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Spiral waves in oscillatory media with an applied electric field
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Spiral waves in oscillatory reaction-diffusion systems under the influence of a uniform, time-independent
electric field are modeled by the complex Ginzburg-Landau equation extended to include a convective term
with complex coefficient. Results for the spiral drift, deformation, and frequency shift due to the electric field
are obtained. The coefficient of the additional convective term is derived from the original reaction-diffusion
system. The equation provides a good qualitative model of experimentally seen distortion of spiral waves in the
presence of an applied electric fie[$1063-651X99)03502-3

PACS numbes): 05.45-a, 82.40.Ck, 47.32.Cc, 82.20.M;j

Spiral waves are manifest in a broad range of experimentsection. Figure 2 is a numerical solution of E@) for a pair
involving pattern formation in nonequilibrium media. Ex- of spirals for the case of nonze® The spirals drift along
amples include the Belousov-ZhabotingiB8Z) reaction[1], the electric field direction, and they are deformed in a similar
electrical excitation in cardiac tiss{ig], catalytic oxidation fashion to what is seen experimentally for excitable media
of carbon monoxide on a platinum surfd&, spatial aggre- (e.g., the experiment of Ref6]).
gation of social amoebdd], and rotating waves of electrical With y=8=0 (i.e., zero electric field Eq. (1) becomes
activity on turtle cortex[5]. For BZ spiral waves, experi- the standard CGLE, which, using cylindrical coordinates
ments have been conducted in which the reaction takes plage, §), has a two-dimensional spiral wave solution of the
in the presence of a uniform electric field applied in the plane€orm [10]
of the reaction disi6,7]. The spiral center is observed to
drift primarily in the direction of the electric field, but there A=Ay(r,0,t)=F(r)exgi[ —wot+ a6+ (1)}, (2)
is a smaller component of the drift that is perpendicular to
the field and whose sign depends upon the chirality of thg here o= +1 is the “topological charge” of the spiral

Zpifral. Ir:j addition, the shapﬁ of the Ispirarl] is Zignifica””)l’wave, andF(r) and y(r) are real functions whose large
eformed in comparison to the typical Archimedean spira Sehavior isdi/dr— k. andF— V1—K2 asr—o. wherek
seen in the absence of the electric fiékdg. 1). These ex- Js a constan:/jwhich ((j)epends anandg. The fréquencyug

periments were performed in the excitable regime of the B is connected with. . the asvmbptotic plane wave number. via
reaction. In the oscillatory regime, sufficiently close to the . . 0 ymp P 2 '
the dispersion relationyg=a+(8— a)kj.

onset of oscillations, the dynamics of reaction-diffusion : )
equations, such as those believed to govern the BZ reaction, Introducing the transformations
can be modeled by the well-known complex Ginzburg-
Landau equatiofCGLE) [8]. In addition, it is also found
that the CGLE provides a good model for qualitative behav-
ior of real systems even though they are not near a Hopf
bifurcation(including excitable regime casd®]. In this pa-
per, we consider the CGLE with an additional term that we
show arises from applying a weak, uniform, time-
independent electric field to a reaction-diffusion system:

A gt=A—(1+ia)|APA+(1+iB)V2A+(y+i8)dAldx.
(1)

A(r,t) is a complex scalar field that slowly modulates the
fast oscillations of the physical variables, ad 8, 7y, and
S are real parameters. The last term in EL.is due to the

i fi i R . "wi.-;wm. e e -
electric field which has been taken to point along xhei- e

X B ‘A
- # gl Tk & filen.
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1063-651X/99/562)/24434)/$15.00 PRE 59 2443 ©1999 The American Physical Society



2444 BRIEF REPORTS PRE 59

of spatial variation is also shifted by the factoY?. (iii) The
oscillation frequency is changed by an amound = (wq

—B)(812)2. (iv) The larger asymptotic wave number now
becomes) dependent,

k(9)= (A% coSO+ k)Xo + N2, SiN By, . (6)

