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Spiral waves in oscillatory media with an applied electric field
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Spiral waves in oscillatory reaction-diffusion systems under the influence of a uniform, time-independent
electric field are modeled by the complex Ginzburg-Landau equation extended to include a convective term
with complex coefficient. Results for the spiral drift, deformation, and frequency shift due to the electric field
are obtained. The coefficient of the additional convective term is derived from the original reaction-diffusion
system. The equation provides a good qualitative model of experimentally seen distortion of spiral waves in the
presence of an applied electric field.@S1063-651X~99!03502-3#

PACS number~s!: 05.45.2a, 82.40.Ck, 47.32.Cc, 82.20.Mj
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Spiral waves are manifest in a broad range of experime
involving pattern formation in nonequilibrium media. Ex
amples include the Belousov-Zhabotinsky~BZ! reaction@1#,
electrical excitation in cardiac tissue@2#, catalytic oxidation
of carbon monoxide on a platinum surface@3#, spatial aggre-
gation of social amoebae@4#, and rotating waves of electrica
activity on turtle cortex@5#. For BZ spiral waves, experi
ments have been conducted in which the reaction takes p
in the presence of a uniform electric field applied in the pla
of the reaction dish@6,7#. The spiral center is observed t
drift primarily in the direction of the electric field, but ther
is a smaller component of the drift that is perpendicular
the field and whose sign depends upon the chirality of
spiral. In addition, the shape of the spiral is significan
deformed in comparison to the typical Archimedean spir
seen in the absence of the electric field~Fig. 1!. These ex-
periments were performed in the excitable regime of the
reaction. In the oscillatory regime, sufficiently close to t
onset of oscillations, the dynamics of reaction-diffusi
equations, such as those believed to govern the BZ reac
can be modeled by the well-known complex Ginzbu
Landau equation~CGLE! @8#. In addition, it is also found
that the CGLE provides a good model for qualitative beh
ior of real systems even though they are not near a H
bifurcation~including excitable regime cases! @9#. In this pa-
per, we consider the CGLE with an additional term that
show arises from applying a weak, uniform, tim
independent electric field to a reaction-diffusion system:

]A/]t5A2~11 ia!uAu2A1~11 ib!¹2A1~g1 id!]A/]x.
~1!

A(r,t) is a complex scalar field that slowly modulates t
fast oscillations of the physical variables, anda, b, g, and
d are real parameters. The last term in Eq.~1! is due to the
electric field which has been taken to point along thex di-
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rection. Figure 2 is a numerical solution of Eq.~1! for a pair
of spirals for the case of nonzerod. The spirals drift along
the electric field direction, and they are deformed in a sim
fashion to what is seen experimentally for excitable me
~e.g., the experiment of Ref.@6#!.

With g5d50 ~i.e., zero electric field!, Eq. ~1! becomes
the standard CGLE, which, using cylindrical coordinat
(r ,u), has a two-dimensional spiral wave solution of t
form @10#

A5A0~r ,u,t !5F~r !exp$ i @2v0t1su1c~r !#%, ~2!

where s561 is the ‘‘topological charge’’ of the spira
wave, andF(r ) and c(r ) are real functions whose larger
behavior isdc/dr→k0 andF→A12k0

2 asr→`, wherek0

is a constant which depends ona andb. The frequencyv0
is connected withk0 , the asymptotic plane wave number, v
the dispersion relation,v05a1(b2a)k0

2 .
Introducing the transformations

:

-
,

FIG. 1. Electric field induced deformation of spiral waves in t
BZ reaction. From the experiment performed by Steinbo
Schütze, and Mu¨ller @6# ~courtesy of S. C. Mu¨ller!.
2443 ©1999 The American Physical Society
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r85l1/2~x2vt !x01l1/2yy0[x8x01y8y0 ,

t85lt, A8~x8,y8,t8!5l21/2A~x,y,t !

3exp$ i @nt2k~x2vt !#%,

Eq. ~1! becomes

]A8/]t85l21@11 in2k2~11 ib!1 ik~v1g1 id!#A8

1~11 ia!uA8u2A81~11 ib!¹82A8

1l21/2@g1 id1v12ik~11 ib!#]A8/]x8, ~3!

where¹825]2/]x821]2/]y82. The complex coefficient of
]A8/]x8 can be made zero by the following choice of t
two real transformation parametersv andk:

v52~g1bd!, ~4a!

k52d/2. ~4b!

