqs=0.68>; means that the profile has onqny spectrum was obtained due to the homogeneity of
persistence on a short length scale. On this scale, the topogr

. In spite of the existence of fluctuating lengths of the
raphy is certainly rough, but the pr down tendency con- d P g ‘eng

tinues P?,Cause_‘)f the ?X'_Stencﬁ of a mourrw]taw. In contrashe g flyctuations of either singularity or topological en-
Hq satisfiesH =0.46<3, i.e., the topography has antiper- yqny 1 addition, we show that real mountain profiles do not

sistence on a long length scale. On this scale, ups and downg oy, myltiaffinity in spite of the existence of the crossover
are repeated due to the jagged topography of many mouns prst exponents. Therefore, the entropy spectrum of real

t§|ns in the mountain ranges. This cop3|derat|on is COUS'SteTﬁountain profiles also becomes a point spectrum.
with the fact that there is no mountain that has a horizonta

scale more than a few kilometers in the Hida mountains.

The relationg(133—(13d seem to be always satisfied in
ordinary statistical self-affine profiles. We conjecture that al- The authors wish to thank Professor S. Ohta, Professor M.
most all self-affine fractals in nature are statistically homo-Sano, and Professor M. Matsushita for useful discussions
geneous i, = cons). Namely, they have the point spectra in and comments.

segments, the entropy spectrum becomes a point, i.e., there
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