The directional dependence [ is responsible for the de-
formation of the spiral shown in Fig. 2 and found in experi-
ments, andk= — §/2 quantifies the extent of the deforma-
tion. The deformation and the frequency shift depend upon
and noty, which only contributes to the uniform translation.
As shown below,y and § are proportional to the electric
FIG. 2. Deformation of spiral waves. Plotted is the phaséof field and so result$4a and (4b) imply that the drift and

for a numerical solution of Eq1) with the electric field taken along deformation velocity are proportional to the electric field.
the vertical direction andv=0.25, B=—1, y=0, §=0.3. The Experiments done on the BZ reaction likewise find a drift
spiral cores have drifted down from their initial location halfway up velocity that is roughly proportional to the electric fig&l 7].

the box. The perpendicular component of drift seen in these experi-

ments does not appear in our results, indicating that this as-

r'=AYx—vt)xg+ A yyo=X"Xo+ Y Yo, pect of the observations is not captured by the perturbation
expansion yielding Eq(l); e.g., the experiments were per-

t'=\t, A/(X,y' t)=A"2A(x,y,1) formed in the excitable regime of the BZ reaction whereas

the perturbation expansion applies for oscillatory media. Per-
haps for the same reason, the above solution corresponds to a
uniformly translating deformed spiral without the periodic
relaxations to an undeformed shape as reported in[REf.

xexpi[vt—x(x—vt)]},

Eqg. (1) becomes

A =N 1+iv—k2(1+iB) +ik(v+y+id)]A The transformation of Eql) to the case withy=6=0
_ _ with the values ofa and B8 preserved implies that spiral
+(1+ia)|APAT+(1+iB)V 2A wave solutions to Eq(1) will have the same stability prop-

ny . . . VA erties as CGLE spiral waves for a givenand 8. The sta-
Ny tiotu+2ik(1+iBOA 10X, (3) bility properties of CGLE spiral waves have been investi-
where V2= 32/9x'2+ 3%/3y'?. The complex coefficient of gated with respect to the stability of plane way&4], core

dA’19x’ can be made zero by the following choice of the acceleratior{12], and phase twist along the vortex filament

two real transformation parametersand «: in three dimensionglL3]. In addition, the transformation does

not assume that the solution is a spiral wave. This implies

v=—(y+p9J), (4a  thatthe borderlines ir-3 parameter space which demarcate
qualitatively different regimes of behavior, such as the so-
k=—20I2. (4b) called “frozen” state of relatively stationary defects and the

defect-mediated turbulence stdted], will be the same for
Inserting Egs(4a and(4b) in Eq. (3), we can now make the the CGLE with the addedA/dx term as for the original
complex coefficient oA’ one by the following choice of the CGLE.

remaining two parametens and\: We now explain the origin of théA/dx term in Eq.(1).
5 In the presence of a uniform electric field in tkelirection,
v=—pB(3l2)%, (40 the equation modeling a system of reacting and diffusing

chemicals is of the form15]
A=1+(5/2)2. (4d)
aclat=f(c,u) + DV?c+ EMac/ ox. (7
Thus we have transformed Eq) to the conventional CGLE

[i.e., Eq.(1) with y=6=0]. Hence Eq.(1) with y#0, §  The components; of the vector fieldc(r,t) represent the

#0 has the following spiral wave solution: concentrations of the chemical species of concern in the ex-
periment. The nonlinear functiondescribes the reaction ki-
A(x,y,t)=)\1/2F()\1’2F)exp{i[—()\w0+ v)t netics of the chemicals, and is a dimensionless parameter.
. - D is a diagonal matrix wittD;; the diffusion coefficient of
+ik(x—vt)+ob+ g\ )]}, () theith species. The diagonal matrM contains the ionic

) . mobilities which couple the chemical species to the electric
whereF and ¢ are the amplitude and phase functions for thefield of magnitude.

