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Self-sustained trapping mechanism of zero-velocity parametric gap solitons
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Under specific excitation conditions, slowly traveling parametric solitons in quadratic media with singly
resonant Bragg gratings can evolve into zero-velocity localized solutions. We demonstrate numerically this
phenomenon, providing physical insight in terms of momentum dendi#d€63-651X99)11902-0

PACS numbdis): 42.65.Tg, 42.65.Ky, 42.65.Pc

A nonlinear optical response associated with feedbacknade efficient for one polarizatidiat fundamentalbears no
mechanisms supports optical bistability in a variety of mate-effect on the orthogonal polarizatiofsH). The parametric
rial systems. In distributed feedback gratings, in particular, dnteraction of the four envelopdéfz(Z,T) through a qua-
linear Bragg resonance can couple with an intensitydratic nonlinearity is ruled by the dimensionless equations
dependent refractive index or a parametric nonlinearity t48,10]
originate localized eigenstat¢$—10], i.e., slowly traveling

gap solitons in the resulting nonlinear photonic band gap i(iufz+vl_luft)+ S1U; Uy +Uy(u)*=0, (1)
structure(NPBS. Such solutions can be viewed as optical

bits trapped within the grating for short- or long-term storage (up)?

depending on their propagation speed. Although the forma- i(iu§Z+ vz‘luzﬂ)+ Suy; +——=0, 2

tion of stationary (i.e., zero-velocity localized states or 2

“still” gap solitons in NPBS is intriguing in view of the o i )
rapidly evolving interest in transparent optical networks andVherev;=Vg;/Vg, with j=1,2 are the ratio of group veloci-
all-optical memories, they have not been observed yet; thefi€S at Bragg frequencyg; =Aw/(I'Vy,) is the normalized
excitation remains a challenging open problem. frequency 7dletun|ng _from Bragg conditionA =0), &,

In this report we show that two-color parametric gap soli-= (Ak+2Vy5 Aw)/T" is the normalized nonlinear mismatch
tons(PGS can be excited via second-harmof@H) genera- ~ corrected for the frequency detunings®, andz=I'Z and
tion in quadratic media with a single band gap induced bt=I"Vg: T are normalized temporal and propagation coordi-
Bragg resonance with the input field at the fundamental frehates, respectively; being the Bragg coupling strength. The
quency, i.e., singly resonant NP8). This addresses a self- envelopesi’=E/\I;, j=1,2 are normalized with the ref-
sustained nonlinear mechanism of localizing electromagnetierence intensitiesjzl“z/()(jxl), where x; are the usual
energy at zero velocity in a NPBS, whose prototype is technonlinear coefficient§10]. In the limit of large mismatches
nologically availablg11]. |6,/>1, Egs.(1) and(2) yield equivalent cubic or Kerr non-

We consider a bidirectional scalar field linearities[8,10]. In this limit PGS solutions of the bright

type fill the forbidden dynamic gap?+V?<1 (V being the
normalized soliton velocitywhere linear solutions are expo-

E(ZT)= 2 exd—inwTHE, (Z,T) nentially damped10]. They exist for both positive and nega-
n=t2 tive mismatchesd,, their peak intensity being simply pro-
X exfdiB,Z—i(n—1)AkZ] portional to the absolute mismat¢#,|. Importantly, only
low-amplitude solitons such tha#;5,<<O turn out to be
+E, (Z,T)exd —iB,Z+i(n—1)AKZ]} stable, including the limit8;|~1 for which the propagation

is governed by a nonlinear Scliinger equation8].
propagating in the presence of a shallow corrugation of pe- To date only the excitation of a slowly traveling PGS has
riod A=m/pB,(wg), Where the optical fundamental fre- been addressed in singly resonant NHBE A different ap-
quencywo=wg+ Aw is nearly resonant with the first-order proach for the formation of a stationary PGS in doubly reso-
Bragg frequencyog (i.e.,|Aw/wg|<1). We drop the Bragg hant NPBS, based on the merging of two coherently excited
coupling for the optical SH, associated with the spatial SH ofin-phase slow PGSs, has been described in [R6f. Before
the grating corrugation. Besides the obvious case of a corryproceeding to study how a zero-velocity PGS can be gener-
gation with only odd spatial harmonidg.g., square wave ated by means of pulsed illumination at fundamental on a
gratings, this case is representative of a channel waveguidéingly resonant grating, it is convenient to gain insight by
supporting fundamental and SH modes of wave vecBys investigating the existence of PGS solutions. We seek trav-
= Bn(Nwo), with orthogonal polarizations so as to hakk  eling state solutions of Eqsl) of the formu:"=A:"x;"(¢)
= B,—2B,~0 through birefringence-induced phase match-with {=y(z—Vt), y=1/J/1—V? being the Lorentz factor,
ing. In this case, it is well known that a grating which is and obtain the following system:
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X7 X, FATX] + X5 (X7)* =0, 3

S+ +  + (Xf)z
i|x2—+A2—x2—+XiT=0, 4
where we set A7 =[(1xV)/(1FV)]¥4 AS=(A])?