Inserting Eqs.~4a! and~4b! in Eq. ~3!, we can now make the
complex coefficient ofA8 one by the following choice of the
remaining two parametersn andl:

n52b~d/2!2, ~4c!

l511~d/2!2. ~4d!

Thus we have transformed Eq.~1! to the conventional CGLE
@i.e., Eq. ~1! with g5d50]. Hence Eq.~1! with gÞ0, d
Þ0 has the following spiral wave solution:

A~x,y,t !5l1/2F~l1/2r̃ !exp$ i @2~lv01n!t

1 ik~x2vt !1sũ1c~l1/2r̃ !#%, ~5!

whereF andc are the amplitude and phase functions for t
conventional (g5d50) CGLE and (r̃ ,ũ) are cylindrical co-
ordinates in the frame comoving with the spiral,r̃ 25(x
2vt)21y2. Comparing Eqs.~2! and ~5!, we see that appli-
cation of an electric field has the following effects.~i! The
large r̃ amplitude is shifted by the factorl1/2. ~ii ! The scale

FIG. 2. Deformation of spiral waves. Plotted is the phase oA
for a numerical solution of Eq.~1! with the electric field taken along
the vertical direction anda50.25, b521, g50, d50.3. The
spiral cores have drifted down from their initial location halfway
the box.
of spatial variation is also shifted by the factorl1/2. ~iii ! The
oscillation frequency is changed by an amountDv5(v0

2b)(d/2)2. ~iv! The larger̃ asymptotic wave number now
becomesũ dependent,

k~ ũ !5~l1/2k0 cosũ1k!x01l1/2k0 sinũy0 . ~6!

The directional dependence ofuku is responsible for the de
formation of the spiral shown in Fig. 2 and found in expe
ments, andk52d/2 quantifies the extent of the deforma
tion. The deformation and the frequency shift depend upod
and notg, which only contributes to the uniform translatio
As shown below,g and d are proportional to the electric
field and so results~4a! and ~4b! imply that the drift and
deformation velocity are proportional to the electric fiel
Experiments done on the BZ reaction likewise find a d
velocity that is roughly proportional to the electric field@6,7#.
The perpendicular component of drift seen in these exp
ments does not appear in our results, indicating that this
pect of the observations is not captured by the perturba
expansion yielding Eq.~1!; e.g., the experiments were pe
formed in the excitable regime of the BZ reaction where
the perturbation expansion applies for oscillatory media. P
haps for the same reason, the above solution corresponds
uniformly translating deformed spiral without the period
relaxations to an undeformed shape as reported in Ref.@7#.

The transformation of Eq.~1! to the case withg5d50
with the values ofa and b preserved implies that spira
wave solutions to Eq.~1! will have the same stability prop
erties as CGLE spiral waves for a givena andb. The sta-
bility properties of CGLE spiral waves have been inves
gated with respect to the stability of plane waves@11#, core
acceleration@12#, and phase twist along the vortex filame
in three dimensions@13#. In addition, the transformation doe
not assume that the solution is a spiral wave. This imp
that the borderlines ina-b parameter space which demarca
qualitatively different regimes of behavior, such as the
called ‘‘frozen’’ state of relatively stationary defects and t
defect-mediated turbulence state@14#, will be the same for
the CGLE with the added]A/]x term as for the original
CGLE.

We now explain the origin of the]A/]x term in Eq.~1!.
In the presence of a uniform electric field in thex direction,
the equation modeling a system of reacting and diffus
chemicals is of the form@15#

]c/]t5f~c,m!1D¹2c1EM]c/]x. ~7!

The componentsci of the vector fieldc(r,t) represent the
concentrations of the chemical species of concern in the
periment. The nonlinear functionf describes the reaction ki
netics of the chemicals, andm is a dimensionless paramete
D is a diagonal matrix withDii the diffusion coefficient of
the i th species. The diagonal matrixM contains the ionic
mobilities which couple the chemical species to the elec
field of magnitudeE.