conventional ¢=6=0) CGLE and (, 6) are cylindrical co- The last term in Eq(7) is the origin of the convective
ordinates in the frame comoving with the spiraf=(x  term in Eq.(1). The parameteg in Eq. (1) will be nonzero
—vt)?+y?. Comparing Eqs(2) and (5), we see that appli- if the diffusion coefficients irD are not all equal8]. Simi-
cation of an electric field has the following effects) The  |arly the parametes is related to the inequality of the ionic
largeT amplitude is shifted by the factor2 (ii) The scale mobilities in M. To demonstrate this, it suffices to derive
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only the terms in Eq(1) that are linear irA starting with the
reaction-diffusion equatioii7) (for a full derivation of the
CGLE see Ref[8)). It is assumed that as the parameiein
the rate kinetics functiohpasses through zero from negative
to positive, a supercritical Hopf bifurcation from an equilib-
rium to a limit cycle takes place. The equilibrium solution
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IA 9t= ub;A+b,VZA+ EbgdAldx, (10)

where we have neglected rapidly oscillating terms varying as
exp(—=2iQgt) by taking dA/dt~w. In addition, the spatial
variation of A is taken to be slow and the electric field is

Co(m) of the spatially homogeneous system is given byassumed to be weak, so th&A~ 2 and E~ Y2 The

f(cg, ) =0, and is stable fop<0. Given a small parameter,
e<1, and a small deviation from the equilibrium solution,
u(r,t)=c(r,t) —co(u), with u~e, linearization of Eq.(7)
yields

dul gt=Lu+DV2u+EMau/dx, (8)

wherelL is the Jacobian matri&mnz(afm/&cn)co(m. Con-

sidering only values oft<<1 limits our analysis to the im-
mediate vicinity of the Hopf bifurcation gt =0, and yields
the approximationsco(u)=~co(0)+ u(dcy/du),—o and L
~Lo+ul,, with (LO)mn:(U’)fm/aCn)co(O) and  (L1)mn
=3(9*f 1/ 9€,3Cn) ¢ 0)(ICok/ A1) y=0-  Accordingly we
may approximate Eq8) as

ouldt=Lou+ uLu+DV2u-+EMau/ix. 9)

In the neighborhood of the bifurcation, the dynamics are d
termined by the most unstable modes of the homogeneo
system,dc/dt="f(c,u). At the threshold valug.=0, these
critical modes are eigenvectors of the matri, denoted by
v, andv_, and have eigenvaluesi, and—i(, respec-
tively, where(}, is the limit cycle frequency. The following
ansatz can now be madeu(r,t)=eA(r,t)e'%l
+eA(r,t)e oty _, whereA is the complex conjugate .
Sincel, is real,v _=v, and denoting the dual vectors to
v, andv_ byv* andv ™, we havev "v_=v v, =0. Fur-
thermore, we impose the normalizatian!v  =v v_=1.
Inserting this ansatz into Eq9) and left multiplying by

e oty gives

e&%ﬁ], the components of the eigenvector and its dual _

constantsb; , 3 are given byb;=v*Lv,, b,=v*Dv,,
andbz=v*Mw, . This is Eq.(1) (up to rescaling and the
frequency shift noted belowexcept for the cubic nonlinear
term which results from setting= 2, necessitating the
inclusion of second- and third-order terms in the expansion
of f(cy+u). The parameterg andé$ in Eq. (1) are seen to be
proportional to the electric field. If all the chemical species
have the same ionic mobilitM, thenM is proportional to
the identity matrix and; will be real, i.e.,b;=M. On the
other hand, if the ionic mobilities are not all equal, then
will have a nonzero imaginary part. Thus the parameéter
which is proportional to Imb; will be nonzero as claimed
above. Similarly,8 will be nonzero if the diffusion coeffi-
cients differ. The coefficient of the linear growth term in Eq.
(1) is real because any imaginary parttgfcan be absorbed
as a frequency shift td, A—A€e(MPt As shown in Ref.

can be determined experimentally for chemical reaction-
diffusion systems, and therefore it is possible for the param-
etersy and § to be calculated for an actual experimental
system[as can the other parameters appearing in(Ed.

In summary, we have shown that the presence of an elec-
tric field modifies the CGLE by inclusion of a convective
term with complex coefficient. This leads to spiral wave dis-
tortion (see Fig. 2 and drift similar to that seen in experi-
ments[17].
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