Aj=8[y(1FVIv)] ™, X =(1=V)[y(1F Viv,)(1
FV)] 1, and the dot denoted/d{. The usual “cascading”
approach 13] neglects propagation effects in Hd), i.e.,>'<2i

is dropped. We use here a more general perturbation ap-

proach. Looking for exponentially decaying solutionsZat
— =+, we can formally solve Eq4) as

= = ¢ + — AT
Go-xilei [ pepeivar. @

After repeated integration by parts in E&), we obtain

. s (RN A0
K- Xy G g

- - (6)
20570 (A3)"  d{"

Although the series(6) is convergent at least fofA, |

>1, in the following we are mainly interested in the first

two terms. Retaining only the first term in Ed6),

the following ansatz in terms of modulus
phase  xi(0)=C.\on(exdio-()] [here C.

=|5,|(1-V?)/(1+V?), C_=—0C,, o=sgn(,) with
the constrainr»=0] yield the Hamiltonian system

q=JVH, 7)

where q=(7,¢)", ¢=¢,—¢_, the symplectic operator

J=diad —1,1], and the Hamiltonian
tS)

where the effective detuning i8=(A; +A7)/2=y45,. A

H=2%cos¢+25n— 7°/2,

BRIEF REPORTS

and

PRE 59

~N ®w ©
T T

FF INTENSITY
® _H q

nN
T

-y
v

[Ka)

0
SPACE

FIG. 1. Central part of the intensity profila; |+ |u|? at fun-
damental frequencyFF) of a stationary ¥Y=0) PGS, for a rela-
tively low normalized mismatcts,=A5 =—5, andé;=A;=0.8,
andv,=0.5. We compare the first-order Kerr-like solutitdashed
line), the second-order correctigolid line with dot$ from Eq.
(10), and the numerical solutiofsolid line) of Eqgs.(3) and (4).

the first-order Kerr-like solutions. In this case, however, we
were not able to obtain reasonably simple analytical expres-
sions for the solitons. It is convenient to introduce the new
variable

— 1 (-

§=§+5—f§7l(§')d§’, (10
2J0

which permits us to reduce the new Hamiltonian system to
the first-order one withJ=diad —1,1]. For a given first-
order solutiony(¢) of Eq. (8), we obtain the second-order
solution by numerically inverting E410). We point out that
similar corrections for spatial parametric solitons in homoge-
neous(gratinglesy media can be calculated explicitfst2].
The latter case, however, is much simpler because first-order
solutions are real and one deals with zero-velocity solitons,
the moving ones being constructed via Galileian invariance

bright PGS corresponds to homoclinic orbits of the Hamil-[lacking together with Lorentz invariance in Eqd) and
tonian (8) emanating from the origin, which can be readily (2)].

obtained explicitly(Ref. [10]). These solutions exist, for a

To summarize, our second-order correction suggests that

given detuning ;| <1, with any absolute velocity between a PGS can be prolonged for relatively low mismatchgs

zero and a critical valu¥=Vy,=+1— 521, that is, they fill

with zero (or in general constrained to discrete values-

the entire dynamical ga@%+V2< 1. Now consider the effect locity. This can give a qualitative indication that the effect of

of the additional term in the expansid6): in this case the

reducing the mismatch results in lower-velocity solitons. It is

reduction in terms of modulus and phase variables implies aRecessary, however, to support this heuristic argument by

additional compatibility conditiony™/(A5)?=x"/(A5)?,

means of a more quantitative analysis. To do this, we seek

which can be solved to give the following constrained dis-solutions of Eqs.(3) by means of the standard numerical

crete values of the velocity

V=0, V=+20,—1. (9)

Restricting here to the casg=V g, /Vy1=w/2wy=0.5, the
latter condition means that only stationary solitons with

relaxation method. In particular, for a fixe¥, we seek the
domain of existence in terms of velocily of bright (we
discard envelopes with a nonzero peded®@S solutions of
Egs. (3) for different detunings;. The profiles agree well
with those found from our second-order perturbation scheme
[Eg. (10)]. An example is shown in Fig. 1, where we com-

=0 are described by this approach. Provided that this conpare the soliton profiles obtained at first order, at second

straint (9) is fulfilled, q again obeys Eq(7) with the new
nonhomogeneous symplectic operafee J( ) =diad — (1
+ 51 8,) "1, (1+ 5/ 5,) ~1]. Exploiting the property of invari-

order, and from the full numerical solution, respectively. The
results are summarized in Fig(a®, where we report the
critical value of velocityV below which we find PGS solu-

ance of the Hamiltonian fixed points with respect to thetions from Eqs.(3) and (4). The curves of critical velocity
change of the symplectid4], we conclude that at least sta- are reconstructed from solutions with §,<0, sampled at
tionary solitons still exist, their profile being a reshaping of circles, squares, and crosses ¥ 2,5,20, respectively. As
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FIG. 2. (a) Critical velocity V below which soliton solutions are
numerically found from Eqs(3) and (4) versus detuning;, as 250}
obtained for different mismatche% . (b) Velocity V of the excited
soliton versus the peak intensi®y of an input pulse withiy=5, for
different values of the normalized detunidg=—0.7,—0.9, and
mismatchs,=2, 5. 0

expected, for relatively largé, [crosses in Fig. @] PGSs Space

can have relatively high velocities since the critical velocity  FiG. 3. Formation of a zero-velocity gap soliton in a finite
approaches the first-order valig,, in a large range of Bragg grating (6<z<50) from a Gaussian pulse of peak intensity
detuningss; . Clearly, as the phase mismatgte., |5,]) de-  P,=12 and widtht,=5 incident from a uniform mediumz& 0):
creases, the critical PGS velocity decreases considerably: ¢bntour of the (a) fundamental;(b) SH. Here §,=-0.7, &,
approache¥ e, only for |8;|=1, or in other words the so- =2, v,=0.5.