The last term in Eq.~7! is the origin of the convective
term in Eq.~1!. The parameterb in Eq. ~1! will be nonzero
if the diffusion coefficients inD are not all equal@8#. Simi-
larly the parameterd is related to the inequality of the ioni
mobilities in M. To demonstrate this, it suffices to deriv
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only the terms in Eq.~1! that are linear inA starting with the
reaction-diffusion equation~7! ~for a full derivation of the
CGLE see Ref.@8#!. It is assumed that as the parameterm in
the rate kinetics functionf passes through zero from negati
to positive, a supercritical Hopf bifurcation from an equili
rium to a limit cycle takes place. The equilibrium solutio
c0(m) of the spatially homogeneous system is given
f(c0 ,m)50, and is stable form,0. Given a small paramete
e!1, and a small deviation from the equilibrium solutio
u(r,t)5c(r,t)2c0(m), with u;e, linearization of Eq.~7!
yields

]u/]t5Lu1D¹2u1EM]u/]x, ~8!

whereL is the Jacobian matrix,Lmn5(] f m /]cn)c0(m) . Con-

sidering only values ofm!1 limits our analysis to the im-
mediate vicinity of the Hopf bifurcation atm50, and yields
the approximationsc0(m)'c0(0)1m(]c0 /]m)m50 and L
'L01mL1 , with (L0)mn5(] f m /]cn)c0(0) and (L1)mn

5(k(]
2f m /]ck]cn)c0(0)(]c0k /]m)m50 . Accordingly we

may approximate Eq.~8! as

]u/]t5L0u1mL1u1D¹2u1EM]u/]x. ~9!

In the neighborhood of the bifurcation, the dynamics are
termined by the most unstable modes of the homogene
system,dc/dt5f(c,m). At the threshold valuem50, these
critical modes are eigenvectors of the matrixL0 , denoted by
v1 andv2 , and have eigenvalues1 iV0 and2 iV0 , respec-
tively, whereV0 is the limit cycle frequency. The following
ansatz can now be made:u(r,t)5eA(r,t)eiV0tv1

1eĀ(r,t)e2 iV0tv2 , whereĀ is the complex conjugate ofA.
SinceL0 is real, v25v̄1 and denoting the dual vectors t
v1 andv2 by v1 andv2, we havev1v25v2v150. Fur-
thermore, we impose the normalization,v1v15v2v251.
Inserting this ansatz into Eq.~9! and left multiplying by
e2 iV0tv1 gives
ci.
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]A/]t5mb1A1b2¹2A1Eb3]A/]x, ~10!

where we have neglected rapidly oscillating terms varying
exp(22iV0t) by taking ]A/]t;m. In addition, the spatial
variation of A is taken to be slow and the electric field
assumed to be weak, so that“A;m1/2 and E;m1/2. The
constantsb1,2,3 are given byb15v1L1v1 , b25v1Dv1 ,
and b35v1Mv1 . This is Eq.~1! ~up to rescaling and the
frequency shift noted below! except for the cubic nonlinea
term which results from settinge5m1/2, necessitating the
inclusion of second- and third-order terms in the expans
of f(c01u). The parametersg andd in Eq. ~1! are seen to be
proportional to the electric fieldE. If all the chemical species
have the same ionic mobilityM, then M is proportional to
the identity matrix andb3 will be real, i.e.,b35M . On the
other hand, if the ionic mobilities are not all equal, thenb3

will have a nonzero imaginary part. Thus the parameted
which is proportional to Imb3 will be nonzero as claimed
above. Similarly,b will be nonzero if the diffusion coeffi-
cients differ. The coefficient of the linear growth term in E
~1! is real because any imaginary part ofb1 can be absorbed
as a frequency shift toA, A→Aei (Im b1)t. As shown in Ref.
@16#, the components of the eigenvectorv1 and its dualv2

can be determined experimentally for chemical reacti
diffusion systems, and therefore it is possible for the para
etersg and d to be calculated for an actual experimen
system@as can the other parameters appearing in Eq.~1!#.

In summary, we have shown that the presence of an e
tric field modifies the CGLE by inclusion of a convectiv
term with complex coefficient. This leads to spiral wave d
tortion ~see Fig. 2! and drift similar to that seen in exper
ments@17#.
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previously by Gabbayet al. using perturbation theory wher
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Ott, and P. N. Guzdar, Phys. Rev. Lett.78, 2012 ~1997!;
Physica D118, 371 ~1998!#. At a given point on a filament of
small curvature,K!1 ~and no phase twist!, the CGLE can be
written in the Frenet frame moving with the filament as]A/]t
5A2(11 ia) u A u 2A1(11 ib)¹2A1@v2(11 ib )K #]A/]x,
n
where¹2 is the two-dimensional Laplacian in the plane pe
pendicular to the filament, thex direction points toward the
center of curvature, andv is the filament velocity. This is
formally the same as the situation in Eq.~1!. Using Eqs.~4a!
and ~4b! yields v5(11b2)K for the filament velocity andk
5bK/2 for the first-order wave-number shift, in agreeme
with Gabbayet al.