lutions fill only a small portion of the dynamic gap. On this

basis, we expect that, for a given detunifg, PGSs with tive considerations on momentum conservation, can be ex-
progressively low velocity can be excited for decreasing misplained on physical grounds by looking at the initial stages
matchesd,. It is worth pointing out that the existence of of the PGS formation, i.e., fot<<400. A fraction of the
PGSs was investigated numerically for the doubly resonangenerated SH freely propagates away from the input bound-
case in Ref[7], where it was shown that they do not fill the ary (z=0); this characterizes the low-amplitude SH fields
formally available existence region determined by the overwherever generated by unbound fundamental components,
lap of the two dynamical gaps at fundamental and SH, rei.e., outside the PGS. The corresponding unbound fundamen-
spectively. Our results, however, cannot be extrapolatethls, conversely, resonate with the Bragg grating and are sub-
from those of Ref]7], because this existence region vanishegect to reflection within the NPBS, eventually counterpropa-
in the limit of negligible Bragg effect at SH. gating towards the two-color gap soliton. Both these

Our aim here is to show that still PGSs can actually becontributions tend to alter the overall momentum associated
launched in the NPBS. To this end, we integrated Efjs. with the two-color PGS, leading to the effect pictured in Fig.
and(2) using a split-step algorithm, with a Gaussian pulse aB.
fundamentauf(z,t):\/Fiexp[—(t—z)zltg], which represents These considerations can be quantified in terms of mo-
illumination of a finite NPBS (8:z<50) from a uniform mentum densities: though for a finite medium the
linear medium with the same average index Q). For suf-  ztranslational invariance is broken and the total momentum
ficiently large input powerd?; slowly travelling PGSs are
formed [8]. In Fig. 2b) we show the results of different 30
numerical experiments, reporting the soliton veloaitynea-
sured in the early stage of the propagatior £00) against
the powerP; for four different combinations of the param-
eter 8,,0,. The results clearly indicate that the velocity is
nearly independent of the incident power while it decreases
for low mismatches §,=2), as expected. Note that the ac-
tual frequency of the formed PGS is slightly detuned with
respect tod; in Egs. (1) and (2) as a consequence of the
adiabatic reshaping of the fields characteristic of any soliton
formation process from a nonsoliton input.

A remarkable phenomenon occurs for longer propagation
times, a typical example being displayed in Fig. 3 #®yr
=—0.7 andd,= 2. As shown, the fundamental input is partly
reflected and partly transmitted upon generation of a SH L1\l . . ‘
component of a PGS inside the NPBS0). The two-color 0 250 500 750 1000
PGS, however, reduces its propagation speed with time Time
tending to the stationary stat&/{0), a process for which FIG. 4. Contour of the momentum density!; at fundamental
we wish to coin the term “lazy gap soliton.” The equivalent [Eq. (10)] versus timet and space. The gray scale is inversely
center of mass of the PGS, in turn, moves progressively toproportional to the absolute densitglack curves indicate change
wardsz=23. This result, rather surprising in terms of intui- of sign).
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is not strictly conserved, we can always define a quantitymentum densities. This small linear wave correction supports
M= M (z,t) which characterizes the local density of mo- this physical picture only in the case of low-velocity PGSs
mentum as such as those investigated here.
B N P . _ In conclusion, a stationary PGS encompassing {ao

M= 1M (d2Um)* +Un(dUm)*] (M=12), (11)  three, in generaffrequency field components, can be excited
in singly resonant NPBS through the formation of “lazy”
PGSs, i.e., slowly traveling PGS which decay to the station-
ary state for relatively small nonlinear phase mismatch. This

Fig. 4 the evolution of the density at fundamerjtai=1 in . : Qo o

2 . phenomenon is a demonstration of the possibility of writing
Eq. (11)], for the case reported in Fig. 3. As shp_wn, during.. till"” optical bits through a single beam/pulse input into the
the process of deceleration, the leading and trailing edges Uructure

the PGS exhibit a momentum density of different sign. The

results support the heuristic arguments given above, that is, This research was partially supported by the lItalian
while SH momentum is lost through linear radiation, the fun-MURST. The work of S.T. was carried out in the framework

damental unbound waves are Bragg reflected and contributsf an agreement with the lItalian Post and Telecommunica-
coherently(locally adding or subtractingto the PGS mo- tion Administration.

in terms of which the total momentunM=f"2M;
+M,dz is conserved for an infinite medium. We show in
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